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Abstract: 

This article aims to discuss and complete the avalanche representations of the failure process of quasi-brittle 

materials. Paper was used as a model material. We proposed an original method to determine avalanches 

extracted directly from the force drops in the post-peak regime of experimental force-displacement curves. We 

studied the avalanche distributions on notched and unnotched samples, taking into account the measurement 

noise. From these experimental tests, two regimes in the avalanche distribution were observed during the 

propagation of a macrocrack, in particular with a well-defined power law at small scale, that was consistent 

with other avalanche distributions based on other methods and other materials in literature. A single regime 

power-law distributed was found for a diffuse damage (without a significant macrocrack propagation) using the 

Mazars’ damage model. Our results showed that the post-peak regime of tensile curves contained the statistical 

signature of the propagation of a macrocrack during the rupture of paper. 
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1. Introduction 

This article raises the issue of the propagation of cracks in quasi-brittle materials. It is commonly explained 

that the microscopic behavior, 𝑖. 𝑒. the successive apparitions, nucleations, bifurcations and stops of microcracks 

is at the origin of the progressive development of the Fracture Process Zone (FPZ) just before the localization 

in macroscopic cracks (Bažant 1994). This discrete propagation in time (the so-called avalanches) of the 

microcracks under a quasi-static loading is due to the discrete distribution in space of the material properties 

(heterogeneities). This is the main reason why in all quasi-brittle materials, the size of the FPZ is strongly related 

to the microstructural sizes even though the shape of the stress field may also affect the FPZ width (Giry et al. 

2011). 

The size of the FPZ is a key parameter for the objective modelling of structural failure. In a quasi-static 

loading, all regularization techniques and more generally objective constitutive models must include at least 

one internal length to represent the dissipative process taking place in the FPZ and thus avoiding any mesh 

dependency. However, in the best knowledge of the authors, no explicit relation between the internal length of 

a model and some characteristic sizes of the material does exist. It can be done by inverse analysis on structural 

failure at different scales (Le Bellégo et al. 2003). Identifying in a simple manner, precise though, the model 

internal length as a function of geometrical quantities to be set in the numerical model remains a scientific 

challenge. 

In order to better understand and describe this propagation, the acoustic emission (AE) technique allows 

representing a series of microscopic ruptures (Saha and Vidya Sagar 2022). However, such studies involve 

complex, time-consuming technologies and processes. First, the spatial distribution of acoustic events in 2D or 

even 3D must be projected along a profile perpendicular to the macrocrack. Histograms based on either the 

number and/or the energy of acoustic events are drawn. Then, distribution laws must be fitted on this histogram 

to get a characteristic width of the FPZ.  

Using a procedure originally developed to locate earthquakes, AE arrival-time data can be inverted to 

obtained spatial locations of microevents (Lockner et al. 1991). AE allows recording the properties and the 

localization of fracture precursors on heterogeneous materials. It is often found that the microcracks cluster 

together as the load increases and the instantaneous acoustic energy follows a power law distribution. The 

statistical analysis of the failure process of different materials shows that the distribution of rupture events may 

be displayed using power laws (Gutenberg and Richter 1944) (Voight 1988). Power laws were observed using 

AE on various materials as rocks (Grasso and Sornette 1998) (Diodati et al. 1991), polymers (Petri et al. 1994) 

(Deschanel et al. 2009), sandstone (Fortin et al. 2009), concrete (Alam et al. 2014), wood (Guarino et al. 2002) 

or paper (Salminen et al. 2002). The power law distribution of earthquake sizes is well known (Gutenberg and 

Richter 1944). For dozens years, the power law distributions of avalanche sizes and energies were observed and 

modelled (Girard et al. 2010). The Gutenberg-Richter law points out that the energy generated by rupture events 
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follows the relation 𝑝ሺ𝐸ሻ ~ 𝐸ିఉ, with 𝛽 values between 1.2 and 2 have been reported for various materials 

(Diodati et al. 1991; Garcimartín et al. 1997). It has also been observed that the time lag 𝜏 between two rupture 

events follows a power law (Voight 1988) 𝑝ሺ𝜏ሻ ~ 𝜏ିఈ, with 𝛼 values can be found between 1 and 1.5. 

Power laws may also be seen when analysing the force of velocity fluctuation in a failure test. Among many 

other, Santucci et al. exhibited power-laws in avalanche distributions from velocity of crack front during its 

propagation in heterogeneous interface (Santucci et al. 2018). Barés et al. showed that for a fracture test of an 

artificial rock, the power release determined from the response curve is a power law distributed in two regimes 

(Barés et al. 2014).  

Avalanche distributions were extensively theoretically studied using Fiber Bundle Models (Daniels 1945; 

Hemmer and Hansen 1992; Zapperi et al. 1999). In particular, the two power-law distribution observed by Barés 

et al. (2014) during crack propagation was observed using Fiber Bundle Models in the study of imminent failure 

of the bundle (Pradhan et al. 2005) and on breakdown phenomena with crack propagation for elastic (Delaplace 

et al. 2001), visco-elastic (Baxevanis et al. 2006) materials with random distributed properties as well as 

materials with structural heterogeneities (Villette et al. 2020). 

This article deals with the description of rupture events in tensile failure of paper samples. Paper was used 

as a model material. Avalanches were extracted directly from force drops in experimental force-displacement 

curves. In the following section, the proposed method to study avalanche distributions is presented. This 

approach was applied to tensile tests on notched and unnotched paper samples. Then, results are studied and 

discussed. 

2. A new and simple experimental approach to study avalanche 
distributions 

In this section, we propose to highlight power law distributions observed without AE during the post-peak 

regime of paper samples in a tensile failure test. The aim is to study the statistics of the force drops in the post-

peak regime on the global response of a structure on a failure test. The experimental setup is first described. 

Avalanches are then defined using force drops extracted from the force-displacement curve. 

2.1.  Experimental setup 

The reference paper used for this study was made of softwood fibers and manufactured with a Rapid-Köthen 

sheet former. According to standards, the paper thickness (ISO 534:2011(F)) was equal to 127 𝜇𝑚 and its basis 

weight (ISO 536:2019) was equal to 60 𝑔. 𝑚ିଶ.  
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In order to study the influence of crack propagation on the statistics of the force drops, mechanical tests 

were carried out on notched (more likely to propagate a single crack) and unnotched (more likely to develop 

diffuse damage) rectangular samples (20 𝑚𝑚 in height and 35 𝑚𝑚 in width) cut with a razor blade within the 

paper sheet. The chosen dimensions of the samples ensured a quasi-static failure with a displacement driven 

test. Indeed, for larger specimens, due to size effects, some unstable failures were obtained. The notch was cut 

at the middle right of the sample and was 15 𝑚𝑚 long, that was sufficiently long to initiate failure at the notch 

tip. For a shorter notch, the paper heterogeneities may have triggered the failure away from the notch. 

Fig. 1 shows a schematic view of the mechanical setup. Displacement controlled tensile tests were conducted 

on the Instron® 3365 machine at a speed of 4 𝑚𝑚. 𝑚𝑖𝑛ିଵ, equipped with a 10 𝑘𝑁 force sensor at 100 𝐻𝑧 of 

acquisition rate. The samples were stored before the mechanical testing in a controlled environment of 23°𝐶 

and 50% of relative humidity and released just prior the tensile test. 

 

 

Fig. 1 Setup of the tensile test on a paper sample. 
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2.2.  Avalanches in the post-peak 

 

Fig. 2 Typical force-displacement (𝑭,𝒖) tensile curve of a 𝟔𝟎 𝒈. 𝒎ି𝟐 paper. The insert is a zoom on the curve in the post peak 
regime. Each point of the curve (blue points) corresponds to an acquisition by the sensors in displacement and force. The arrows represent 
avalanches 𝜟𝑭𝜹𝒕𝒊

 over the time increment 𝜹𝒕𝒊. The resulting avalanches are shown for two different time increments: (in orange) 𝜹𝒕𝟏, 
corresponding to the acquisition rate, and (in green) 𝜹𝒕𝟐 ൌ 𝟐 ൈ 𝜹𝒕𝟏. 

 

Fig. 2 shows a typical force-displacement curve obtained on the tested paper samples. Let us call ሼ𝑢௧, 𝐹௧ሽ the 

sequences of measurement points acquired by both sensors in displacement and in force during the test, 

respectively, where 𝑡 was the time at measurement. Giving a time increment 𝛿𝑡, taken as a multiple of the 

acquisition rate during the test, we defined avalanches as force drops such as: an avalanche occurred at the point 

ሼ𝑢௧, 𝐹௧ሽ when 𝐹௧ାఋ௧ െ 𝐹௧ ൏ 0. The corresponding size of the avalanche was the force drop Δ𝐹 ൌ 𝐹௧ െ 𝐹௧ାఋ௧. 

The insert of the Fig. 2 shows some examples of considered avalanches, denoted  Δ𝐹ఋ௧భ
 and Δ𝐹ఋ௧మ

, for two time 

increments 𝛿𝑡ଵ and 𝛿𝑡ଶ, respectively. Taking into account all avalanches occurring after the peak, the 

distribution of the number 𝑁ி of observed avalanches of size Δ𝐹 was derived. 

2.3.  Characterization of the avalanche distribution caused by measurement noise 

Some similar works, e.g. (Barés et al. 2014), pointed that the smallest avalanches in the obtained distribution 

highlighted a Gaussian shape. They assumed that it was due to the measurement noise. Therefore, it seemed 

necessary to account for it before going further in the study of the avalanche distribution. In order to quantify 

the influence of the measurement noise in the force signal, we recorded the force cell signal during an empty 

tensile test, i.e., without specimen between clamps, at the same speed and during a time period in the same order 

of rupture tests carried out. 
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Fig. 3 Distributions of the number 𝑵𝜟𝑭 of avalanches according to their size 𝜟𝑭 derived from the signal recorded by the force sensor 
during an empty test, for two time increments 𝜹𝒕 (𝟎. 𝟎𝟏 𝒔 and 𝟎. 𝟎𝟐 𝒔). The distributions are normalized by 𝜹𝒕 which makes them 
collapse on a unique master curve. The green dotted curve is a Gaussian curve of zero mean and a standard deviation fitted on the results. 
The insert shows the distribution without normalization. 

 

Fig. 3 shows the distribution of avalanches from the empty test according to the method presented in the 

previous section. The distributions were displayed for two time increments 𝛿𝑡 (0.01 𝑠 and 0.02 𝑠) and 

normalized by 𝛿𝑡. Due to the signal noise, they exhibited a centered Gaussian shape with a standard deviation 𝜎ீ  

of 0.7 𝑁. 𝑠ିଵ approximatively. 

3. Results of tensile tests on paper samples and discussion 

Tensile tests were conducted on notched and unnotched paper samples (six of each). First, the global 

avalanche distributions for the notched and unnotched samples are shown before discussing the influence of the 

crack propagation on the avalanche distributions. The shape of the avalanche distributions is then after discussed 

in comparison with the one obtained from a continuous damage model with a softening behavior. 
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3.1.  Global avalanche distributions 

 

Fig. 4 Distribution of the number 𝑵𝜟𝑭 of avalanches according to their size 𝜟𝑭 for unnotched (blue points) and notched (orange 
points) samples for several time increments 𝜹𝒕. The distributions are normalized by 𝜹𝒕. The distributions exhibit two different regimes 
highlighted at small 𝑰 and large scales 𝑰𝑰. The force drop rate at crossover of the two regimes is marked by the vertical arrows. The green 
dotted curve is the fitted Gaussian curve obtained from the empty test. The curve is shifted vertically to match smaller scales of 
distributions for the sake of clarity. The insert shows zoom on the first regime. The tensile curves of all samples are shown in the right 
columns. 

 

Fig. 4 shows the avalanche distributions for the notched and unnotched paper samples, each distribution 

was the sum of the one over six samples. Each distribution was displayed for several time increments 𝛿𝑡. The 

distributions collapsed into a single master curve when normalized by 𝛿𝑡. A plateau was observed at the smaller 

scales of the distributions, which corresponded to scales dominated by the sensor noise. The Gaussian 

distribution found for the empty test was displayed and vertically shifted to match with the smaller scales of the 

distributions for the sake of clarity. These scales were then not considered in the further analysis of the results. 

On the relevant part, the distributions exhibited two regimes at small (𝐼) and large (𝐼𝐼) scales. The small-

scale regime was power law distributed (see insert of Fig. 4). Using least square method, the scaling exponent 

found for both distributions at small scales were the same and equal to െ1.1 േ 0.1 (scaling exponent 95% 

confidence interval). At large scale, we measured avalanches that seemed to follow a second regime (𝐼𝐼ሻ. As 

large-scale avalanches were spread over a narrow interval, it was difficult to determine the shape of the second 
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regime with any certainty. It could be an exponential cut-off, as generally observed for avalanche distributions 

(Santucci et al. 2018) or a power law as supported by the available literature on avalanche distribution from 

crack propagation in fracture experiment carried out on artificial rocks (Barés et al. 2014) or using heuristic 

models of crack propagation based on Fiber Bundle Models with structural heterogeneities (Villette et al. 2020) 

or purely randomly distributed (Delaplace et al. 2001). Future investigations could enable us to determine the 

precise shape. Nevertheless, in order to give at least an order of magnitude on the differences with regime 𝐼, we 

assumed that large avalanches were power law distributed to determine an apparent scaling exponent. 

The found apparent scaling exponent at large scale were െ4.2 േ 0.3 and െ3.6 േ 0.2 for the unnotched and 

notched samples, respectively. The cutting force drop rate Δ𝐹/𝛿𝑡, i.e., at the crossover of the two regimes 

(vertical arrows in Fig. 4), was smaller for the notched samples than for the unnotched ones, equal to 8 and 

13 𝑁. 𝑠ିଵ, respectively. 

 The scaling exponents, the considered range of avalanche and the R-square value in each case are 

summarized in Tab. 1. 

Here, we extended observation of the two regime profiles on avalanches simply based on the force drops in 

post peak of tensile curve of paper material. 

 

 Small scales (𝑰) Large scales (𝑰𝑰) 
 Scaling exponent Range R-square Apparent scaling exponent Range R-square 

Unnotched െ1.1 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.96 െ4.2 േ 0.3  Δ𝐹/𝛿𝑡 0.93 
Notched െ1.1 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.98 െ3.6 േ 0.2  Δ𝐹/𝛿𝑡 0.98 

Tab. 1 Scaling exponent േ 𝟗𝟓% confidence interval at small and large scales determined by the least square method with the 
considered range and the R-square for the avalanche distribution of the unnotched and notched samples. 

 

3.2.  Influence of the crack propagation of the stress drop distribution 

Fig. 5 exhibits the avalanche distributions for three unnotched specimen (U1, U2 and U3) and three notched 

ones (N1, N2, N3). Four step images of the rupture tests are depicted on the right of each avalanche distribution. 

Point-to-point image differences are also depicted in order to qualitatively highlight crack propagation in a clear 

manner. 
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Fig. 5 Distribution of the number 𝑵𝚫𝐅 of avalanches according to their size 𝜟𝑭 for the unnotched samples U1, U2 and U3 (left) and 
notched samples N1, N2 and N3 (right), for different time windows 𝜹𝒕. The distributions are normalized by 𝜹𝒕. Grey scale images of 
each sample are shown at four steps of the rupture. The corresponding image differences are shown with arbitrary scale. Areas where 
damage occurs are pointed out by white arrows if small and surrounded by white circles if large. 

 

For the samples U1 and N1, the avalanche distributions were dominated by the regime 𝐼, the regime 𝐼𝐼 was 

relatively small or almost non-existent. At the onset of the fracture tests, cracks initiated on large zones all along 

the samples as roughly outlined by the white circles on image differences of U1 and N1. Accordingly, 

microcracks were spread throughout the sample width, then they coalesced without the propagation of a clear 

macrocrack. On the other samples (U2, U3, N2 and N3), the avalanche distributions exhibited more clearly two 

regimes. During fracture on these samples, the damage initiation was located on a single side (notch tip for 

notched ones) and progressively a macrocrack propagated through the sample width (white arrows on image 
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differences). On U2, we also observed a plateau between regimes 𝐼 and 𝐼𝐼 (arrow on avalanche distribution). 

This behavior was not observed on other samples and its causes were not well understood so far. Zoom on 

regime 𝐼 of each avalanche distribution is shown in supplemental information (Fig. 8). 

 

 

Fig. 6 Scaling exponent of the small and large scales for U1, U2, U3, N1 N2 and N3 samples. Error bars represents the 𝟗𝟓% 
confidence intervals. 

 

Fig. 6 shows the scaling exponents at small and large scales for the unnotched and notched samples determined 

by the least-square method. For both types of samples, higher was the large-scale exponent, smaller was the 

small-scale exponent. It should be noted that the first regime (small avalanches) is the one of diffuse damage 

and the second regime (large avalanches) is the one of the propagation of a macrocrack with a stress 

concentration and therefore a less spatially spread FPZ. Thus, it seems reasonable that a competition between 

the two mechanisms may occur. Either we have a macrocrack initiated from the notch and then the microcracks 

are limited to the crack tip, or various small heterogeneities are at the onset of microcracks, that are gradually 

activated such that a coalescence can be finally observed. 

 

The scaling exponents, the considered range of avalanche and the R-square value in each case are summarized 

in Supplemental Information (Tab. 3). The boundary between regimes 𝐼 and 𝐼𝐼 that was used to determine 
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scaling exponents was equal to the corresponding cutting force drop rates Δ𝐹/𝛿𝑡 found in the previous section, 

except for U2 because of the plateau in the avalanche distribution. 

 

3.3.  Discussion about the shape of the avalanche distributions by means of a 
continuous damage model 

In this section, we studied the theoretical avalanche distributions of a quasi-brittle material using the Mazars’ 

damage model. 

In continuous damage model, the progressive degradation of the material may be represented by a damage 

scalar variable 𝐷 in the constitutive law linking the Cauchy stress tensor 𝝈 and the small strain tensor 𝜺 by: 

 𝜎 ൌ ሺ1 െ 𝐷ሻ𝐶𝜀 (1)

where 𝜎 and 𝜀 are the components of the stress and strain tensors, respectively. 𝐶 corresponds to the 

components of the stiffness tensor. The damage variable 𝐷 varies during the loading from 0 (sound material) 

to 1 (fully damaged material). 

Assuming uniaxial loading, the projection of the constitutive law (1) on the axial direction, i.e., tensile 

direction, is: 

 𝜎 ൌ
𝐹

𝑤𝑡
ൌ ሺ1 െ 𝐷ሻ𝐸𝜀 ൌ ሺ1 െ 𝐷ሻ𝐸

𝑢
𝑙

 (2)

where 𝜎 ൌ
ி

௪௧
 and 𝜀 ൌ

௨

బ
 are the macro stress and the macro strain and 𝐸 the Young’s modulus of the 

material. 𝑤, 𝑡, 𝑙 are the sample initial width, thickness and height, respectively. 

In the Mazars’ damage model, the evolution of the damage variable 𝐷 in uniaxial traction depends on the 

axial strain 𝜀: 

 ቐ
𝐷ሺ𝜀 ൏ 𝜀ௗሻ ൌ 0

𝐷ሺ𝜀  𝜀ௗሻ ൌ 1 െ
𝜀ௗሺ1 െ 𝐴௧ሻ

𝜀
െ

𝐴௧

𝑒ሺఌିఌబሻ

 (3)

involving three parameters 𝜀ௗ, 𝐴௧, 𝐵௧. The parameter  𝜀ௗ corresponds to the strain at the damage initiation. 

The parameter 𝐴௧ controls the residual stress when damage tends towards unity and 𝐵௧ manages the post-peak 

shape (i.e., brittleness) of the tensile curve. 
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Assuming zero residual stress (i.e., 𝐴௧ ൌ 1) and combining (2) and (3), the equation of the theoretical force 

displacement curve obtained with the Mazars’ damage model for a tensile test is: 

 ቐ
𝐹ሺ𝑢 ൏ 𝑢ௗሻ ൌ 𝐶𝑢   

𝐹ሺ𝑢  𝑢ௗሻ ൌ 𝑒ିሺఌିఌబሻ ൈ
𝐸𝑤𝑡

𝑙
𝑢 ൌ 𝑒ିబሺ௨ି௨బሻ ൈ 𝐶𝑢

 (4)

with 𝐵௧ ൌ


బ
, 𝑢ௗ ൌ  𝜀ௗ ൈ 𝑙 and 𝐶 ൌ  

ா௪௧

బ
. 

The obtained curves following (4) have a softening strictly monotonic decreasing post-peak, devoid of 

fluctuation as the Mazars’ model does not take heterogeneities into account. Nevertheless, for a given discretized 

curve, the post-peak shows force drops by definition. Therefore, the force drops can be studied in the same 

methodology than described in section 2.2 to derive the avalanche distribution. 

 

 

Fig. 7 Distribution of the number 𝑵𝜟𝑭 of avalanches according to their size  𝜟𝑭 for the Mazars’ damage model with 𝑩𝒕𝟎 ൌ
𝟔 𝒎ି𝟏 (purple points) and 𝟐 𝒎ି𝟏 (yellow points) for several time increments  𝜹𝒕. The distributions are normalized by  𝜹𝒕. The 
distributions exhibit a slope highlighted at small scale 𝑰. The corresponding tensile curve of the Mazars’ damage model is shown in the 
insert (solid curve for 𝑩𝒕𝟎 ൌ 𝟔 𝒎ି𝟏 and broken curve for 𝑩𝒕𝟎 ൌ 𝟐 𝒎ି𝟏). 

 

Fig. 7 shows the avalanche distributions of two theoretical tensile curves (in the insert of Fig. 7) obtained using 

the Mazars’ damage model (4). For the two curves, 𝐶 was arbitrarily taken equal to 300 𝑁. 𝑚𝑚ିଵ. Giving that 

𝐶 is a constant prefactor in (4), its value did not influence neither the shape nor the scaling exponent of the 

avalanche distributions. The displacement at onset of damage 𝑢ௗ was taken equal to 0.2 𝑚𝑚 which is on the 

order of magnitude of the displacement found at peak-load in experiments. Two values of 𝐵௧ (2 𝑚ିଵ 



13 
 

and 6 𝑚ିଵ) were investigated in order to generate the tensile curves with more or less brittleness in the post-

peak. The tensile curves had the same acquisition parameters than in the experiments, i.e., 100 𝐻𝑧. 

 

 Scaling exponent Range R-square 

Mazars’ model (𝑩𝒕𝟎 ൌ 𝟔 𝒎ି𝟏ሻ െ0.8 േ 0.1 ሾ0.1, 1ሿ 0.89 

Mazars’ model (𝑩𝒕𝟎 ൌ 𝟐 𝒎ି𝟏ሻ െ0.8 േ 0.1 ሾ0.1, 1ሿ 0.98 

Tab. 2 Scaling exponent േ 𝟗𝟓% confidence interval determined by the least square method with the considered range and the R-
square for the avalanche distributions of the Mazars’ damage model with 𝑩𝒕𝟎 ൌ 𝟐 𝒎ି𝟏 and 6 𝒎ି𝟏. 

 

Both avalanche distributions exhibited a similar shape with a single power law (𝐼) excepted for the larger force 

drop rates, where number of avalanches increased due to inflection point in the post-peak (arrows on 

distributions and curves). The scaling exponent was determined by the least square method and equal to െ0.8 

in both cases. The scaling exponents, the considered range of avalanches and the R-square value in each case 

are summarized in Tab. 2. 

The shape of the avalanche distributions may be summarized as follow: 

 For a quasi-brittle material, due to the softening behavior, avalanches occurred during post peak 

with a power-law distribution of scaling exponent equal to െ0.8. As material heterogeneities were 

not explicitly represented, the damage corresponded to the global degradation of the material i.e., 

without damage localisation and crack propagation. This result was consistent with our 

experimental observations on the paper samples for which the onset of damage occurred on a large 

zone (i.e., more diffuse) rather than at the tip of a macrocrack (i.e., localised manner). In this 

particular experimental case, it is reminded that the avalanche distributions were dominated by a 

single power-law. Literature on Fiber Bundle Models also states the single power law of the 

avalanche distribution in the case of tensile test (Hemmer and Hansen 1992). 

 On the tested samples, damage with a macrocrack propagation during fracture was correlated with 

two regimes, assumed two power laws, in the avalanche distribution. This observation was 

supported by theoretical studies on ZIP model (Delaplace et al. 2001; Villette et al. 2020) or in 

experiments on artificial rocks (Barés et al. 2014). Furthermore, we recently showed that the force 

drops that occurred during the post peak of a tensile curve can be related to the geometry of the 

active FPZ (Villette et al. 2023). Indeed, we characterised the FPZ geometry during fracture tests 

on paper samples and linked its size and form to the stress drops, considering the initial sample 

width and thickness for stress calculation, in the post peak regime. We showed that (i) the stress 

drops were proportional to the area of the FPZ activated during the considered drop and (ii) the 

active FPZ can take two possible forms, a circular one (at low stress drop) and a slenderer one in 
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the direction of the crack above a critical stress drop. Then, the FPZ geometry is related to the stress 

drops in the post-peak regime and the changing of the FPZ form could explain the bi-modal behavior 

in the avalanche distribution. It should be noted that the large scale exponents were widely dispersed 

and higher than those reported in the literature, which would be more in favor of an apparent 

exponent of a second exponential regime. Unless the definition of avalanches used here, which 

seems new in the literature, lead to higher coefficients than are known. In this publication, therefore, 

we assume an apparent coefficient, and remember that the important point is the presence of the 

large scale regime to a greater or lesser extent, correlated to crack propagation. 

Therefore, we showed that tensile response curve contained the signature of the damage propagation studying 

the avalanche distribution that highlighted (i) a single regime for a diffuse damage or (ii) regimes for a 

macrocrack propagation. 

4. Conclusion 

This paper presented a statistical analysis of failure process in quasi-brittle materials using paper as a model 

material and based on the experimental study of the post-peak of the tensile response curve. Tensile tests on 

unnotched and notched paper samples were conducted. From the obtained tensile curves, we proposed a new 

approach of the avalanche statistics defined as the force drops of the global response in the post-peak regime. 

Considering all the samples, unnotched and notched separately, avalanche distributions exhibited two regimes: 

a well-defined power law at small scale and another regime at large scale, the shape of which remained difficult 

to access because of lake of data, but assumed in this publication power law distributed. In particular, the small 

scales exponent was equal to െ1.1 and the cutting force drop was smaller for the notched samples than for the 

unnotched ones. The presence of the large-scale regime was correlated to the propagation of a macrocrack 

during failure of sample. Conversely, a diffuse damage over the sample width was associated with only a single 

regime power law distributed in the avalanche distribution. This observation was qualitatively consistent with 

the avalanche distribution predicted by the Mazars’ damage model exhibiting a single power law for a diffuse 

damage. Therefore, our results showed that the post-peak of the tensile curve contained the statistical signature 

of a diffuse damage (single regime) and of macrocrack propagation (two regimes), the later was mainly activated 

during fracture tests on notched samples. Giving that force drops are related to the FPZ geometry, the form of 

the avalanche distribution could provide some useful information on the characteristic size involved during the 

material fracture and on the internal length used in nonlocal damage models. In future work, these results could 

be confirmed using more samples and could be extended on other quasi-brittle materials. A particular attention 

would be done to better characterize the large-scale regime. Numerical simulation using nonlocal damage 

models could be considered in order to study the influence of the internal length on avalanche distribution. 
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Supplemental information 

 

 

Fig. 8: Zoom on the small-scale regime (𝑰) of avalanche distributions shown on Fig. 5. 
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 Small scales (𝑰) Large scales (𝑰𝑰) 
 Scaling exponent Range R-square Scaling exponent Range R-square 

U1 െ1.7 േ 0.1 ሾ1.5, Δ𝐹/𝛿𝑡ሿ 0.95 െ2.8 േ 1  Δ𝐹/𝛿𝑡 0.83 
U2 െ1.5 േ 0.2 ሾσீ, 3ሿ 0.84 െ5.3 േ 0.4  10 0.99 
U3 െ1.0 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.85 െ6.5 േ 0.8  Δ𝐹/𝛿𝑡 0.96 
N1 െ1.4 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.91 െ2.7 േ 0.5  Δ𝐹/𝛿𝑡 0.90 
N2 െ1.0 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.87 െ2.7 േ 0.3  Δ𝐹/𝛿𝑡 0.82 
N3 െ1.0 േ 0.1 ሾσீ, Δ𝐹/𝛿𝑡ሿ 0.88 െ4.5 േ 0.7  Δ𝐹/𝛿𝑡 0.96 

Tab. 3 Scaling exponent േ 𝟗𝟓% confidence interval at small and large scales determined by the least square method with the 
considered range and the R-square for the avalanche distribution of U1, U2, U3, N1 N2 and N3 samples. 

 


