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ABSTRACT

Context. The theory of rotational and chemical evolution is incomplete, thereby limiting the accuracy of model-dependent stellar
mass and age determinations. The γDoradus (γDor) pulsators are excellent points of calibration for the current state-of-the-art stellar
evolution models, as their gravity modes probe the physical conditions in the deep stellar interior. Yet, individual asteroseismic
modelling of these stars is not always possible because of insufficient observed oscillation modes.
Aims. This paper presents a novel method to derive distributions of the stellar mass, age, core-boundary mixing efficiency, and initial
rotation rates for γDor stars.
Methods. We computed a grid of rotating stellar evolution models covering the entire γDor instability strip. We then used the observed
distributions of the luminosity, effective temperature, buoyancy travel time, and near-core rotation frequency of a sample of 539 stars
to assign a statistical weight to each of our models. This weight is a measure of how likely the combination of a specific model is. We
then computed weighted histograms to derive the most likely distributions of the fundamental stellar properties.
Results. We find that the rotation frequency at zero-age main sequence follows a normal distribution, peaking at around 25% of
the critical Keplerian rotation frequency. The probability-density function for extent of the core-boundary mixing zone, given by a
factor of fCBM times the local pressure scale height (assuming an exponentially decaying parameterisation), decreases linearly with
increasing fCBM.
Conclusions. Converting the distribution of fractions of critical rotation at the zero-age main sequence to units of d−1, we find most F-
type stars start the main sequence with a rotation frequency between 0.5 d−1 and 2 d−1. Regarding the core-boundary mixing efficiency,
we find that it is generally weak in this mass regime.
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1. Introduction

The state-of-the-art stellar structure and evolution models that
are the basis of many stellar-ageing methods lack a com-
plete picture of chemical mixing. In the case of stars that
maintain a convective core during the main-sequence phase,
our ignorance regarding the efficiency of chemical mixing is
often parameterised by a function for the core-boundary mixing
(CBM; e.g. Zahn 1991; Freytag et al. 1996; Augustson & Mathis
2019) and a function for the mixing in the radiative enve-
lope (e.g. Pedersen et al. 2021), both with at least one free
parameter. The exact choice for these free parameters can
result in age differences of about 40% by the end of the main
sequence (Mombarg 2022), or up 15% between models with and
without time-dependent, self-consistent convective penetration
(Johnston et al. 2023). In addition, chemical mixing is induced
by rotational shear (e.g. Zahn 1992), and therefore we require
an accurate description for the transport of angular momentum.
Yet, confrontations of predictions of angular momentum trans-
port with asteroseismic measurements of the rotation velocities
of stars have shown that the current physics is not adequate

(Eggenberger et al. 2012; Marques et al. 2013; Cantiello et al.
2014; Aerts et al. 2019).

The class of γDoradus (γDor) gravity-(g) mode pul-
sators (Kaye et al. 1999) has proven useful in constraining
the near-core rotation (Van Reeth et al. 2016; Christophe et al.
2018; Li et al. 2019, 2020), the (radial) differential rotation
(Van Reeth et al. 2018; Ouazzani et al. 2020; Saio et al. 2021),
and the stellar mass and age (e.g. Mombarg et al. 2019, 2021;
Mombarg 2023). As such, these constraints can be used to
test the theory of angular momentum (Ouazzani et al. 2019;
Moyano et al. 2023). In particular, Mombarg (2023) tested a
diffusive approach for angular momentum transport on a set
of slowly rotating γDor pulsators by combining their mea-
sured rotation frequencies from Li et al. (2019) with astero-
seismic masses, ages, and CBM efficiencies using the method
of Mombarg et al. (2021). When testing angular momentum
transport, assumptions have to be made about the initial rota-
tion. In the study of Ouazzani et al. (2019), the rotation fre-
quency at the zero-age main sequence (ZAMS) is estimated
from a stellar disc model with free parameters calibrated to
cluster data, while in the studies of Moyano et al. (2023) and
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Mombarg (2023) the (uniform) rotation at the ZAMS is left as a
free parameter. Mombarg (2023) concludes that the six slowly-
rotating stars in his sample also had a slow rotation (less than
10% of the critical rotation frequency) to begin with. How-
ever, the distribution of rotation frequencies at the ZAMS for
γDor pulsators or F-type stars is generally not well known,
and this paper aims to improve on that. Similarly, the distri-
bution of the efficiency of the CBM that needs to be added
to obtain the core masses inferred by asteroseismic modelling
is not well known (Johnston 2021; Pedersen 2022a). Individ-
ual measurements of the CBM efficiency have been made by
modelling the observed mode frequencies of main-sequence g-
mode pulsators (e.g. Johnston et al. 2019; Mombarg et al. 2021;
Michielsen et al. 2019, 2023; Szewczuk et al. 2022) and of sub-
giants (e.g. Deheuvels & Michel 2011; Deheuvels et al. 2016;
Noll et al. 2021). The first step (after frequency extraction) in
the modelling of a g-mode pulsator is identifying the spher-
ical degree (`), azimuthal order (m), and radial order (n) of
the excited pulsation frequencies. This is done by exploit-
ing the relation that consecutive radial orders with the same
(`,m)-combination form a pattern when the difference in period
between consecutive modes as plotted against the mode period
itself (Tassoul 1980; Miglio et al. 2008; Bouabid et al. 2013).
Once such a period-spacing pattern is identified, the near-core
rotation frequency and buoyancy travel time (Π0, an asteroseis-
mic quantity related to the g-mode cavity) can be measured, as
first put into practice by Degroote et al. (2010).

The current largest sample of γDor pulsators with iden-
tified period-spacing patterns is that of Li et al. (2020), com-
prising 611 stars. In the case of single γDor stars, a precise
measurement of the CBM efficiency requires both a sufficient
number of identified radial orders and a precise constraint on the
effective temperature. Apart from a sub-sample of 37 stars with
spectroscopically derived effective temperatures already mod-
elled by Mombarg et al. (2021), a large part of the sample of
Li et al. (2020) does not allow for precise constraints on the
CBM efficiency. However, as also shown by Garcia et al. (2022),
measurements of the near-core rotation frequency and buoyancy
travel time (Π0) can be made more easily.

The aim of this paper is to present a novel method to place
constraints on the CBM efficiency and initial rotation velocity
using the complete sample of γDor pulsators. This methodology
is based on modelling the distributions of the observed luminos-
ity, effective temperature, buoyancy travel time, and near-core
rotation frequency of γDor pulsators. Relying on distributions
instead of individual measurements makes this method less sus-
ceptible to individual uncertainties, as long as the sample size is
sufficiently large.

2. Statistical methodology

In this paper, we make use of the largest sample of γDor to-date
from Li et al. (2020), comprising 611 stars observed with the
NASA Kepler mission (Borucki et al. 2010). We are interested in
finding the distributions of the stellar mass, M?, the hydrogen-
mass fraction in the core (proxy for age), Xc, the efficiency of
CBM, fCBM (further discussed in Sects. 3 and 4), and the rota-
tion velocity at zero-age main sequence (ZAMS) as a fraction of
the Keplerian critical rotation frequency, ω0 ≡ (Ωsurf/Ωcrit)ZAMS.
As observables, we have the distributions of the luminosity,
L?, derived from the Gaia DR2 parallax (Murphy et al. 2019),
of the effective temperature, Teff , from Mathur et al. (2017), of
the buoyancy travel time, Π0, and of the near-core rotation fre-
quency probed by the g modes, Ωcore. The buoyancy travel time

is defined as

Π0 = 2π2
(∫

gc
N d ln r

)−1

, (1)

and the near-core rotation frequency as

Ωcore =

∫
gc ΩN d ln r∫

gc N d ln r
· (2)

Here, N is the Brunt–Väisälä frequency, Ω the local angular rota-
tion velocity, and r the radial coordinate. Both integrals are eval-
uated over the g-mode cavity, which is defined as the region
where the mode frequency in the corotating frame is smaller than
N. Spectroscopically derived effective temperatures are available
for only about 50 of the 611 stars (Gebruers et al. 2021). There-
fore, we rely on the photometric ones.

To estimate the most likely values of the four fundamen-
tal parameters, given the distributions of the observed quan-
tities and their precisions, we compute weighted histograms,
for which we define a weight ρ̃ as follows. First, let ŷo,i =
(L?,i,Teff,i,Π0,i,Ωcore,i) be a vector containing the observed quan-
tities of star i ∈ [1, . . . ,N]. We then compute a mean vector µ̂ and
variance-covariance matrix Σ̂:

µ̂ =
1
N

n∑
i

ŷo,i, (3)

Σ̂ =
1

n − 1

n∑
i

(ŷo,i − µ̂)(ŷo,i − µ̂)>. (4)

The weight of a model with observables ŷm is then given by

ρ̃(ŷm) =
1

(2π)2|Σ̂|1/2
exp

(
−

1
2

(ŷm − µ̂)>Σ̂−1(ŷm − µ̂)
)

(5)

(see Johnson & Wichern 2002 for a basic introduction into mul-
tivariate data analysis). For each model x̂m = (M?, Xc, fCBM, ω0)
producing observables ŷm, the count towards a bin is weighted
by ρ̃(ŷm). We normalised each of the components of ŷm and ŷo
by the corresponding maximum value in the observed distribu-
tion to ensure each of the four observables contributes equally to
the value of ρ̃. Furthermore, we take the same number of Xc vari-
ations per model, such that the distributions of all components of
x̂m are uniformly sampled (see black dashed lines in Fig. 1).

The sample of Li et al. (2020) contains stars for which there
is no luminosity available or that have a measurement of Π0
larger than 6000 s and are thus more likely to be slowly pulsat-
ing B-type (SPB) stars (Waelkens 1991; Pedersen et al. 2021).
Furthermore, any known binary system is also excluded. This
constitutes 31 stars based on the absence of a luminosity mea-
surement, 31 based on a too high value of Π0, and ten based on
binarity. This leaves us with a final sample of 539 stars.

3. Stellar models

In order to compute the vectors ŷm for a given set of model
parameters x̂m, a grid of stellar models was computed with
MESA (r23.05.1; Paxton et al. 2011, 2013, 2015, 2018, 2019;
Jermyn et al. 2023). The three fundamental parameters that are
varied are the mass, the surface rotation velocity at the ZAMS
as a fraction of the critical rotation frequency, and the core-
boundary mixing efficiency. For the latter, an exponentially

A21, page 2 of 6



Mombarg, J. S. G., et al.: A&A, 685, A21 (2024)

Fig. 1. Weighted probability density functions of stellar mass (top left), hydrogen-mass fraction in the core (top right), fraction of critical rotation
at the ZAMS (bottom left), and CBM efficiency (bottom right). The black dashed lines show the occurrence of each value in the grid (x̂m).

decaying parameterisation of the chemical diffusion parameter
was chosen following Freytag et al. (1996):

DCBM(r) = D(r0) exp
(
−2(r − r0)

fCBMhP(rcore)

)
. (6)

Here, hP(rcore) is the pressure scale height at the radius of the con-
vective core, and r0 is set to rcore − 0.005hP(rcore). The parameter
fCBM is a free parameter determining the efficiency of the CBM.
One of the aims of this paper is to find a distribution for this param-
eter, along with the mass, age, and initial rotation velocity.

Table 1 shows the range and step size for each of the four
parameters in the grid, which contains ∼10 000 models (i.e. dif-
ferent combinations for x̂m). The chemical mixing in the radia-
tive envelope is based on the work of Zahn (1992) using the MESA
implementation of Mombarg et al. (2022). The chemical diffu-
sion coefficient is determined by

Drot(r > rcore) = η K
(

r
N

dΩ

dr

)2

, (7)

where K is the thermal diffusivity and η is a free parameter.
As the actual local chemical diffusion coefficient, we took the
largest one out of DCBM(r),Drot, or the one from convection.
We set the parameter η to 1. As discussed in Mombarg et al.
(2022), the shear profile dΩ/dr is scaled from a 2D ESTER
model (Espinosa Lara & Rieutord 2013; Rieutord et al. 2016)
that computes the differential rotation in a self-consistent man-
ner. This way, a smooth profile of the Brunt–Väisälä frequency

Table 1. Ranges and step sizes of the different parameters varied in the
MESA grid.

Parameter Lower limit Upper limit Step size

M?/M� 1.3 2.0 0.1
ω0 0.05 0.60 0.05
fCBM 0.005 0.035 0.005
Xc 0.00 0.70 0.05

is ensured, which is necessary for computing asteroseismic
quantities. We also included microscopic diffusion (gravita-
tional settling and radiative levitation) for all elements with
available monochromatic opacities from the OP Project (Seaton
2005) using the method outlined in Mombarg et al. (2022) and
Jermyn et al. (2023). In doing so, we neglected the feedback of
the change in the local mixture due to microscopic diffusion in
the computation of the Rosseland mean opacity, which is calcu-
lated from the tables of the OP Project.

We assumed a fixed solar metallicity of 0.014 for our
models, as spectroscopic studies of samples of Kepler γDor
stars have shown that the average metallicity is close to the
solar value (e.g. Van Reeth et al. 2015; Kahraman Aliçavuş et al.
2016; Gebruers et al. 2021). For the initial chemical composi-
tion of the models, (Xini,Yini,Zini), we assumed a galactic chem-
ical enrichment rate of Yini = 0.244 + 1.226Zini (Verma et al.
2019), giving Yini = 0.261 and Xini = 0.725. For the relative
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Fig. 2. Probability density function of uniform rotation rate at ZAMS in
units of d−1. The black dashed line shows the distribution of the models
in the grid, and the grey histogram shows the weighted distribution.

metal fractions, we assumed the solar mixture according to
Asplund et al. (2009).

For each model, we computed a non-rotating pre-main
sequence model and relaxed this model to the desired rotation
velocity at the ZAMS. The efficiency of angular momentum
transport (given by the viscosity) is computed within the dif-
fusive approach of MESA (see Heger et al. 2000 for the phys-
ical descriptions), which includes dynamical shear instabil-
ity, secular shear instability, Eddington–Sweet, Solberg–Høiland
instability, Goldreich–Schubert–Fricke instability, and a Spruit–
Tayler dynamo.

4. Inferred distributions

For each model in the grid, we computed a weight ρ(ŷm) accord-
ing to Eq. (5). Then, for M?, Xc, fCBM, and ω0, we plotted the
weighted probability density distributions (PDFs). The top left
panel of Fig. 1 shows the resulting distribution of the stellar
mass, which is a skewed distribution around a mass of 1.5–
1.6 M�. It should be noted that the γDor phenomenon only
occurs during a certain part of a star’s main-sequence lifetime.
Based on theoretical predictions for the γDor instability strip,
stars with masses close to the edges of the grid (around 1.2 or
2 M�) will spend a smaller fraction of their main-sequence life-
time within the instability strip compared to stars around 1.6 M�.
Therefore, we indeed expect such a skewed distribution distri-
bution instead of recovering the initial-mass function. Yet, the
fact that a non-negligible fraction of stars have a mass >1.8 M�
suggests that the blue edge of the theoretically-predicted γDor
instability strip (Dupret et al. 2005) should in reality be extended
to higher effective temperatures.

The bottom-left panel of Fig. 1 shows the distribution of the
rotation frequencies at the ZAMS as a fraction of the Keplerian
critical rotation frequency (at ZAMS). We recovered a skewed
distribution of the PDF that is centred around ω0 = 0.25. The
study by Li et al. (2020) shows an excess of stars with very low
near-core rotation frequencies (<0.15 d−1) for which Mombarg
(2023) concludes these stars were born as slow rotators (ω0 <
0.1). From the distribution of ω0 we recover here, no excess of
slow rotators is observed. We also studied the distribution of the
(uniform) rotation frequency at ZAMS when we do not scale it
with the critical rotation frequency. The distribution is shown in
Fig. 2. As can be seen from the dashed black line in this figure, a

Fig. 3. Same probability density function as bottom right panel of Fig. 1
overplotted with the results of the individually measured fCBM values
from Mombarg et al. (2021; red stars).

uniform distribution of the mass and ω0, does not give a uniform
distribution in ΩZAMS.

Irrespective of the choice for the binning of the weighted
PDF for ΩZAMS, we conclude that most γDor stars reach the
ZAMS with a rotation frequency between 0.5 and 2 d−1 (5.8–
23.2 µHz), although tails at lower and higher rotation frequency
are populated as well. Mombarg et al. (2021) estimated the dis-
tribution of the initial rotation at the ZAMS of a sample of
37 γDor stars. Combining the present-day measured near-core
rotation frequency (Van Reeth et al. 2016) with the asteroseis-
mic mass and age, an estimate for the rotation at ZAMS can be
made, assuming uniform rotation throughout the main sequence.
When looking at the distribution of the initial rotation frequen-
cies found by Mombarg et al. (2021), a peak around 2 d−1 is also
seen. We find no stars with ΩZAMS/(2π) & 3 d−1. This corre-
sponds to the upper limit of the measured near-core rotation fre-
quencies of the γDor stars from Li et al. (2020) that were used
in this paper (see also Fig. 6 in the summary plot by Aerts 2021).

Fritzewski et al. (2024a) performed modelling of the solar-
metallicity young open cluster UBC 1 from TESS and Gaia
space data and found an age between 150 and 300 Myr. This
cluster is much younger than the Kepler field γDor stars we used
to deduce the distributions. UBC 1 includes one γDor member
with a near-core rotation frequency measurement, with a value of
0.544± 0.009 d−1, which is in agreement with our results for the
distribution of rotation rates near the ZAMS. On the other hand,
measurements of the near-core rotation frequency of γDor stars
in the even younger open cluster NGC 2516 (102 ± 15 Myr, also
solar metallicity) reveal eight of the 11 g-mode pulsators to have
near-core rotation frequencies around 3 d−1, while the other three
have values between 1 d−1 and about 2.2 d−1 (Li et al. 2024). At
this estimated cluster age, these stars should be even closer to
the ZAMS than the γDor member of UBC 1. The rotation rates
for the majority of them occurs in the tail of our distribution in
Fig. 2. Therefore, very young cluster γDor stars seem to occupy
the full range of ZAMS rotation frequencies covered by the dis-
tribution we derived from the much older Kepler field stars in the
galaxy and may have a less peaked distribution than the one in
Fig. 2 given the possible selection bias for the youngest γDor
pulsators in the Li et al. (2020) sample, as further discussed
in Fritzewski et al. (2024b). Finally, with the physics of angu-
lar momentum transport used in this paper, we observe mod-
els reaching critical rotation during the main sequence, when
ω0 & 0.5.
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Fig. 4. Same as Fig. 1, but each time one of the observables in ŷo is not used to obtain the probability distributions. The histograms in grey are the
same ones as shown in Fig. 1.

The bottom right panel of Fig. 1 shows the distribution of the
CBM parameter, fCBM (Eq. (6)). We observe a maximum prob-
ability density at the lower edge of the grid, fCBM = 0.005, and
a probability density that decreases linearly with fCBM. We find
that a value of 0.005 is about twice as likely as a value of 0.035.
Thus, larger values are less likely, yet not negligible from a sta-
tistical point of view. Therefore, we can conclude that a univer-
sal value for fCBM is not reality, as also advocated by Johnston
(2021). The study of Mombarg et al. (2021) presents individual
measurements of fCBM (same physical prescription as we use
here, apart from the prescription for the envelope mixing) for a
sample of 37 γDor stars. For 30 stars in their sample, the value
of fCBM could be constrained within the ranges of their grid. We
show their distribution of fCBM in Fig. 3. Interestingly, the dis-
tribution of Mombarg et al. (2021) seems to also follow a linear
decrease with the value of fCBM.

5. Influence of input parameters

In this section, we quantify the contribution of each of the four
observables in ŷm to the final PDFs. As such, we repeat the
methodology of Sect. 2, but omitting one of the observables at
a time. From the resulting PDFs shown in Fig. 4, we can draw
the following conclusions. Firstly, it is obvious that the distribu-
tion ofω0 is mostly determined by the present-day distribution of
the near-core rotation frequencies and that the other fundamental
stellar parameters are only mildly influenced. This is expected

as there is no feedback of the rotation on the envelope mixing
in our models. Secondly, omitting the luminosity results in a
slightly higher PDF for more massive stars, which are expected
to show γDor pulsations at the end of the main sequence, thus
also increasing the probability for more evolved stars. Thirdly,
the value of Π0 is sensitive to the core mass (e.g. Mombarg et al.
2019) and thus omitting this observable has a large impact on
the PDF of fCBM. Moreover, since the value of Π0 drops off
rapidly near the terminal-age main sequence (TAMS), includ-
ing this observable eliminates the peak in stars near the TAMS,
as shown in the top right panel of Fig. 4. Finally, we see that the
effective temperature is an important parameter to break degen-
eracies of Π0 with respect to mass and age. The effective tem-
perature has an even larger effect on the resulting PDF of fCBM
compared to Π0. Increasing the extent of the CBM zone results in
a higher effective temperature at the same luminosity. Therefore,
without an effective temperature, models with a larger value for
fCBM become equally likely, resulting in a flatter PDF.

6. Conclusions

In this paper, we present a novel method to obtain the stel-
lar mass, age, core-boundary mixing efficiency, and initial rota-
tion frequency distributions of pulsating F-type (γDor) stars. We
used the observed distributions of the luminosity, effective tem-
perature, buoyancy travel time and near-core rotation frequency
of a sample of 539 stars with high-precision estimates of these
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four variables taken from the Kepler asteroseismic γDor cata-
logue published by Li et al. (2020). We computed a grid of rotat-
ing (1D) stellar models for different masses, ages, core-boundary
mixing efficiencies and initial rotation velocities at the ZAMS
and assigned a statistical weight to each stellar model to obtain
the probability density functions of these four fundamental stel-
lar parameters. This method allows us to also include stars that
are not suitable for asteroseismic modelling of the individual
mode frequencies. The method is robust against individual mea-
surement errors, as long as the sample is large enough to accu-
rately sample average values and covariances of the observables.

The distributions presented in this paper can be used as pri-
ors for future modelling using a Bayensian framework or for
population synthesis of pulsating F-type stars. We find skewed
distributions of the probability density function for the mass,
hydrogen-mass fraction in the core (Xc, proxy for age), and frac-
tion of critical rotation at the ZAMS (ω0). These distributions
peak around 1.6 M�, Xc = 0.4, and ω0 = 0.25. We find the
probability distribution of the extent of the core-boundary mix-
ing region (assuming an exponentially decaying function) to be
linearly decreasing with increasing fCBM. The results on the ini-
tial rotation and core-boundary mixing presented in this paper
are consistent with results from star-by-star modelling of the
individual observed mode periods performed by Mombarg et al.
(2021).

The method presented in this paper could also be applied to
the SPB class of gravity mode pulsators. Currently, the sample
size of SPB stars with measured Π0 values and near-core rotation
frequencies is about a factor of ten smaller (see Pedersen 2022b,
and references therein) compared to the γDor stars. Fortunately,
this number is expected to increase from more extensive data sets
being assembled by the NASA TESS mission (Ricker et al. 2015)
and the upcoming ESA PLATO mission (Rauer et al. 2014).
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2022, MNRAS, 511, 1529
Tassoul, M. 1980, ApJS, 43, 469
Van Reeth, T., Tkachenko, A., Aerts, C., et al. 2015, ApJS, 218, 27
Van Reeth, T., Tkachenko, A., & Aerts, C. 2016, A&A, 593, A120
Van Reeth, T., Mombarg, J. S. G., Mathis, S., et al. 2018, A&A, 618, A24
Verma, K., Raodeo, K., Basu, S., et al. 2019, MNRAS, 483, 4678
Waelkens, C. 1991, A&A, 246, 453
Zahn, J. P. 1991, A&A, 252, 179
Zahn, J. P. 1992, A&A, 265, 115

A21, page 6 of 6

http://linker.aanda.org/10.1051/0004-6361/202449213/1
http://linker.aanda.org/10.1051/0004-6361/202449213/2
http://linker.aanda.org/10.1051/0004-6361/202449213/3
http://linker.aanda.org/10.1051/0004-6361/202449213/4
http://linker.aanda.org/10.1051/0004-6361/202449213/5
http://linker.aanda.org/10.1051/0004-6361/202449213/6
http://linker.aanda.org/10.1051/0004-6361/202449213/7
http://linker.aanda.org/10.1051/0004-6361/202449213/8
http://linker.aanda.org/10.1051/0004-6361/202449213/9
http://linker.aanda.org/10.1051/0004-6361/202449213/10
http://linker.aanda.org/10.1051/0004-6361/202449213/11
http://linker.aanda.org/10.1051/0004-6361/202449213/12
http://linker.aanda.org/10.1051/0004-6361/202449213/13
http://linker.aanda.org/10.1051/0004-6361/202449213/14
http://linker.aanda.org/10.1051/0004-6361/202449213/15
http://linker.aanda.org/10.1051/0004-6361/202449213/16
http://linker.aanda.org/10.1051/0004-6361/202449213/17
http://linker.aanda.org/10.1051/0004-6361/202449213/18
http://linker.aanda.org/10.1051/0004-6361/202449213/19
http://linker.aanda.org/10.1051/0004-6361/202449213/20
http://linker.aanda.org/10.1051/0004-6361/202449213/21
http://linker.aanda.org/10.1051/0004-6361/202449213/22
http://linker.aanda.org/10.1051/0004-6361/202449213/23
http://linker.aanda.org/10.1051/0004-6361/202449213/24
http://linker.aanda.org/10.1051/0004-6361/202449213/24
http://linker.aanda.org/10.1051/0004-6361/202449213/25
http://linker.aanda.org/10.1051/0004-6361/202449213/26
https://arxiv.org/abs/2312.08315
http://linker.aanda.org/10.1051/0004-6361/202449213/28
http://linker.aanda.org/10.1051/0004-6361/202449213/28
http://linker.aanda.org/10.1051/0004-6361/202449213/29
http://linker.aanda.org/10.1051/0004-6361/202449213/29
http://linker.aanda.org/10.1051/0004-6361/202449213/30
http://linker.aanda.org/10.1051/0004-6361/202449213/31
https://doi.org/10.1051/0004-6361/202348901
https://doi.org/10.1051/0004-6361/202348901
http://linker.aanda.org/10.1051/0004-6361/202449213/33
http://linker.aanda.org/10.1051/0004-6361/202449213/34
http://linker.aanda.org/10.1051/0004-6361/202449213/35
http://linker.aanda.org/10.1051/0004-6361/202449213/36
http://linker.aanda.org/10.1051/0004-6361/202449213/36
http://linker.aanda.org/10.1051/0004-6361/202449213/37
http://linker.aanda.org/10.1051/0004-6361/202449213/37
http://linker.aanda.org/10.1051/0004-6361/202449213/39
http://linker.aanda.org/10.1051/0004-6361/202449213/40
http://linker.aanda.org/10.1051/0004-6361/202449213/40
http://linker.aanda.org/10.1051/0004-6361/202449213/41
http://linker.aanda.org/10.1051/0004-6361/202449213/42
http://linker.aanda.org/10.1051/0004-6361/202449213/43
http://linker.aanda.org/10.1051/0004-6361/202449213/44
http://linker.aanda.org/10.1051/0004-6361/202449213/44
http://linker.aanda.org/10.1051/0004-6361/202449213/45
http://linker.aanda.org/10.1051/0004-6361/202449213/46
http://linker.aanda.org/10.1051/0004-6361/202449213/47
http://linker.aanda.org/10.1051/0004-6361/202449213/48
http://linker.aanda.org/10.1051/0004-6361/202449213/49
http://linker.aanda.org/10.1051/0004-6361/202449213/50
http://linker.aanda.org/10.1051/0004-6361/202449213/51
http://linker.aanda.org/10.1051/0004-6361/202449213/52
http://linker.aanda.org/10.1051/0004-6361/202449213/53
http://linker.aanda.org/10.1051/0004-6361/202449213/54
http://linker.aanda.org/10.1051/0004-6361/202449213/55
http://linker.aanda.org/10.1051/0004-6361/202449213/56
http://linker.aanda.org/10.1051/0004-6361/202449213/57
http://linker.aanda.org/10.1051/0004-6361/202449213/57
http://linker.aanda.org/10.1051/0004-6361/202449213/58
http://linker.aanda.org/10.1051/0004-6361/202449213/59
http://linker.aanda.org/10.1051/0004-6361/202449213/60
http://linker.aanda.org/10.1051/0004-6361/202449213/61
http://linker.aanda.org/10.1051/0004-6361/202449213/62
http://linker.aanda.org/10.1051/0004-6361/202449213/63
http://linker.aanda.org/10.1051/0004-6361/202449213/64
http://linker.aanda.org/10.1051/0004-6361/202449213/65
http://linker.aanda.org/10.1051/0004-6361/202449213/66
http://linker.aanda.org/10.1051/0004-6361/202449213/67
http://linker.aanda.org/10.1051/0004-6361/202449213/68
http://linker.aanda.org/10.1051/0004-6361/202449213/69

	Introduction
	Statistical methodology
	Stellar models
	Inferred distributions
	Influence of input parameters
	Conclusions
	References

