
HAL Id: hal-04564833
https://hal.science/hal-04564833

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Improved Bound for Equitable Proper Labellings
Julien Bensmail, Clara Marcille

To cite this version:
Julien Bensmail, Clara Marcille. An Improved Bound for Equitable Proper Labellings. IWOCA 2024
- 35th International Workshop on Combinatorial Algorithms, Jul 2024, Ischia, Italy. �hal-04564833�

https://hal.science/hal-04564833
https://hal.archives-ouvertes.fr

An Improved Bound for Equitable Proper Labellings

Julien Bensmail1 and Clara Marcille2

1 Université Côte d’Azur, CNRS, Inria, I3S, France
2 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, F-33400, Talence, France

Abstract. For every graph G with size m and no connected component isomorphic to K2,
we prove that, for L = (1,1,2,2, . . . , ⌊m/2⌋ + 2, ⌊m/2⌋ + 2), we can assign labels of L to the
edges of G in an injective way so that no two adjacent vertices of G are incident to the same
sum of labels. This implies that every such graph with size m can be labelled in an equitable
and proper way with labels from {1, . . . , ⌊m/2⌋ + 2}, which improves on a result proved by
Haslegrave, and Szabo Lyngsie and Zhong, implying this can be achieved with labels from
{1, . . . ,m}.

Keywords: proper labelling · equitable labelling · 1-2-3 Conjecture.

1 Introduction

Let G be a graph. For a set S ⊂ R, an S-labelling ℓ ∶ E(G) → S of G is an assignment of labels from
S to the edges. In case S = {1, . . . , k} for some k ≥ 1, we say ℓ is a k-labelling of G. For every vertex
u of G, we denote by σℓ(u) (or σ(u) if there are no ambiguities) its sum by ℓ, being the sum of
labels assigned to the edges incident to u, that is, σ(u) = ∑v∈N(u) ℓ(uv). Now, ℓ is said proper if
we have σ(u) ≠ σ(v) for every edge uv of G (that is, the resulting σℓ is a proper vertex-colouring).
Last, we say G is nice if G has no connected component isomorphic to K2, in which case we set
χΣ(G) as the smallest k ≥ 1 such that G admits proper k-labellings. It can be checked that, indeed,
χΣ(G) is well defined if and only if G is nice.

Proper labellings and the parameter χΣ have been mostly investigated in the context of the
so-called 1-2-3 Conjecture, raised by Karoński, Łuczak, and Thomason [5] in 2004:

Conjecture 1 (Karoński, Łuczak, Thomason [5]). If G is a nice graph, then χΣ(G) ≤ 3.

Several aspects behind the 1-2-3 Conjecture have been investigated in literature to date, includ-
ing approaching results, algorithmic results, peculiar behaviours, and variants. Definitely the most
appealing and significant result in this context is a full proof of the conjecture proposed recently
by Keusch [6]. This apart, most of the most interesting related results can be found e.g. in the
survey [9] by Seamone.

Despite Keusch’s proof of the 1-2-3 Conjecture, there are many more or less closely related open,
interesting questions and problems in the field. One of these deals with a concept of equitability
for proper labellings, first considered in [1] by Baudon, Pilśniak, Przybyło, Senhaji, Sopena, and
Woźniak, and studied further in [2,3]. This concept revolves around the following notions. Let G be
a graph, and ℓ be a labelling of G. For any l ∈ R, we denote by nb(l, ℓ) ≥ 0 the number of edges of
G to which label l is assigned by ℓ. We say that ℓ is equitable if, for any two labels l and l′ assigned
by ℓ, we have ∣nb(l, ℓ) − nb(l′, ℓ)∣ ≤ 1, or, in other words, if any two label values are assigned about
the same number of times by ℓ. Assuming G is nice, we denote by χΣ(G) the smallest k ≥ 1 such
that G admits equitable proper k-labellings.

In the very first work on the topic [1], the authors investigated the parameter χΣ(G) for
particular classes of nice graphs G, without raising a particular conjecture. It is later in [2] that
the authors raised an “Equitable 1-2-3 Conjecture”, reading as follows:

Conjecture 2 (Bensmail, Fioravantes, Mc Inerney, Nisse [2]). If G is a nice graph different from
K4, then χΣ(G) ≤ 3.

Proper labellings are objects that are rather hard to comprehend in general, so, unsurprisingly,
even harder to comprehend equitable proper labellings are. To date, it is known from [1,2] that

2 Julien Bensmail and Clara Marcille

the Equitable 1-2-3 Conjecture holds for several easy, common classes of nice graphs. In [2], the
authors observed that there are infinitely many graphs G with 2 = χΣ(G) < χΣ(G) = 3, and they
notably proved that determining whether χΣ(G) = 2 holds for a given graph G with χΣ(G) = 2 is
NP-complete.

In this work, we are mainly interested in upper bounds on the parameter χΣ . To date, it is not
even clear that there is an absolute constant k ≥ 1 such that χΣ(G) ≤ k holds for every nice graph
G. Actually, even establishing non-constant bounds is not that clear. Through greedy arguments,
in [1] the authors observed that χΣ(G) ≤ 2∣E(G)∣ holds for every nice graph G, thereby establishing
that it makes sense investigating upper bounds on χΣ , and also that the notion of nice graphs
remains relevant in the context of equitable proper labellings. Later on, in [3], Bensmail, Senhaji,
and Szabo Lyngsie, through the study of a combination of the 1-2-3 Conjecture and of the so-called
Antimagic Labelling Conjecture3, asked whether all nice graphs G admit a proper S-labelling ℓ for
S = {1, . . . , ∣E(G)∣} and the extra property that nb(l, ℓ) = 1 for all l ∈ S – the point being that, if
this was true, then it would imply that χΣ(G) ≤ ∣E(G)∣ holds for every nice graph G. This was
later proved independently by Haslegrave in [4], and by Szabo Lyngsie and Zhong in [7], through
rather different approaches (probabilistic tools for the former proof, constructive ones for the latter
one). This is where the investigations on Conjecture 2 stand to date, the best general upper bound
on χΣ(G) we know of to date being ∣E(G)∣ for every nice graph G.

Our main goal in this work is to improve upon this upper bound, which we do by about a
factor 2. Namely, our main result reads as follows:

Theorem 1. If G is a nice graph, then χΣ(G) ≤ ⌊ ∣E(G)∣2
⌋ + 2.

Although our upper bound in Theorem 1 is still not constant, we believe the way we prove it
remains of interest, as we mostly build upon the proof of Szabo Lyngsie and Zhong from [7], which
we enhance with a new approach and different, dedicated arguments. Our proof of Theorem 1 can
be found in Section 2. Afterwards, we finish off with a concluding discussion in Section 3, in which
we explain why it might be difficult to improve upon Theorem 1 further, and come up with other,
different questions and problems of independent interest for further work on the topic.

2 Proof of Theorem 1

Our proof of Theorem 1 relies mainly on a peculiar point in the definition of an equitable labelling
ℓ, being that the equitability constraint (i.e., that ∣nb(l, ℓ) −nb(l′, ℓ)∣ ≤ 1 holds) is only required to
hold for pairs of label values l and l′ that are actually assigned by ℓ. What we mean by that is that
having nb(l, ℓ) = 0 and nb(l′, ℓ) ≥ 2 is not regarded as an objection to ℓ being equitable. Hence, if
ℓ is an S-labelling for some set S of labels and nb(l, ℓ) ≤ 2 holds for all l ∈ S, then ℓ is considered
equitable.

Before we get to the actual proof of Theorem 1, we need some preparation first. To make
the proof more legible, and due to the ideas developed in the previous paragraph, we work with
labellings in a slightly different way. Let G be a graph, and L = (l1, . . . , lq) be a sequence of labels
from R (that is, a given label value may appear more than once in L). Throughout, we assume
every sequence of labels is ordered increasingly, that is, l1 ≤ ⋅ ⋅ ⋅ ≤ lq in the present case. For any
l ∈ R, we denote by nb(l, L) ≥ 0 the number of times label l appears in L, and by mult(L) ≥ 1
the largest value of nb(l, L) over all l ∈ R. Assuming ∣L∣ ≥ ∣E(G)∣, an L-strict-labelling ℓ of G is
an assignment of labels from L to the edges of G that complies with the elements of L and their
number of occurrences; that is, every label value l appearing in L must be assigned at most nb(l, L)
times. In some sense, L is a pool of labels in which one has to pick elements when assigning labels
(so that once a label is assigned, it is no longer part of the pool). For L′ being a subsequence of L,
we denote by L −L′ the sequence obtained from L by removing all elements in L′.

As mentioned earlier, to prove Theorem 1 our goal is to show that every nice graph G admits
a proper L-strict-labelling ℓ, where L = (1,1,2,2, . . . , k + 1, k + 1, k + 2, k + 2) and k = ⌊ ∣E(G)∣

2
⌋. Note

3 Raised by Hartsfield and Ringel in [8], asking whether, in general, for every graph G there is a
{1, . . . , ∣E(G)∣}-labelling ℓ where nb(l, ℓ) = 1 for every assigned label l, and no two vertices u and v
verify σ(u) = σ(v).

An Improved Bound for Equitable Proper Labellings 3

that ∣L∣ ∈ {∣E(G)∣+3, ∣E(G)∣+4} depending on whether ∣E(G)∣ is odd or even. Before getting to the
formal details of the proof, let us outline its rough ideas first. Essentially, we build ℓ by induction,
starting initially with all edges of G being unlabelled. We then start by picking some vertex u with
degree d = d(u), and d labels li1 , . . . , lid from L, before then assigning these labels li1 , . . . , lid to the
edges incident to u, and then proceeding by induction on G − u and L − (li1 , . . . , lid). Of course,
these very general ideas suffer several issues. In particular, in G−u, the edges incident to u are no
longer present, which means that, for any neighbour v of u in G, 1) the adjacency between u and
v is present in G only, not in G−u, so the fact that u and v are distinguished by ℓ must rely solely
on how we labelled the edges incident to u, and 2) when labelling the edges of G − u, we have to
take into account that, for all neighbours of u in G, their eventual sums also involve labels assigned
to the edges incident to u, which are not present in G − u.

– To deal with the latter problem above, we will actually deal with weighted graphs, where a
weighted graph (H,c) is a graph H given together with some function c ∶ V (H) → R modelling
a sum contribution for every vertex. Essentially, above, in our initial graph G all contributions
will be equal to 0, modelling the fact that all edges are actually present in G, and initially
unlabelled (which is similar, in terms of sums, to having all edges being assigned label 0 – any
graph can actually be seen as a weighted graph with all contributions 0). Then, during the
inductive step, whenever considering, in some remaining graph, a vertex u with d neighbours
v1, . . . , vd and d labels li1 , . . . , lid remaining from the initial L, assuming we assign label lij to
uvj for every j ∈ {1, . . . , d} before pursuing with G − u, we will modify the contribution (by
c) of each vj by lij to take into account that, in the more global picture, edge uvj is assigned
label lij , thereby contributing lij to the full sum of vj .

– To deal with the former problem, we need to guarantee that the edges incident to u are labelled
so that, taking the sum contributions into account, no matter how the remaining edges of G−u
are labelled, we cannot get any conflict4 between u and its neighbours. To guarantee this, we
will employ the notion of smallest vertex. In a weighted graph (H,c), the smallest possible
sum (w.r.t. a sequence L of labels) of a vertex u is small(u) = c(u) + x, where x is the sum of
the d(u) smallest elements of L. In some sense, the smallest possible sum of u is the smallest
sum we can achieve for u through assigning labels of L to all the edges incident to u, taking
into account the contribution c(u). Now, a smallest vertex of (H,c) is a vertex with minimum
smallest possible sum.
Note that a smallest vertex is not necessarily unique (consider e.g. the case of a regular graph
with all contributions being 0). However, a convenient property is that if, when building an
L-strict-labelling of a given weighted graph, we start by considering a smallest vertex u and
assigning the smallest labels of L to the edges incident to u, and then label the other edges
arbitrarily, then in most cases we are sure u cannot get involved in conflicts, as formalised
in the upcoming lemma. There and further, we say a sequence L = (l1, l2, . . .) of labels with
l1 ≤ l2 ≤ . . . is shifted if l1 < l2. Also, to be clear, in a weighted graph (H,c) with a labelling ℓ,
for any vertex v when writing σℓ(v) (or σ(v)) we mean the sum of labels assigned to the edges
incident to v (i.e., we do not take c(v) into account).

Lemma 1. Let (G, c) be a weighted graph with a smallest vertex u having d neighbours v1, . . . , vd,
and L = (l1, l2, . . .) be a sequence of labels with ∣L∣ ≥ ∣E(G)∣ and l1 ≤ l2 ≤ . . . , where l1, l2, ⋅ ⋅ ⋅ ∈ R∗.
If mult(L) ≤ 2 and u is a smallest vertex of maximum degree, then, for every L-strict-labelling ℓ of
(G, c) such that the edges incident to u are assigned the smallest d labels l1, . . . , ld of L, all conflicts
involving u must also include some smallest vertex vi where either:

– d(vi) = 1, and ℓ(uvi) = l1 (if L is shifted) or ℓ(uvi) ∈ {l1, l2} (otherwise); or
– d(vi) = d(u) = 2, L is shifted, ℓ(uvi) = l1, and the second edge incident to vi is assigned the

second smallest label value in L (l2 if l2 < l3, or l2 or l3 if l2 = l3).

Proof. Note that, by definition, upon assigning labels l1, . . . , ld to the edges incident to u, since u is
a smallest vertex it cannot be that u gets in conflict with an adjacent vertex that is not a smallest
vertex itself. We now analyse two cases, depending on whether L is shifted or not. Assume first L
is not shifted.
4 In a weighted graph (H, c), two vertices u and v are conflicting by a labelling ℓ if σℓ(u) + c(u) =
σℓ(v) + c(v).

4 Julien Bensmail and Clara Marcille

– Assume first d(u) ≥ 3. Since L is not shifted, l1 = l2 = l, and l2 < l3 since mult(L) ≤ 2. Consider
any vi. If d(vi) ≥ 2, then vi is incident to at most one edge assigned a label with value l while
two edges have been assigned this label value, meaning σ(vi) + c(vi) > small(vi) ≥ small(u) =
σ(u) + c(u) (in particular, this inequality still holds if vi is not incident to an edge assigned
a label with value l); thus, u and vi cannot be in conflict. Now, if d(vi) = 1, then, since
small(vi) ≥ small(u), so that we get σ(vi) + c(vi) = σ(u) + c(u) it must be that vi is a smallest
vertex and uvi was assigned label l1 or l2.

– Assume now d(u) = 2. Since L is not shifted, then l1 = l2 = l and label value l was assigned
to uv1 and uv2 only. Focus on any vi ∈ {v1, v2}. If d(vi) ≥ 2, then only one edge incident to vi
is assigned a label with value l, while L contains two occurrences of it; thus, σ(vi) + c(vi) >
small(vi) ≥ small(u) = σ(u) = σ(u)+ c(u), and u and vi cannot be in conflict. Now, if d(vi) = 1,
then, since σ(u) + c(u) = small(u), so that σ(vi) + c(vi) = σ(u) + c(u) it must be that vi is a
smallest vertex.

– Assume last d(u) = 1. Since u is a smallest vertex of maximum degree, then, since ℓ(uv1) = l1,
so that there is a conflict between u and v1 it must be that v1 is a smallest vertex, and, thus,
d(v1) = 1.

Assume second that L is shifted. Then l1 < l2, and, if d ≥ 3, then l2 ≤ l3 and l1 < l3 (as
mult(L) ≤ 2).

– First assume d(u) ≥ 3. Focus on any vi. If d(vi) ≥ 2, then, again, since L contains only one
occurrence of label value l1, either vi is not incident to the unique edge assigned label l1 (if
ℓ(uvi) ≠ l1) or vi is not incident to any edge assigned label l2 or l3 (if ℓ(uvi) = l1). Thus, in
both cases σ(vi) + c(vi) > small(vi) ≥ small(u) = σ(u) + c(u). Now, if d(vi) = 1, then, since
σ(u) + c(u) = small(u), the only way to have a conflict between u and vi is that we have
small(u) = small(vi) = σ(vi) + c(vi), which requires vi be a smallest vertex and uvi be assigned
label l1.

– Assume second that d(u) = 2. We here know that, w.l.o.g., ℓ(uv1) = l1 and ℓ(uv2) = l2.
● Regarding v1, if d(v1) = 1, then we have σ(v1) + c(v1) = small(v1), so we can only have a

conflict with u if v1 is a smallest vertex. If d(v1) = 2, then, since small(v1) ≥ small(u) =
σ(u) + c(u), so that we get a conflict between u and v1 it must be (apart from v1 be a
smallest vertex) that the second edge incident to v1 is assigned a label with value l2, which,
since ℓ(uv2) = l2, is only possible (since mult(L) ≤ 2) if l2 = l3 and the second edge incident
to v1 is assigned label l3. Now, if d(v1) ≥ 3, then, necessarily, either l2 ≠ l3 and thus there is
no edge incident to v1 assigned a label with value l2 (as only uv2 verifies this), or l2 = l3 = l
and there is at most one edge incident to v1 assigned a label with value l (possibly its
second incident edge) while two edges of (G, c) are assigned a label with value l (one of
which is uv2). Thus we have σ(v1) + c(v1) > small(v1) ≥ small(u) = σ(u) + c(u).
● Regarding v2, we cannot have σ(u) + c(u) = σ(v2) + c(v2) since L contains label l1, which

unique label value was assigned to uv1 only. So u and v2 cannot be in conflict here, regardless
of d(v2).

– Assume third d(u) = 1. Recall that, in order to have a conflict between u and v1, since u is a
smallest vertex and ℓ(uv1) = l1, it must be that v1 is a smallest vertex; since u is a smallest
vertex of maximum degree, then in that case we deduce d(v1) = 1.

This concludes the proof. ⊓⊔

Last, we need a notion of niceness for weighted graphs. We say a weighted graph (G, c) is nice
if it has no connected component uv isomorphic to K2 with c(u) = c(v). Note that, clearly, any
weighted graph that is not nice admits no proper L-strict-labelling for any sequence L of labels.

We are now ready to prove our main result, from which Theorem 1 follows as a corollary.

Theorem 2. Every nice weighted graph (G, c) admits a proper L-strict-labelling for every sequence
L of labels with ∣L∣ ≥ ∣E(G)∣ + 3 and mult(L) ≤ 2.

Proof. The proof is by induction on the order n of G. If n = 1, then there is nothing to prove. If
n = 2, then either G has no edge and again there is nothing to prove, or G consists of a single edge

An Improved Bound for Equitable Proper Labellings 5

uv with c(u) ≠ c(v) (as otherwise (G, c) would not be nice), in which case, through assigning any
label l ∈ L to uv we get σ(u) + c(u) = l + c(u) ≠ l + c(v) = σ(v) + c(v), thus what is desired.

We now proceed with the general case. That is, we now suppose that the claim holds for all
weighted graphs on up to n − 1 vertices, and we prove the claim for (G, c). By the induction
hypothesis, we can suppose (G, c) is connected. Indeed, if (G, c) is the disjoint union of two nice
weighted graphs (G1, c) and (G2, c) (where, abusing the notation, c is here restricted to G1 and G2),
then, by induction, we can get a proper L-strict-labelling ℓ1 of (G1, c), thus assigning ∣E(G1)∣ labels
from L; what remains of L is then a sequence L′ of labels with ∣L′∣ ≥ ∣E(G)∣+3−∣E(G1)∣ = ∣E(G2)∣+3
with mult(L′) ≤ 2, so, by induction, we can get a proper L′-strict-labelling ℓ2 of (G2, c), which,
with ℓ1, forms what is desired for (G, c).

From now on, we thus assume (G, c) is connected. To lead the rest of the proof, we essentially
look at the vertex degrees, and show we can employ induction properly in case certain degree
configurations are present. As an illustration, we first deal with a specific case that will later
simplify the proof a lot.

Remark 1. The result holds if (G, c) has a vertex of degree 2 adjacent to a vertex of degree 1.

Proof of the remark. Assume v is a vertex of degree 2 of G, and let u and w be its two neighbours,
where d(u) = 1. If G is the path uvwx of length 3 (that is, d(w) = 2 and w, besides v, is also
adjacent to a vertex x of degree 1), then ∣E(G)∣ = 3 and ∣L∣ ≥ ∣E(G)∣ + 3 = 6, so, since mult(L) ≤ 2,
there are at least three pairwise distinct labels li1 , li2 , li3 in L. We here assign one li of these labels
to vw so that c(v)+ li ≠ c(u) and c(w)+ li ≠ c(x), which guarantees u and v, and similarly x and w,
cannot eventually get in conflict regardless how we label uv and wx. Next, we assign another lj of
these labels to uv so that L − (li, lj) contains at least two distinct labels. It then suffices to assign
any remaining label lk to wx so that v and w are distinguished to obtain a proper L-strict-labelling
of (G, c).

Under the assumption that d(u) = 1, d(v) = 2, and G is not the path of length 3, note that
(G − v, c) must be nice. Also, we have ∣E(G)∣ ≥ 2, and thus ∣L∣ ≥ ∣E(G)∣ + 3 = 5, meaning that L
must contain three pairwise distinct labels li1 , li2 , li3 . Let li be any of these three labels such that
c(u) ≠ c(v) + li. Set now G′ = G − v, L′ = L − (li), and define c′ ∶ V (G′) → R as c′(w) = c(w) + li
and c′(x) = c(x) for all x ∈ V (G′) ∖ {w}. By the induction hypothesis, (G′, c′) admits a proper
L′-strict-labelling ℓ′, since mult(L′) ≤ 2 and ∣L′∣ = ∣L∣ − 1 ≥ ∣E(G)∣ + 2 = ∣E(G′)∣ + 4. Now, in
(G, c), start from ℓ′, assign label li to vw, and last, since only uv remains to be labelled, at least
four labels of L have not been assigned yet, at least two of which must have distinct values since
mult(L) ≤ 2, so we assign one lj to uv so that, denoting ℓ the resulting labelling of (G, c), we
get σℓ(v) + c(v) ≠ σℓ(w) + c(w). Note that w does not get involved into a conflict since we get
σℓ(w) + c(w) = σℓ′(w) + c′(w), σℓ(w) = σℓ′(w) + li, and c′(w) = c(w) + li. Likewise, by the choice of
li, we cannot have a conflict between u and v, and, by the choice of lj , we cannot have one between
v and w. Meanwhile, all vertices of G different from u, v, and w have their sums not altered by
these modifications. Thus, ℓ is a proper L-strict-labelling of (G, c). ◇

Back to the proof of Theorem 1, we focus on u, a smallest vertex of (G, c). Among all possible
choices as u, we choose one with maximum degree d(u). We consider first when d(u) is small, i.e., at
most 2. Recall that, throughout what follows, the elements l1, l2, . . . of L are ordered increasingly,
i.e., l1 ≤ l2 ≤

– Assume first that d(u) = 1, and let v denote the unique neighbour of u in G. If d(v) = 1,
then actually ∣V (G)∣ = 2, a case we have covered already. Thus, assume d(v) ≥ 2, and even
d(v) ≥ 3 due to Remark 1. Then note that G′ = G−u is necessarily nice, and thus so is (G′, c′)
for any c′. Note also that since u is a smallest vertex of (G, c) with maximum degree, then
small(u) < small(v). Now set L′ = L − (l1), and define c′ ∶ V (G′) → R as c′(v) = c(v) + l1
and c′(w) = c(w) for all w ∈ V (G′) ∖ {v}. Since ∣L′∣ = ∣L∣ − 1 ≥ ∣E(G)∣ + 2 = ∣E(G′)∣ + 3, by
the induction hypothesis (G′, c′) admits a proper L′-strict-labelling ℓ′. Now let ℓ be the L-
strict-labelling of (G, c) obtained from ℓ′ by assigning label l1 to uv. As a result, note that
c′(v) + σℓ′(v) = c(v) + σℓ(v) since σℓ(v) = σℓ′(v) + l1. Also, since we assigned label l1 to uv, we
get c(u)+σℓ(u) = small(u) < small(v) = c(v)+σℓ(v), while assigning label l1 to uv changed the
sums of u and v only. Thus, ℓ is a proper L-strict-labelling of (G, c).

6 Julien Bensmail and Clara Marcille

– Assume now that d(u) = 2, and let v and w be the two neighbours of u in G. By Remark 1,
we can assume d(v), d(w) ≥ 2. Since neither v nor w can be a vertex of degree 2 adjacent to a
vertex of degree 1 by Remark 1, if G − u is not nice then it must be that vw is an edge, and
actually that (G, c) is a weighted triangle. In this case, ∣E(G)∣ = 3 and ∣L∣ ≥ ∣E(G)∣+3 = 6, so L
contains three pairwise distinct labels li1 , li2 , li3 since mult(L) ≤ 2. Note that, w.l.o.g., we can
also assume c(u) ≤ c(v) ≤ c(w). In this case, assuming li1 < li2 < li3 , we assign label li1 to uv,
label li2 to uw, and label li3 to vw. This guarantees c(u)+li1+li2 < c(v)+li1+li3 < c(w)+li2+li3 .
Thus, the sums of u, v, and w are distinct, and we get a proper L-strict-labelling of (G, c).
So, now, we can assume G−u is nice. We consider two cases, depending on whether L is shifted.
● If L is not shifted, then let l = l1 = l2 be the value of the two smallest labels in L (l1 and
l2), which are thus equal. We here set G′ = G−u, L′ = L−(l1, l2), and define c′ ∶ V (G′) → R
as c′(v) = c(v) + l, c′(w) = c(w) + l, and c′(x) = c(x) for all x ∈ V (G′) ∖ {v,w}. Since G′ is
nice, so is (G′, c′), so by the induction hypothesis there is a proper L′-strict-labelling ℓ′ of
(G′, c′). We extend ℓ′ to some labelling ℓ of (G, c) by setting ℓ(uv) = l1 and ℓ(uw) = l2. As
a result, we get σℓ(u)+ c(u) = small(u). Meanwhile, note that both v and w are incident to
only one edge assigned a label with value l, while this label value was assigned twice, and,
recall, we have d(v), d(w) ≥ 2. Thus, σℓ(v) + c(v) > small(v) and σℓ(w) + c(w) > small(w),
while by our choice of u we have small(v), small(w) ≥ small(u). Thus u cannot be involved
in conflicts (recall Lemma 1), while for all other vertices x (in V (G′) ∖ {v,w}) we have
σℓ(x)+ c(x) = σℓ′(x)+ c′(x), implying ℓ is thus a desired proper L-strict-labelling of (G, c).
● If L is shifted, then l1 and l2 are two smallest label values of L, where l1 < l2 (that is, there is

only one occurrence of label value l1 in L). Essentially we would here like to proceed just as
in the previous case, considering G′ = G−u and L′ = L−(l1, l2), and defining c′ ∶ V (G′) → R
as earlier, assuming we would then, say, assign label l1 to uv and label l2 to uw. We need to
be careful however, as in some cases such arguments do not apply; precisely, in some cases
we might end up, for the resulting ℓ in (G, c), with σℓ(v) + c(v) = small(v) = σℓ(u) + c(u).
It can be checked, however, that these arguments apply right away when d(v), d(w) ≥ 3.
Likewise, they apply as is when d(v) ≥ 3 and d(w) = 2, and, free to rename v and w, when
d(v) = 2 and d(w) ≥ 3. It can be checked also that we cannot have any conflict between u
and v when d(v) = 2 and small(v) > small(u), and, again free to rename v and w, when
d(w) = 2 and small(w) > small(u). This follows from arguments alike those used to prove
Lemma 1: as long as we assign labels l1 and l2 to the edges incident to u, any conflict
involving u must be with a vertex whose incident edges have been assigned the smallest
label values (recall we might have l2 = l3 since mult(L) ≤ 2, in which case l3 is also one of
the two smallest label values).
So, the very last case to consider is when d(v) = d(w) = 2, small(v) = small(w) = small(u),
and thus c(v) = c(w) = c(u). If considering v instead of u does not lead to a more favourable
situation, then it means that v as well is adjacent to two vertices of degree 2 being smallest
vertices (one of which is u, and the other one could be w). Of course, the same goes
for w. Through repeatedly considering adjacent vertices of degree 2 of (G, c) this way,
either at some point we reach a smallest vertex of degree 2 whose neighbours allow for
previous arguments to apply, or we determine that (G, c) is actually a weighted cycle with
all vertices being of smallest possible sum small(u). In this case, we can obtain a proper
L-strict-labelling of (G, c) e.g. in the following way. Set G = v0 . . . vn−1v0. For any two
adjacent vertices vi and vi+1 (where indexes are modulo n throughout), since c(vi) = c(vi+1),
through labelling (G, c) by a labelling ℓ, to guarantee that σℓ(vi)+c(vi) ≠ σℓ(vi+1)+c(vi+1)
it suffices to guarantee that σℓ(vi) ≠ σℓ(vi+1); and for that we need only to have ℓ(vi−1vi) ≠
ℓ(vi+1vi+2). If G is a cycle of length at least 4, then we obtain a proper L-strict-labelling
of (G, c) when considering the edges following the ordering (v0v1, v1v2, . . . , vn−1v0) and
assigning to them labels of L in increasing order. Indeed, this guarantees every two edges
at distance 2 get assigned distinct labels, since mult(L) ≤ 2. Now if G is a triangle uvwu,
then we can reuse arguments we introduced at the very beginning of the current case (to
deal with cases where G − u is not nice).

So, we can now assume that d(u) = d ≥ 3. Set G′ = G−u; note that if some connected component
of G′ is just an edge vw, then, due to Remark 1, we deduce that uv and uw must be edges of G as
well. So it might be that G′ is not nice, but this must be caused by triangles attached at u in G.

An Improved Bound for Equitable Proper Labellings 7

Recall that l1, . . . , ld denote the smallest d labels of L, where l1 ≤ ⋅ ⋅ ⋅ ≤ ld. To build a proper
L-strict-labelling ℓ of (G, c), our goal now is, assuming (G′, c′) is nice for some c′, to manage to
invoke the induction hypothesis just like we did before. More precisely, in general, this will be
achieved as follows. Let uv1, . . . , uvd denote the d edges incident to u, and let ϕ be a permutation
of {1, . . . , d}. An attempt (w.r.t. ϕ) will consist in considering L′ = L − (l1, . . . , ld) and (G′, c′) the
weighted graph where, recall, G′ = G − u, and we have c′ ∶ V (G′) → R where c′(vi) = c(vi) + lϕ(i)
for every i ∈ {1, . . . , d} and c′(w) = c(w) for all w ∈ V (G′) ∖ {v1, . . . , vd}. Assuming (G′, c′) is nice,
we then deduce a proper L-strict-labelling ℓ of (G, c) from a proper L′-strict-labelling ℓ′ of (G′, c′)
(obtained by induction), through simply assigning label lϕ(i) to every edge uvi. In many cases,
there is actually a ϕ guaranteeing a successful attempt (i.e., such that the eventual ℓ is proper),
see below. However, there are two reasons why an attempt might fail.

– Nothing guarantees (G′, c′) is nice, implying the induction hypothesis cannot be invoked. How-
ever, as pointed out above, this can only occur if G′ = G−u contains an isolated edge vivj (that
is, u is adjacent, in G, to two adjacent vertices of degree 2) such that c′(vi) = c′(vj).

– To guarantee u cannot eventually get involved in conflicts by ℓ, then, by Lemma 1, since,
through an attempt, we are assigning the smallest d labels of L to the edges incident to u, and
d(u) ≥ 3, we must make sure vϕ(1) is not a vertex of degree 1 being a smallest vertex of (G, c).
Likewise, if L is not shifted, then by definition l2 is also the smallest label value in L (that
is, l1 = l2), and so, here as well, we must make sure vϕ(2) is not a vertex of degree 1 being a
smallest vertex of (G, c).

In particular, if we rename v1, . . . , vd as w1, . . . ,wa for some a ≥ 0, x1, y1, . . . , xb, yb for some
b ≥ 0, x′1, y′1, . . . , x′b′ , y′b′ for some b′ ≥ 0, and z1, . . . , zc for some c ≥ 0, where a + 2b + 2b′ + c = d and

– every wi verifies d(wi) = 1 and small(wi) = small(u);
– every pair {xi, yi} forms an isolated edge xiyi in G′ and c(xi) < c(yi);
– every pair {x′i, y′i} forms an isolated edge x′iy

′

i in G′ and c(x′i) = c(y′i);
– every zi meets none of the previous conditions5,

then a permutation leading to a successful attempt can be obtained in most situations. In most
cases, this will be done through considering another permutation ϕ′ obtained from some original
ϕ by swapping two values ϕ(i) and ϕ(j) by ϕ to get a different permutation ϕ′, which means that
ϕ′(i) = ϕ(j), ϕ′(j) = ϕ(i), and ϕ′(k) = ϕ(k) for all k ∈ {1, . . . , d}∖{i, j}, and repeating this operation
as long as necessary. Throughout what follows, when dealing with any of the next configurations,
we implicitly assume that none of the previous ones applies.

– a = 0. In this case, so that an attempt through any initial permutation ϕ is successful, we
just need to guarantee, for some distinct α,β ∈ {1, . . . , d}, that there is no i ∈ {1, . . . , b} (if
b ≥ 1) such that (xi, yi) = (vα, vβ) and c′(xi) = c′(yi), and no i ∈ {1, . . . , b′} (if b′ ≥ 1) such
that (x′i, y′i) = (vα, vβ) and lϕ(α) = lϕ(β). Note that the former configuration, since we assumed
c(vα) = c(xi) < c(yi) = c(vβ), is avoided through simply having lϕ(α) ≤ lϕ(β); so, in case, through
ϕ, we have c′(vα) = c′(vβ), then we can get rid of this by simply considering the permutation
ϕ′ obtained from ϕ by swapping ϕ(α) and ϕ(β).
● Assume first b′ = 0. If we are not done with ϕ, then there exists a pair of vertices {xi, yi}

such that, for some distinct α,β ∈ {1, . . . , d}, we have (xi, yi) = (vα, vβ) and ϕ(α) > ϕ(β). As
explained earlier, this issue is no longer present through the permutation ϕ′ obtained from
ϕ by swapping ϕ(α) and ϕ(β). After repeating this for all such conflicting pairs {xi, yi},
eventually we get a permutation such that the associated L-strict-labelling of (G, c) is
proper.
● Assume now b = 0. Again, if we are not done with ϕ, then b′ > 0 (as otherwise the previous

case would apply), and there is a pair of vertices {x′i, y′i} such that for some distinct α,β ∈
{1, . . . , d}, we have (x′i, y′i) = (vα, vβ) and ϕ(α) = ϕ(β). Since mult(L) ≤ 2 and d(u) ≥ 3,
there exists a vertex vγ /∈ {vα, vβ} such that ϕ(α) ≠ ϕ(γ). If vγ does not belong to another

5 Note that each zi is either a vertex of degree at least 3, a vertex of degree 2 not part of a triangle
attached at u (thus not part of any pair {xi, yi} or {x′i, y′i}), or a non-smallest vertex of degree 1.

8 Julien Bensmail and Clara Marcille

pair {x′j , y′j} (where i ≠ j), then we can freely swap ϕ(α) and ϕ(γ) so that {x′i, y′i} is no
longer a conflicting pair (while new ones are not created) by the resulting permutation.
Otherwise, if vγ belongs to some pair {x′j , y′j} with (x′j , y′j) = (vα′ , vβ′) for some 1 ≤ j ≤ b′
and distinct α′, β′ ∈ {1, . . . , d} with {α,β}∩{α′, β′} = ∅, then we consider the permutation ϕ′

obtained by swapping ϕ(α) and ϕ(α′). Note that this cannot yield a ϕ′ where ϕ′(α) = ϕ′(β)
or ϕ′(α′) = ϕ′(β′) since mult(L) ≤ 2 and ϕ(α) = ϕ(β). By then repeating these arguments
for every conflicting pair {x′k, y′k}, eventually we end up with a desired permutation.
● Assume last that b, b′ ≥ 1. We start, if needed, by applying the exact same arguments as

in the previous case to obtain, from ϕ, some permutation ϕ′ so that for every pair {x′i, y′i}
such that (x′i, y′i) = (vα, vβ) for some distinct α,β ∈ {1, . . . , d}, we have ϕ′(α) ≠ ϕ′(β). We
then apply, if needed, the exact same arguments (on conflicting pairs {xi, yi}, if any) as in
the first case above to reach a permutation such that the associated L-strict-labelling of
(G, c) is proper.

– b ≥ 1.
In this case, assuming w.l.o.g. that (v1, v2) = (x1, y1), we consider any permutation ϕ where
ϕ(1) = 1 and ϕ(2) = 2. This way, note that there is no vi of degree 1 such that uvi is assigned
label l1 or l2, the smallest two label values of L. By remarks above, u cannot be involved in
conflicts as long as we do not swap ϕ(1) nor ϕ(2) with a ϕ(γ) such that γ ∈ {1, . . . , d} and vγ
is a wi. First off, in case there is a conflicting pair (x′i, y′i) = (vα, vβ), then we get rid of it by
swapping ϕ(1) and ϕ(α). Then, in case there are more conflicting pairs of the form {x′j , y′j},
then we get rid of them by swapping elements as in an earlier case. So we can assume we
get to some point where, by ϕ, there are no conflicting pairs of the form {x′i, y′i}, and there
is no vi of degree 1 such that uvi is assigned label l1 or l2. From here, for every conflicting
pair (xi, yi) = (vα, vβ), just as in a previous case we can get rid of it by just swapping the
labels assigned to uvα and uvβ , to eventually reach a permutation such that the associated
L-strict-labelling of (G, c) is proper. In particular, note that, through swapping labels, labels
l1 and l2 remain assigned to edges uvi with vi being an xi, a yi, an x′i, or a y′i.

– b′ ≥ 1 and c ≥ 1.
Here, assume w.l.o.g. that z1 = v1, x′1 = v2, and y′1 = v3.
● If L is shifted, then recall that l1 < l2, so L contains only one label, l1, with smallest

value. We here consider any permutation ϕ where ϕ(2) = 1. This guarantees u cannot be
involved in conflicts with vi’s of degree 1. Likewise, this guarantees we cannot get any
conflict between v2 and v3. Now, if some conflicts remain, then they must involve vertices
in some pair {x′i, y′i} ≠ {x′1, y′1} (recall we can assume b = 0 since the previous case does
not apply), in which case, since {x′1, y′1} is a pair whose vertices are not in conflict, we can
again repeatedly modify ϕ by swapping elements to reach another permutation ϕ′ whose
associated L-strict-labelling of (G, c) is proper.
● If L is not shifted, then recall that l1 = l2. Here, we consider any permutation ϕ where
ϕ(1) = 1 and ϕ(2) = 2. Note that this guarantees that v2 and v3 cannot be in conflict.
To attain a permutation ϕ′ from ϕ such that the associated L-strict-labelling of (G, c) is
proper, we can then, if necessary, swap elements as in the last case. In particular, since
labels l1 and l2 get assigned to edges not incident to smallest vertices of degree 1, eventually
vertex u cannot be involved in any conflict.

In both cases, we are thus done as well.
– c ≥ 2.

Assuming w.l.o.g. that z1 = v1 and z2 = v2, we are here done through considering any permuta-
tion ϕ with ϕ(1) = 1 and ϕ(2) = 2. This guarantees the smallest two labels of L get assigned to
edges going to zi’s, which, recall, cannot be in conflict with u by associated L-strict-labellings
of (G, c) assigning the smallest d labels to edges incident to u. Again, this also guarantees u
cannot be involved in conflicts at all. Recall also that, since none of the previous cases applies,
we may assume b = b′ = 0, so here we do not have to consider possible conflicting pairs {xi, yi}
and {x′i, y′i}.

– b′ ≥ 2.
Since none of the previous cases applies, we have b = c = 0. In this case, we can essentially be
done just as in the previous one, assuming v1 = x′1, v2 = y′1, v3 = x′2, and v4 = y′2, by considering
any initial permutation ϕ with ϕ(1) = 1, ϕ(2) = 3, ϕ(3) = 2, and ϕ(4) = 4. This guarantees x′1

An Improved Bound for Equitable Proper Labellings 9

and y′1 cannot be in conflict, and similarly for x′2 and y′2 (in particular, since mult(L) ≤ 2, we
have l1 < l3 and l2 < l4). All conflicts, if any, must now involve pairs {x′i, y′i} with i ≥ 3, and we
can again get rid of any such conflict by swapping the labels assigned to ux′i and uy′i.

Thus, since d(u) ≥ 3, the last situations we have to consider are when

– a ≥ 3, and b = b′ = c = 0;
– a ≥ 1, b′ = 1, and b = c = 0;
– a ≥ 2, b = b′ = 0, and c = 1.

In the first and second cases, note that the whole structure of (G, c) is discovered (in that all edges
are incident either to u or to neighbours of u only), so, assuming we label all edges of (G, c) at once
(i.e., induction is not invoked), it is no longer necessary, by a proper L-strict-labelling of (G, c), to
guarantee that u is of smallest possible sum, and, thus, that the smallest d labels of L are assigned
to the edges incident to u.

To conclude, we consider each of the three possible remaining cases separately.

– a ≥ 3, and b = b′ = c = 0.
Start from the L-strict-labelling ℓ of (G, c) where ℓ(uwi) = li for every i ∈ {1, . . . , d} (recall
d = a here). Since w1 is a smallest vertex and ℓ(uw1) = l1, note that we have σℓ(u) + c(u) =
l1+⋅ ⋅ ⋅+ ld+c(u) = x = l1+c(w1), and thus c(w1) = x− l1. Likewise, if, for every i ∈ {2, . . . , d}, we
consider the labelling obtained from ℓ by swapping l1 and li, then we deduce that c(wi) = x− l1.
Since ∣L∣ ≥ ∣E(G)∣ + 3, the three largest label values ld+1, ld+2, ld+3 of L have not been assigned,
where ld+1 ≤ ld+2 ≤ ld+3 and thus ld+1 < ld+3 since mult(L) ≤ 2, and l2 < ld+2 since d ≥ 3. Now
consider the L-strict-labelling ℓ′ of (G, c) obtained from the initial ℓ by assigning label ld+2 to
uw1 and label ld+3 to uw2. As a result, note that we now have σℓ′(u)+c(u) = x+ld+2+ld+3−l1−l2.
Meanwhile, σℓ′(w1) + c(w1) = ld+2 + c(w1) = x + ld+2 − l1; since ld+3 − l2 > 1, we thus have that
u and w1 are not in conflict. Likewise, σℓ′(w2) + c(w2) = ld+3 + c(w2) = x + ld+3 − l2; since
ld+2 − l1 > 1, again u and w2 cannot be in conflict. Now, for every i ∈ {3, . . . , d}, we have
σℓ′(wi)+ c(wi) = σℓ(wi)+ c(wi) ≤ ld + c(wi) = x+ ld − l1; since ld+2 − l1 > ld − l1, and ld+3 − l2 > 0,
we have that u and wi cannot be in conflict. Thus, ℓ′ is proper.

– a ≥ 1, b′ = 1, and b = c = 0.
Recall that, here, u is adjacent to a vertices w1, . . . ,wa of degree 1 where small(u) = small(wi)
for every i ∈ {1, . . . , a}, and two vertices x′1 and y′1 such that x′1y

′

1 is an edge and c(x′1) = c(y′1).
Also, by the choice of u we have small(u) ≤ small(x′1), small(y′1).
● If L is shifted, then l1 < l2, so we here assign labels l1, . . . , ld to the edges incident to u so

that label l1 is assigned to ux′1 and label l2 is assigned to uy′1 (and the other labels are
assigned arbitrarily), thus so that ux′1 and uy′1 are assigned distinct labels and the smallest
label value of L is not assigned to any edge uwi; by then assigning any remaining label to
x′1y

′

1 we obtain a proper L-strict-labelling of (G, c). In particular, u can be in conflict with
neither the wi’s nor with x′1 and y′1 by Lemma 1 (recall d(u) ≥ 3), and similarly for x′1 and
y′1 since c(x′1) = c(y′1) and we assigned distinct labels to ux′1 and uy′1 (while x′1 and y′1 are
adjacent vertices of degree 2).
● Thus consider now when L is not shifted, i.e., l1 = l2, and further assume that a ≥ 2. We

start similarly as in the previous case, assigning label l1 to ux′1 and label l3 to uy′1, where
l1 < l3 since mult(L) ≤ 2. We then assign the remaining labels l2, l4, . . . , ld to the uwi’s
arbitrarily, and call ℓ the resulting labelling. Then, as in a previous case, assuming l2 was
assigned to some uwi, we have σℓ(u) + c(u) = l1 + ⋅ ⋅ ⋅ + ld + c(u) = x = l2 + c(wi), and thus
c(wi) = x − l2, where recall l2 = l1. Again, free to swapping label l2 (assigned to uwi) and
the label assigned to any other edge uwj (with j ≠ i), we can further assume c(wi) = x − l2
for all i ∈ {1, . . . , a}. Now, similarly as earlier, if a ≥ 2, then we can replace labels l2 and l4
with labels ld+3 and ld+4 (since x′1y

′

1 is not incident to u, note that ∣L∣ ≥ d+4; then, l3 < ld+3)
to make sure u is not in conflict with the wi’s. It then remains to label x′1y

′

1. Recall that,
since we assigned distinct labels (l1 and l3) to ux′1 and uy′1 and c(x′1) = c(y′1), eventually
we cannot get a conflict between x′1 and y′1 whatever label we assign to x′1y

′

1. So it all falls
down to assigning a label to x′1y

′

1 so that u is in conflict with neither x′1 nor y′1. Note that
there are at least four labels of L that have not assigned, namely l2, l4, ld+1, and ld+2. Since

10 Julien Bensmail and Clara Marcille

mult(L) ≤ 2, we have l2 < l4 < ld+2. So there must be a label in {l2, l4, ld+2} we can assign
to x′1y

′

1 so that u is in conflict with neither x′1 nor y′1. Eventually, this process thus results
in a proper L-strict-labelling of (G, c).
● A very last case to consider is when a = 1 and L is not shifted (as, in the last case we

just considered, it was necessary that a ≥ 2). In that case, we start by setting ℓ(uw1) = l1,
ℓ(ux′1) = l2, and ℓ(uy′1) = l3, where, recall, l1 = l2 and l2 < l3. Since for now we necessarily
have a conflict between u and w1 (since w1 is a smallest vertex of degree 1), we deduce
c(w1) + l1 = c(u) + l1 + l2 + l3. We here change the label of uy′1 to l6 (since ∣E(G)∣ = 4, recall
∣L∣ ≥ 7), which gets rid of the conflict between u and w1 since l3 < l6. Also, l2 < l6 so we
cannot get a conflict between x′1 and y′1 whatever label we assign to x′1y

′

1. So it remains
to label x′1y

′

1 so that u gets in conflict with neither x′1 nor y′1, and for that any label in
{l3, l4, l5, l7} is available. Since mult(L) ≤ 2 we deduce that l3, l5, l7 are pairwise distinct.
So one of these labels can be assigned to x′1y

′

1 to get a proper L-strict-labelling of (G, c).
– a ≥ 2, b = b′ = 0, and c = 1.

Recall that u is here adjacent to w1, . . . ,wa and z1, where the wi’s are smallest vertices of
degree 1, and z1 is neither a smallest vertex of degree 1 nor part of a triangle attached at u.
Thus, contrarily to the previous two cases, since c = 1 recall that the structure of G is not
quite revealed at this point (unless z1 is a non-smallest vertex of degree 1, in which case the
upcoming arguments still apply).
● If L is shifted, then recall l1 < l2. We here consider (G′, c′) and L′, where G′ = G −
{u,w1, . . . ,wa} (which is nice; possibly G′ is empty if z1 has degree 1 in G) and L′ =
L−(l1, . . . , ld), and c′ is defined as c′(z1) = c(z1)+l1 and c′(v) = c(v) for all v ∈ V (G′)∖{z1}.
By the induction hypothesis, (G′, c′) admits a proper L′-strict-labelling ℓ′ (possibly a trivial
one, if G′ is empty). To extend it to a proper L-strict-labelling ℓ of (G, c), we first set
ℓ(uz1) = l1, so that σℓ(z1)+c(z1) = σℓ′(z1)+c′(z1), guaranteeing z1, vertex u apart, cannot
be involved in conflicts. It then suffices to assign, by ℓ, labels l2, . . . , ld to the other edges
incident to u arbitrarily. This way we get σℓ(u) = c(u) = small(u), so, by Lemma 1, since
l1 < l2, we know u cannot be involved in conflicts. Thus, ℓ is proper.
● Last, if L is not shifted, i.e., l1 = l2, then we proceed as follows. We start off similarly

as in the previous case until we get ℓ. This time, however, we know there is a conflict
between u and the unique wi such that ℓ(uwi) = l2. As in previous cases, this implies
that if we set x = l1 + ⋅ ⋅ ⋅ + ld + c(u), then c(wi) = x − l2, and through swapping the label
assigned to uwi and the label assigned to any uwj with j ≠ i, we also deduce that, actually,
c(wj) = x− l2 for all j ∈ {1, . . . , a}. Now, assuming w.l.o.g. that ℓ(uw1) = l2 and ℓ(uw2) = l3
(recall that w2 exists since a ≥ 2), we consider the L-strict-labelling ℓ′ of (G, c) obtained
from ℓ by assigning label ld+2 to uw1 and label ld+3 to uw2. By previous arguments, since
c(wi) = x − l2 for all i ∈ {1, . . . , a}, we know u cannot be in conflict with none of the wi’s
(in particular, l3 < ld+2 since mult(L) ≤ 2). If u is not in conflict with z1, then we are
done. Otherwise, since mult(L) ≤ 2, observe that it must be that ld+1 + ld+2 ≠ ld+2 + ld+3 (as
equality would imply ld+1 = ld+3); so by changing the labels assigned to uw1 and uw2 to
ld+1 and ld+2, respectively, we can alter the sum of u to guarantee z1 cannot be involved
in conflicts, and, again, since we altered both ℓ(uw1) and ℓ(uw2) (since, because d ≥ 3,
l2 < ld+1 and l3 < ld+2), also u cannot be involved in conflicts with the wi’s. So we again
end up with a desired proper L-strict-labelling of (G, c).

This concludes the whole proof. ⊓⊔

As mentioned earlier, Theorem 1 now follows directly from Theorem 2.

3 Conclusion

In this work, through Theorem 1 we essentially improved the best known general upper bound on
χΣ by about a factor 2. To achieve this, we mainly considered proper labellings assigning any label
value at most twice, and proved that every nice graph can actually be labelled this way.

We note that improving Theorem 2 by a bit, that is, even only to sequences of labels of size
at least ∣E(G)∣ + 1, is not quite clear, as, analysing the cases we considered in our proof, one can

An Improved Bound for Equitable Proper Labellings 11

come up with examples of weighted graphs (G, c) that cannot be labelled as desired. An obvious
example is e.g. when (G, c) is a weighted star with center u and an odd number d ≥ 3 of leaves
v1, . . . , vd, L is a sequence of ∣E(G)∣ + 1 labels with mult(L) ≤ 2 and all label values of L appear
exactly twice in L, and all vertices are smallest vertices. Indeed, as seen in the proof of Theorem 2,
whatever ∣L∣ − 1 labels we assign to uv1, . . . , uvd it is not possible to have u being not involved in
one conflict. It might be, however, that if we exclude such bad weighted stars, then we can improve
Theorem 2 further down.

Generalising the approach we considered, one could also legitimately wonder about the more
general question of labelling graphs in a proper way but so that every assigned label value is
assigned to at most k edges, for some fixed k ≥ 1. For k = 1, this is exactly what was considered
in [3], and the best result we could hope for was proved in [4,7], being that for any sequence of
labels L with mult(L) ≤ 1 containing at least ∣E(G)∣ pairwise distinct labels there is a proper
L-strict-labelling of every nice graph G. What we investigated through Theorem 2 is essentially
the case k = 2 of these considerations; although our result, being that for any sequence of labels L

with mult(L) ≤ 2 containing at least ⌊ ∣E(G)∣
2
⌋ + 2 pairwise distinct labels there is a proper L-strict-

labelling of every nice graph G, can maybe be improved, as mentioned above some pathological
cases might arise when restricting L even by a bit. More generally speaking, one could wonder how
these considerations behave as k grows larger.

Note that considering larger values of k this way would not bring anything new regarding
Conjecture 2 and Theorem 1, as, if we are allowed to assign any label value to at least three
edges, then, through a labelling ℓ, we might end up with nb(l, ℓ) = 1 and nb(l′, ℓ) = 3 for two label
values l and l′, which would thus not be considered equitable. Thus, towards Conjecture 2, and
towards results better than Theorem 1, one has to consider other approaches. From a more general
perspective, we are still far from a constant upper bound on the parameter χΣ , and it is probable
that new ideas are needed.

References

1. O. Baudon, M. Pilśniak, J. Przybyło, M. Senhaji, É. Sopena, M. Woźniak. Equitable neighbour-sum-
distinguishing edge and total colourings. Discrete Applied Mathematics, 222:40–53, 2017.

2. J. Bensmail, F. Fioravantes, F. Mc Inerney, N. Nisse. Further Results on an Equitable 1-2-3 Conjecture.
Discrete Applied Mathematics, 297:1–20, 2021.

3. J. Bensmail, M. Senhaji, K. Szabo Lyngsie. On a combination of the 1-2-3 Conjecture and the Antimagic
Labelling Conjecture. Discrete Mathematics and Theoretical Computer Science, 19(1), 2017, #22.

4. J. Haslegrave. Proof of a local antimagic conjecture. Discrete Mathematics and Theorerical Computer
Science, 20(1), 2018.

5. M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of Combinatorial
Theory, Series B, 91:151–157, 2004.

6. R. Keusch. A Solution to the 1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 166:183–
202, 2024.

7. K.S. Lyngsie, L. Zhong. A Generalized Version of a Local Antimagic Labelling Conjecture. Graphs and
Combinatorics 34:1363–1369, 2018.

8. N. Hartsfield, G. Ringel. Pearls in Graph Theory. Academic Press, San Diego, 1990.
9. B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Preprint, 2012. Available online at

http://arxiv.org/abs/1211.5122.

