
HAL Id: hal-04564652
https://hal.science/hal-04564652

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Resiliency Approaches in Convolutional, Photonic, and
Spiking Neural Networks

Alberto Bosio, Mauricio Gomes, Fabio Pavanello, Antonio Porsia, Annachiara
Ruospo, Ernesto Sanchez, Ioana Vatajelu

To cite this version:
Alberto Bosio, Mauricio Gomes, Fabio Pavanello, Antonio Porsia, Annachiara Ruospo, et al.. Re-
siliency Approaches in Convolutional, Photonic, and Spiking Neural Networks. IEEE Latin American
Test Symposium (LATS 2024), Apr 2024, Maceio, Brazil. �hal-04564652�

https://hal.science/hal-04564652
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Resiliency Approaches in Convolutional, Photonic,
and Spiking Neural Networks

A. Bosio1, M. Gomes1, F. Pavanello4, A. Porsia2, A. Ruospo2, E. Sanchez2, E. I. Vatajelu3
1Ecole Centrale de Lyon, CPE Lyon, INL, Ecully, France

2Politecnico di Torino, Dip. di Automatica e Informatica, Torino, Italy
3Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

4Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, France
Email: 1{name.surname}@ec-lyon.fr, 2{name.surname}@polito.it, 3{name.surname}@univ-grenoble-alpes.fr

Abstract—This study presents a comparative examination of
state-of-the-art resiliency approaches of Convolutional, Spiking,
and Photonic neural networks (CNNs, SNNs, PNNs), their fault
and error models, and the main fault tolerance techniques.

Index Terms—Convolutional Neural Networks, Spiking Neural
Networks, Photonic Neural Networks, Reliability, Fault Injection,
Functional Safety, AI safety

I. INTRODUCTION

Ensuring the dependability of today’s systems presents major
problems due to the integration of multiple hardware technologies
and the implementation of more complex algorithms. In fact, more
systems are using artificial intelligence (AI)-based algorithms
in conjunction with the smaller technology nodes to meet their
ever expanding processing needs. In this context, it’s important
to highlight the growing trend of several industries, including
automotive, robotics, avionics, etc., incorporating Artificial Neural
Networks (ANNs) into their systems. Given their close to human
computational powers, this turns out to be a highly interesting
solution, but it’s crucial to emphasize that using such solutions
brings up new and complicated reliability challenges. Actually,
delegating important decisions to ANN-based systems can be risky
because, as predictive models, they are not flawless and may give
an incorrect response even in fault/error-free situations. Therefore,
it starts to be crucial to deeply investigate the reliability and the
behaviours of those AI-based systems in faulty scenarios.

In the last decades, different neural network architectures have
been designed to address specific types of problems and data
structures more effectively. One of the key properties that influence
the choice of the architectural implementations consists in the data
characteristics. Architectures like Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Graph Neu-
ral Networks (GNNs) are tailored to handle spatial relationships
in images, sequential patterns in time-series data, and irregular
structures in graphs effectively. Transformer architectures excel
at parallel processing of sequences but may be less efficient for
spatial data. Some architectures are specifically designed for spe-
cialized tasks, such as Generative Adversarial Networks (GANs)
for generating synthetic data. Some other architectures are very
well suited to process time-series data or sensory processing like
the Spiking Neural Networks (SNNs).

*Institut National Polytechnique Grenoble Alpes

However, besides the task complexity, important aspects to
consider are the power, energy, and computational efficiency,
especially when they operate in memory and resource constrained
devices, like the TinyML and IoT world. In areas like image
recognition and speech processing, the energy and computational
requirements during both training and deployment of Deep Neural
Networks (DNNs) are growing at an unsustainable rate in the push
for greater accuracy [1]. It is even more common to map neurons
and weight values to a smaller value range using the quantization
process [2], [3], e.g., from FP32 to INT8. The effect will be
increased energy efficiency and performance.

Some innovative approaches have been suggested as an al-
ternative to the well-established Deep Neural Networks (DNNs)
and their architecture optimization. These new solutions focus on
either bio-inspired computing, such as Spiking Neural Networks
(SNNs), more energy-efficient architectures like in-memory com-
puting on non-volatile memory cores, or even the adoption of
entirely different materials, such as photonics.

Spiking Neural Networks (SNNs) have functional similarities to
biological neural networks, allowing them to utilize sparsity and
temporal coding. Although SNNs are currently not as performant
as DNNs, the gap is narrowing in certain tasks, while SNNs
generally require much less energy for operation [4]. In addition,
by taking advantage of emerging memory devices, such as memris-
tors, their energy efficiency can be pushed even further. However,
training SNNs remains a challenge due to the complex dynamics
of neurons and the non-differentiable nature of spike operations.
In this context, the bio-inspired training, such as spike-timing-
dependent plasticity (STDP) can be seen as a viable solution,
even more so since this approach can help mitigate hardware
imperfections, increase energy efficiency and allow for network
versaltility over different tasks (reconfiguration by retraining).

Given this context, exploring the use of alternative hardware
might enable further improvements in AI systems, by moving
away from traditional electronic implementations. These emerging
technologies are often not subject to the same limitations of
their electronic counterparts, and thus, might offer more efficient
alternatives for certain applications [5]. Photonic Neural Networks
(PNNs) are hardware implementations of AI that perform compu-
tations on optical signals, rather than on electronic ones. By using
light, they leverage several of its properties to potentially enable
high parallelization, low latency, and reduced power consumption
[6]. For instance, PNNs have been demonstrated to perform sub-



nanosecond image classification [7] and to achieve up to 1012

multiply and accumulate (MAC) operations per second [8].
The variety of neural network architectures and hardware im-

plementations mirrors the complexity of the problems they seek
to solve, underscoring the necessity for customized solutions to
proficiently tackle the complexities present in real-world data
and tasks. This diversity has led to the development of various
resiliency approaches, as detailed in the literature.

The main intent of this work is to highlight the state-of-the-art
solutions to assess and increase the reliability of Convolutional
(Section II), Spiking (Section III), and Photonic (Section IV)
neural networks.

II. RESILIENCY APPROACHES IN CNNS

This section provides an overview of the main resilience as-
sessment approaches for CNNs (Section II-A), then it presents
image-based fault detection techniques (Section II-B). Importance
is placed on the experimental demonstration that a test image can
not only excite hardware-induced faults, but also propagate them
through the output of the CNN.

A. Reliability Assessments

CNNs’ resiliency investigations and improvements can be con-
ducted at various levels of detail or granularity:

• Network-level resilience (NLR): the evaluation of the re-
siliency is performed considering the entire neural network,
and the improvement is achieved by means of network-
tailored or full redundancy solutions, e.g., the entire CNN
is duplicated or tripled. Examples are [9], [10]. Clearly, the
overhead associated to this solution is non-negligible; to
address this issue, the following classes offer more selective
approaches.

• Layer-level resilience (LLR): the resilience of individual
layers is investigated [9]–[11] and selective mitigation tech-
niques are proposed to trade-off between reliability, execu-
tion time, and time and/or resource redundancy [12]–[14].

• Feature-map-level resilience (FLR): feature maps in CNNs
exhibit different vulnerability; this class identifies and stati-
cally protects the most vulnerable feature maps in a CNN. For
instance, the authors in [15] propose to duplicate only filters
corresponding to vulnerable feature maps. This duplication
decision is made before the model is deployed.

• Inference-level resilience (ILR): it selectively reruns vulnera-
ble inferences by analysing their output. It is a time redun-
dancy approach and is invoked based on inference output
(e.g., [15]).

• Kernel-level resilience (KLR): the resilience of individual
parts (i.e., kernels) of the source code executed on a GPU
is investigated. Based on the different kernel vulnerability
factor (KVF), i.e., the probability of faults in a kernel to
affect the model’s computations, specific vulnerable kernels
are hardened. As an example, the authors in [16] propose
a Triple Modular Redundant (TMR) technique to tune the
trade-off between the model’s reliability and its performance
through hardening the carefully-selected kernels.

• Weights-level resilience (WLR): the resilience of individual
weights is investigated to assess the different weights’ fault

tolerance, depending on the layer’s position, the data type
representation (e.g., [10], [11]).

• Neurons or activation-level resilience (ActLR): the vulnera-
bility of each individual artificial neuron is investigated (e.g.,
[10], [17]–[19]).

• Bit-level resilience (BLR): the resilience of individual bit
positions is assessed. This granularity allows to better study
the vulnerabilities of selected data type representations (e.g.,
floating-point weights vs. integer ones).

Even though this classification is tailored to CNNs, it can be
applied to other types of architectures, integrating or adapting
specific internal units that are not considered in CNNs. Depending
on the above classification, several fault mitigation approaches
have been proposed to raise the resiliency level of state-of-the-art
CNNs.

The most used faults and error models in CNNs can be grouped
in two big categories, that involve the corruption of (i) parameters
(e.g., synaptic weights) or (ii) artificial neurons, also known as
activation values. A fault in a parameter (synaptic weights, biases)
can be implemented, for example, as a stuck-at-value, where the
value is within the full domain of the adopted data representation.
This fault model is reproduced as the effect of a single faulty
bit within the weights’ binary range. Indeed, one of the most
used fault models consists of stuck-at-0 or stuck-at-1 affecting
individual bits in CNN’s weights. They are typically implemented
as bit flips, and, the resulting faulty value will be within the entire
range available for the specific data representation. In the last few
years, a great effort has been made to investigate the sensitivity
of each bit position in networks using different data types. This is
due to the fact that the values represented by a data type depend on
the bit positions involved, as different data types interpret each bit
differently [11], [20], [21].

Errors in activation values (neurons) are mainly implemented
as crashed/dead neurons and byzantine neurons. The first class
includes all those faults that completely stop their activity. A
crashed neuron is modelled by purposely setting its output to
zero. The second class includes neurons that keep their activity
but produce arbitrary values, within their bounded transmission
capacity.

B. Fault Detection Techniques
To meet today’s functional safety standards, deploying AI al-

gorithms in safety-critical systems requires detecting in the field
the occurrence of permanent and transient faults happening during
the operational phase of devices. To avoid integrating additional
hardware, software-based solutions are the more appealing option
among the possibilities that exist.

Current state-of-the-art functional methods for detecting faults
that may affect AI-powered devices are often based on Software
Test Libraries (STLs), a set of assembly programs that can excite
and detect faults in the underlying computing device by applying
carefully crafted test patterns. However, since STLs require a sig-
nificant manual effort to develop and may affect the performance
of the AI task [22], alternative solutions have been proposed that
leverage directly the computations of AI models, such as CNNs. In
particular, they involve constructing suitable input data that, when
fed to the CNN, can excite faults simply by flowing through the
layers of the network and propagate them up to the output layer.



This image-based fault detection strategy relies on the adoption of
carefully created test images.

Image-based fault detection: To the best of our knowledge,
the first research that exploits images for testing purposes is pre-
sented in [23]. The authors propose a method to test a memristor-
based Resistive Random Access Memory (ReRAM) hosting a
CNN using test images. In particular, the authors leverage Ad-
versarial Examples, a technique that consists in adding a small
quantity of noise to an image so that it looks indistinguishable
from the original to the human eye, but causes the CNN to output
a completely wrong prediction. While this technique is originally
used as an offensive method to disrupt the operations of a CNN,
the authors use the fault sensitivity of Adversarial Examples to
excite and detect ReRAM faults with high probability. Inspired
by these testing property of images, in [24], a novel technique
that also leverages test images to detect faults was presented:
the Image Test Libraries (ITLs). Similarly to STLs, ITLs deliver
test patterns to a functional unit in order to detect faults, but the
difference lies in how these patterns are conveyed to the functional
unit of interest. While STLs use assembly instructions to control
the inputs to the functional unit under test, ITLs exploit existing
CNN routines that make use of the functional unit of interest. Since
convolutions account for more than 90% of the operations of a
CNN, convolution kernels are an optimal target for this technique.
Test patterns generated using Automatic Test Pattern Generation
(ATPG) are carefully placed into a set of images so that they
may reach the functional unit of interest when the convolution is
performed. The main advantage offered by ITLs is the possibility
to leave the CNN running without modifying its structure and/or
weights, which are in fact used as input constraints for the ATPG
process. In particular, ITLs have been used to perform in-field
functional testing of single-precision floating-point multipliers in
a GPU by leveraging the weights of the first convolutional layer of
a CNN. The process includes reconstructing a dataflow algorithm
capable of mapping each GPU core to the list of multiplications
it performs in the form of weight-input index pairs, depending on
the convolution algorithm and the GPU scheduling policies. Once
the mapping is known, it is possible to place test patterns in one or
more images so that each multiplier may receive the correct ones.
Fault simulation of the ITL reported a single stuck-at test coverage
of around 95% for each multiplier of the targeted GPU.

ITL fault propagation analysis: ITLs have been shown to
be able to propagate hardware faults up to the software level. To
experimentally demonstrate the efficacy of ITLs in exciting faults,
in [24] faulty images have been created. To this end, architectural-
level fault simulations have been performed and then, for each
injected fault, it has been checked if the fault was propagated to
the software level, which in the case of a CNN corresponds to the
output of the first layer. The fault injection technique employed for
this purpose is a mixture of architectural and software-level fault
injection that combines the accuracy of gate-level microarchitec-
tural simulation with the speed of software fault injections. The
main idea behind it is that a multiplication performed by a faulty
multiplier, therefore producing a faulty output Ô, is equivalent to
a multiplication performed by a golden multiplier with a faulty
input. In mathematical terms, if a faulty multiplier produces a
faulty output Ô = I ·W , the same Ô can be produced by a golden
multiplier that performs the same operation, but with a faulty input,

i.e., Î · W = I · Ŵ = Ô. Given Ô, I and W , it is possible to
calculate Î and Ŵ as:

Î =
Ô

W
Ŵ =

Ô

I

Fault injections are performed by applying to the CNN faulty
inputs Î corresponding to specific hardware faults internal to
the targeted multiplier. Costly simulations are replaced by the
inference of faulty images corresponding to a precise hardware
fault. The construction of faulty images consists of the following
steps:

1) Inject a fault into a multiplier
2) For each multiplication I · W performed by the multiplier

during the inference of the ITL images, extract the weight
W and the faulty output Ô

3) Compute Î = Ô
W

4) Replace the original input I with the faulty input Î
Given the nature of the convolution operation, a single element

of the input concurs in the computation of several elements of
the output, including some that may not be computed by the
targeted multiplier. It follows that launching the inference of a
faulty image results in some output elements being wrong even
if they should not be. To solve this problem, a mask M is applied
to the output. M is a tensor having the same size of the output that
contains a 1 in positions corresponding to output elements that are
actually computed by the faulty multiplier, and 0 in all the others.
Given a fault f , a multiplier c, a layer L, an input image I and
the corresponding faulty image(s) If , the correct faulty output is
calculated as:

Lf (I) = L(I)⊙ (1 −Mc) + L(If )⊙Mc (1)

This procedure has been shown to allow the observation of
the fault propagation to the output of the first layer. However,
a more realistic approach would involve trying to observe the
fault on the output of the last layer. In this work, the procedure
has been extended in order to apply the same hardware fault to
all convolutional layers, with the only difference (compared to
the first layer) that operations involving the input image must be
performed using the output of the previous layer. Equation 1 can
be generalized for each convolutional layer i as:

Li,f (Oi−1) = Li(Oi−1)⊙ (1 −Mi,c) + Li(Oi−1,f )⊙Mi,c

where Oi−1 is the output feature map of the i − 1-th layer
and Oi−1,f is the corresponding faulty feature map. By applying
this procedure to each convolutional layer, the propagation of the
fault can be observed up to the output layer. Figure 1 shows a
graphical representation of this fault injection method. The input
image I on the left is passed through the L1 convolutional layer,
where a fault has been injected on the multiplier MUL0. The
faulty multiplications performed during the convolution are then
collected and the corresponding faulty inputs Î are computed. The
mask M1,MUL0 , relative to layer L1 and multiplier MUL0, contains
a 1 in positions corresponding to outputs computed by the faulty
multiplier, 0 everywhere else. The faulty inputs (represented in
purple) are then applied to the input image, producing the faulty



Fig. 1: Schematic of the software-level fault injection framework employed to experimentally show that ITLs can propagate
the fault to the output of the CNN.

input image If . Both I and If are then passed to L1 without
injecting the fault, producing the clean output feature map L1(I)
and the faulty output feature map L1(If ), respectively. L1(If )
contains the output elements computed by MUL0 (in red), as well
as some incorrect output elements (in light orange) computed as a
byproduct of the fault injection method. In fact, in a convolution
a single input concurs in the computation of more than one output
elements, hence changing an input results in a change of several
outputs. To remove the incorrect output elements, L1(If ) is mul-
tiplied elementwise by the mask M1,MUL0 to single out the faulty
output elements and leave out the others. The clean output L1(I)
is multiplied elementwise by 1−M1,MUL0

to single out the output
elements that were not computed by MUL0. The two resulting
tensors are then summed to obtain the faulty output feature map
L1,f (I) = O1. The procedure is then repeated (second half
of figure 1) by substituting I with O1. Note that in the second
iteration, the faulty output elements produced in L1 concur in the
computation of output elements (in light red) even when executing
L2 without injecting a fault on MUL0. Given the nature of the
convolution operation, wrong inputs produced in L1 are processed
also by clean multipliers in L2, effectively propagating the fault on
more output elements. These faulty outputs are then supplemented
by new faulty outputs produced by MUL0 when computing the
output of layer L2.

Preliminary results obtained with the above method indicate
that a permanent stuck-at fault in a multiplier can be excited by
the ITL in the first convolutional layer and propagated up to the
CNN’s output layer. For the sake of completeness, an additional
experimental analysis has been performed. The six test images
developed in [24] for the in-field testing of GPU’s multiplier
running the ResNet20 CNN have been adopted. The intent of the
analysis was to experimentally verify the ability of the considered
ITL in propagating faults up to the output of the CNN. To do
so, the software-level framework shown in Figure 1 has been

Fig. 2: Percentage of faulty output elements for each convo-
lutional and fully connected layer of ResNet20.

developed with the intent of turning gate-level faults (i.e., stuck-
at faults affecting the multiplier) into test images. Results for
three hardware faults injected on a targeted multiplier (two stuck-
at-1s, one stuck-at-0) are shown in Figure 2. The graph reports
the percentage of output elements that change due to the faulty
multiplier at every convolutional and fully connected layer of
the CNN under study (ResNet20 targeting CIFAR-10). It can be
observed that the percentage of different values almost always
increases, leading to the output of the model being completely
different from the expected one. For the sake of clarity, only
Fault 0 leads to a failure. The drops at the beginning of each
block correspond to strided convolutions, in which some elements
of the input feature map are skipped and the size of the output
is reduced. These results can be explained by the fact that in
a convolution with a f × f filter, a change in a single input

element affects
(
f
2

)2
to f2 output elements, including some that

may be computed by different, fault-free multipliers. Due to this



property of the convolution operation, output elements computed
using clean multipliers may be wrong, not because of an internal
hardware fault, but because one of the inputs is wrong. Besides,
new faulty outputs are produced in each convolution by the same
faulty multiplier, since it is assumed that the fault is permanent.
When performing several convolutions one after the other, this
behavior results in an avalanche effect that causes large chunks
of the feature maps to be wrong with respect to the feature maps
obtained by performing the same chain of convolutions with a
clean input and a correctly functioning multiplier.

III. RESILIENCY APPROACHES IN SNNS

The Spiking Neural Networks (SNN) are widely studied nowa-
days due to the high level of realism they bring to neural simula-
tion, their energy efficiency and their ability for on-line learning.
In SNNs, neurons communicate with each other through discrete-
time spikes, rather than continuous-valued activations. The related
bio- inspired learning rule is known as STDP (Spike Based De-
pendent Plasticity) and is applied on each synapse independently
of the global state of the network. In return, the synapse must be
doted of computation capabilities. A hardware implementation of
an SNN requites architectural co-localization of the processing and
memory (non-Von Neumann architecture). The circuits solutions
used to implement silicon neurons are application depended, but
the vast majority are built with a temporal integration block, a
spike generation block, a refractory period mechanism, and a spike
adaptation block [25]. Synapses are required to exhibit plasticity
(i.e., modulation in their efficacy) and to support online learning
algorithms, that manifest in changes in their strengths. Emerging
memory devices can be used as synaptic elements thanks to
their tunable conductivity, compatibility with advanced CMOS
fabrication process, low power consumption, non-volatility and
scalability. The synaptic conductance modulation can be emulated
using: (i) the analog approach (cumulative decrease and increase
of resistance), where multiple resistance states emulate long-term
potentiation and depression; or (ii) the binary approach, uses two
distinct resistance states per device associated with a probabilistic
programming scheme [26].

In this context, we are concerned with the use of emerging
memory technologies (memristors and spintronic devices) in a
non-Von Neumann context and the dependability issues they face
especially within hardware implementations of bio-inspired neural
networks (Spiking Neural Networks).

The emerging memory technologies favor increasing system
complexity and performance, opening the scientific community to
great improvements in state-of-the-art computing but also to new
applications and computation paradigms (such as in-memory com-
puting or neuromorphic computing) which had been unfeasible a
few years back due to technological limitations. This work mainly
focusses on the use of memristors as artificial synapses for bio-
inspired computing architectures. In this context, they have double
functionality: memory (to save the values of the synaptic weights)
and computation (to facilitate the on-line learning process, i.e.,
update synaptic weights) [27].

Due to the aggressive technology scaling and the introduction
of new steps at back-end-of-line for the fabrication of the storage
element, both components of the memory cell (access device
and storage element) suffer from fabrication-induced variability.

Moreover, due to intrinsic properties of these technologies, they
are more susceptible to variations and defects, so there is a need
for high quality test and fault tolerance. In addition, because of the
different operation modes (analog storage and computing) com-
pared to traditional digital memories, they require fundamentally
new testing schemes.

The strong restrictions on the size of embedded Spiking Neural
Network architectures (limited silicon area and interconnectivity
ability) require minimization of the network redundancy which in
turn reduces its the intrinsic fault tolerance, therefore there is an
acute need to evaluate the reliability and perform manufacturing
test of the neuromorphic hardware architectures to guarantee their
correct operation and robustness. In this section we introduce a
method for analyzing faults in Spiking Neural Networks (SNNs),
examine the impact of hardware imprecision on the accuracy of
the network, and assess how the training of the network influences
its ability to withstand faults.

To analyse the faults that can occur in a Spiking Neural Network
(SNN) and to asses the network robustness the development of
pertinent fault models and methodologies for conducting fault
injection campaigns are essential. In this context, we propose
two analyse faults from two different angles, i.e., from bottom-
up and from top-down. In the bottom-up approach the effect
of fabrication-induced defects and variability on the operation of
the neuron and synapse is to be evaluated and a fault modeling
campaign should be conducted. The resulting faults can then be
injected at system level and the robustness of the SNN evaluated.
In previous work we showed that fabrication- induced parameter
variations affect the neuron/synaptic behavior, which in turn af-
fects the robustness of the SNN [28]. In this work, we complete
our previous study by evaluating the accuracy loss of an SNN with
leaky-integrate and fire (LIF) neurons and memristive synapses
trained on the NMNIST data-set [29] by using different training
approches: Shadow Training ST (with a base accuracy of 96%),
(ii) BackPropagation Through Time BPTT (with a base accuracy
of 98%), (iii) STDP (with a base accuracy of 94%). The results are
illustrated in Fig. 3. As expected, the robustness of the network is
influenced by the training procedure. In fact, when using shadow
training, the network’s fault tolerance is lower than in the other two
cases, which is not entirely surprising since this type of training
does not take into account any of the unique features of an SNN.
On the other hand, when using STDP training, the fault tolerance is
maximized, as the non-idealities are considered during the training
process.

Fig. 3: Relative accuracy loss under synaptic nonideality
(process variability-PV and defects leading to stuck-at faults-
SA, i.e, memristor does not switch)



For a complete picture of SNN robustness, in further work we
will analyze the impact of device degradation/malfunctioning and
disturb effects on the performance of the neuron/synapse module
and on the entire network. We will evaluate all pertinent reliability
concerns like voltage noise, temperature noise, electromagnetic
noise, aging degradation, cycle-to-cycle variation, etc. The identi-
fied possible (pertinent) faults will be injected at architecture level
and mapped at behavioral level.

In the top-down approach, the correctness of the SNN algo-
rithm needs to be evaluated under the effect of different faults,
and the results to be validated by functional evaluation of the
SNN architecture. Starting from the behavioral model of the SNN
under study, we have investigated how the network behaves under
different issues such as defective neurons or defective synapses.
We have also evaluated the functional accuracy of the SNN during
inference and learning. The results of this analysis provide insights
into the following aspects of Neural Network (NN) functionality:
the impact of defective neurons versus defective synapses on
NN performance; the number of critical components that must
fail for the entire network to fail; he significance of defect lo-
cation, whether in the inner or outer layer of a NN. In a first
approximation, a fault is defined as an undesired behaviour of a
network element (neuron or synapse). The first fault models we
have considered are dead neuron fault (DNF) and dead synapse
fault (DNF) [29]. A DNF is defined as a neuron that does not fire
under any conditions. A DSF is defined as a synaptic connection
that does not allow information transfer from input to output
neuron. We have perform a fault injection campaign, assuming
different scenarios of fault occurrence assuming clustered faults or
unclustered (randomly or deterministically distributed) faults. The
functionality of the network has been evaluated and the severity
of the fault occurrence related to its frequency and location is
assessed. The DNFs and DSFs are the worst-case fault models,
as they illustrate the situation where all functionality of (faulty)
neuron and synapse is lost. We have also analysed the faults caused
by the reduced functionality of neuron and/or synapse such as:
modified synaptic weight, faulty signal integration by the neuron,
modified firing threshold of the neuron, delayed firing of the neu-
ron, etc. All these studies were conducted on an SNN with leaky-
integrate and fire (LIF) neurons, trained on the NMNIST data-
set [30] by using different training approches: Shadow Training
ST (with a base accuracy of 96%), (ii) BackPropagation Through
Time BPTT (with a base accuracy of 98%), (iii) STDP (with a
base accuracy of 94%) and the results are illustrated in Fig. 4. It
is worth noting that the impact of DSF on the network accuracy
is very similar to the impact of memristor SA faults illustrated in
3. Moreover, the presence of DNFs has a more severe effect on
the network trained by STDP compared to the network trained by
backpropagation, particularly when the number of DNFs is large.
This is primarily because in STDP-trained networks, each output
neuron responds to a specific pattern due to the local training
procedure, whereas in networks trained using backpropagation, the
all neurons respond to averaged patterns due to global training.

It is clear that even with on-line training, the presence of faults
reduces the resilience of the Spiking Neural Network (SNN),
making it necessary to develop resilience approaches for SNNs.
The goal of these approaches is to ensure that SNNs can continue

Fig. 4: Relative accuracy loss under Dead Neuron and Dead
Synapse Faults (DNF, DSF)

to function correctly even in the presence of various types of
perturbations, such as noise, neuron or synapse failure. Some
examples of resilience approaches in spiking neural networks
include but are not limited to:

• Noise Robustness: Introducing noise during training can help
SNNs become more resilient to noise during inference. This
can be achieved through techniques such as stochastic gradi-
ent descent, dropout, or adding noise to synaptic weights.

• Adaptation: Adjusting the network’s parameters or connec-
tions in response to changes in the environment or input can
help maintain its performance and stability.

• Adaptive Plasticity: Implementing adaptive plasticity mech-
anisms allows SNNs to dynamically adjust their synaptic
weights and connectivity in response to changes in the en-
vironment or network conditions. This enables the network
to adapt and compensate for variations or disturbances.

• Homeostasis: Maintaining the network’s internal state within
a stable range can help it resist perturbations and maintain its
function.

• Continual Learning: Implementing continual learning strate-
gies allows SNNs to continuously update their operation and
adapt to new information without catastrophic forgetting.
This ensures that the network remains resilient to changes
in the input distribution or environment over time.

Implementing resilience approaches in Spiking Neural Net-
works (SNNs) will come at a cost, primarily in terms of reduced
power efficiency, increased hardware complexity, and larger area
footprint. To achieve a resilient SNN design that maintains its
advantages over classical Deep Neural Networks (DNNs), it is
important to carefully balance all of these aspects.

IV. RESILIENCY APPROACHES IN PNNS

In this section, we give an overview of the resiliency of PNNs,
highlighting how these hardware implementations of NN architec-
tures demand the use of both traditional and novel approaches.

While the reliability of photonic devices in the context of data
transmission is established [31], their resiliency within computing
applications remains less explored, indicating possibilities for
further research. Nonetheless, moving computations to the optical
domain could address the needs of AI applications that demand
low-latency responses and intensive computational power, such as
in many safety-critical scenarios.

A. Photonic Circuits and Basic Devices
Photonic computing uses optical signals, rather than electrical

ones, to carry out computations. This analog computing approach



involves modulating the amplitude and phase of light to represent
data, often using its wavelength, polarization or mode to parallelize
computations. Photonic circuits then process this data by modify-
ing, splitting and combining different signals, ultimately detecting
them to retrieve the processed information [32].

Despite design differences, certain components are commonly
found in photonic computing. Some of these are used to guide
and direct light within the circuit, such as waveguides and beam
splitters, while others modify their proprieties, as phase shifters
and modulators. Additionally, we find functional blocks made
from basic components, including interferometers, that enable the
interference of different signals, and ring resonators which may
serve as bandpass filters, permitting the transmission of specific
light wavelengths that resonate within it, while attenuating others.

The characteristics of these components are defined during fab-
rication. However, many of them can be electronically controlled,
which allows for a dynamic reprogramming of circuits at the cost
of additional control circuitry [33]. For example, beam splitters
have their splitting ratio determined by the device dimensions and
geometry, and phase shifters can be controlled by adjusting the
index of refraction of a small portion of a waveguide by, e.g.,
using waveguide heaters or injecting free cariers [34]. The same
controlling strategy allows for other adjustments, such as selecting
the resonant wavelength of a ring resonator or modifying the
interference between signals in interferometers.

B. PNN Implementations
PNNs, as their name suggests, are NN implementations that

use photonic hardware to perform computations, which allows for
improvements in speed and energy efficiency due to the unique
characteristics of light [35]. In the optical domain, linear trans-
formations are achievable using passive components [36], matrix-
vector operations are performed in reduced computational time
[37], and data is parallelized to be processed simultaneously [8].

While no single photonic component acts as an artificial neuron,
a photonic circuit can be designed to perform the mathematical
operations of a given NN. Several implementations of PNNs have
been suggested and demonstrated experimentally [38]. Since opti-
cal signals have multiple degrees of freedom for encoding data and
computing, circuits can vary significantly in how they process and
detect information. They are broadly categorized by how different
inputs are distinguished, whether through space, wavelength, or
time domains [39].

PNNs that use spatial differentiation of inputs, for example,
assign a separate physical input to each optical signal. In these
networks, weight matrix multiplications are achieved by modify-
ing the phase of different inputs and making them interfere, most
notably, using meshes of interferometers [36], [40]. Activation
functions, on the other hand, can be implemented by using any of
the devices and circuits that exhibit optical non-linearity [41], [42].
Aside from feed-forward NNs, photonic circuits also implement
CNNs [8], [43], SNNs [44], reservoir computing systems [45],
among others.

However, just as electronic systems, photonic systems are sus-
ceptible to hardware faults that may lead to errors, and must also
be designed with robustness in mind if they are to be used in
safety-critical applications. Most PNN implementations rely on
electronic devices to some extent, thus, when considering their

reliability, one must pay attention to threats that may affect both
the photonic and electronic circuitry of these systems.

C. Photonic Devices Threats
Photonic components and signals used in PNNs face several

threats. These might impact the circuit itself, resulting in wrong
operations being performed, or the optical signals that propagate
within it, changing the data being processed. Both impact light’s
behavior, leading to deviations in the expected outputs.

Since photonic circuits often rely on the interference of light,
they are highly sensitive to changes in the dimensions of fabricated
devices and the index of refraction of their materials [46]. Fabri-
cation Process Variations (FPVs) represent a major concern in this
context, as inconsistencies during the manufacturing process can
modify the physical dimensions of devices [47], [48]. This leads
to a range of issues, including unintended phase shifts, deviations
on expected splitting ratios, or the shift of resonant wavelengths,
all of which compromises the accuracy of PNNs. Beam splitters,
for instance, were previously shown to have a 1 − 2% deviation
from 50:50 splitting ratio due to FPVs [49].

Temperature fluctuations, further impact photonic circuits by
altering the index of refraction of their materials, leading to phase
shifts and delays in the propagation of light. Temperature can also
be an issue when using waveguide heaters as phase shifters, due to
thermal crosstalk, i.e., when a heater affects unintentionally the
behavior of neighbouring components [50]. Additionally, aging
in photonic circuits must also be taken into account, although its
impact is arguably lower compared to electronic systems, due to
the physical nature of the photonic hardware [51]. Interestingly,
unlike in electronics, optical devices and circuits have been shown
to be resistant to threats resulting from radiation [52].

As signals propagate within the circuit, they experience losses
and noise that might originate from absorption in different devices
and crosstalk from tightly packed signals, among other sources
[53]. The analog nature of computations in PNNs makes them par-
ticularly susceptible to these degradations in signal integrity, that
at a first glance may be small at the device level, but accumulate
throughout the circuit, leading to wrong interpretations of data at
the detection stage, affecting the overall performance of PNNs.

D. Electronic Devices Threats
Despite the nature of PNNs, they still rely on electronic com-

ponents for certain functionalities, such as storing information,
controlling optical devices, and generating and detecting optical
signals. These devices lie at the periphery of the photonic circuits,
yet they pose vulnerabilities for the whole system, since they are
also susceptible to threats. These threats are common to digital
computers and have been extensively researched [54].

As an example, consider the act of controlling a phase shifter,
needed to implement the trained weights into PNNs. This process
starts with the retrieval of phase settings, i.e. the parameters of
the network, from a digital memory. These settings are then trans-
lated into voltage levels by a digital-to-analog converter (DAC),
which in turn adjusts the phase shifter according to the desired
configuration. Problems might arise in many stages of this process,
ranging from data alteration in the memory to deviations in the
DAC’s output, or even a lack of bit precision to implement the
required phase shift, leading to incorrectly applied phase shifts.



Additionally, failures in these electronic components might result
in a loss of control over the photonic elements.

E. Faulty Behavior Models
Developing and utilizing fault models for both photonic and

electronic components within PNNs is essential for mitigating and
understanding the impacts of faulty behaviors.

In the literature, several studies model faults in PNNs as un-
certainties in the phase angles and splitting ratios of the photonic
circuit. These uncertainties, that are sampled from Gaussian dis-
tributions, have also been explored in terms of their spatial corre-
lation, sometimes representing maps of FPVs in integrated plat-
forms [55]–[58]. Faults during detection have also been modeled
as Gaussian distribution perturbations on the outputs [59]. Fault
models that start from the transfer matrix abstraction of devices
and scale up to system-level are also used to provide a more high-
level description for specific FPVs [60], or to model crosstalk noise
and losses [61], [62]. The use of low precision encoding in DACs
has also been explored in low-power applications [55], [58].

Usually, the methodology for assessing the impacts of faults in
PNNs is straight-forward. A PNN is trained on a benchmarking
dataset, and its inference accuracy is assessed using a test dataset
on a faulty version of the circuit (i.e., through fault injection). This
process then is repeated to gather statistical data with respect to the
NN accuracy. When focusing on the operation layers, rather than
the full network, we see the use of distance metrics, such as the
relative variation distance or the fidelity [6], [55], to quantify the
deviation from the intended operation.

PNNs have degraded accuracy as uncertainties in phase shifts
and splitting ratios increase. Accuracy tends to be more impacted
if these uncertainties are uncorrelated or if they act on components
that correspond to the initial layers of the network. Passive pho-
tonic circuits were shown to be more robust to faults than active
ones, pointing to how optimization strategies that push for the
use of less active devices [63] or reduced power consumption
[64] might lead to more robust systems. Similarly, the thermal
imbalance in these circuits can be mitigated during training [50],
leading to new device designs which can be conceived to avoid
configurations that might be hard to obtain due to FPVs [56].

V. CONCLUSION AND FUTURE DIRECTIONS

The very common use of Artificial Neural Networks in almost
all type of applications, including safety ones, mandates for more
robust and mature reliability assessment processes. However, the
size and complexity of modern ANN generates very challenging
aspects when proposing reliability assessment strategies for such
applications. In this paper, an overview of the state-of-the-art
proposals for the reliability of CNN, SNN and PNN has been
presented.

Regarding CNNs, some of the most relevant reliability assess-
ment were highlighted, with particular attention to fault detection
techniques, including new strategies for fault propagation analysis
that may help to reduce computational fault injection time, while
increasing accuracy.

The field of Spiking Neural Networks (SNNs) remains a vast
and largely unexplored area with numerous opportunities for
further research. Scaling up SNN architectures to handle larger
and more complex datasets without compromising performance

or efficiency is an urgent challenge that requires investigation.
Additionally, the effective utilization of distributed computing and
parallelization techniques for scaling SNNs is an open research
question. The development of learning and plasticity mechanisms
for training SNNs, particularly in scenarios with limited labeled
data or in continual learning settings, is another critical area of re-
search. Furthermore, energy efficiency, throughput, and real-time
processing constraints must be addressed in SNN implementations
on hardware platforms, such as neuromorphic chips or specialized
accelerators. As new developments in SNNs continue to emerge, it
is crucial to prioritize the resilience of SNNs as a primary feature
rather than an afterthought, as it is often the case today.

The resiliency of PNNs is tied to the resiliency of the elec-
tronic components that control and interact with photonic circuits.
However, this has not been thoroughly addressed by the literature,
since faults in the electronic circuitry are mostly modeled as
uncertainties in applied phase shifts or in the detection process.
Addressing these gaps might involve running fault injection cam-
paigns on the electronic devices, observing the impact on the PNN
at a system level. Moreover, we notice a focus on interferometric
mesh architectures, leaving room for the characterization of the
reliability of other implementations and architectures.

ACKNOWLEDGMENT

This study was carried out within the FAIR - Future Artificial
Intelligence Research and received funding from the European
Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2,
INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013).
This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can
be considered responsible for them. This work has also been
supported by the Agnece National de la Recherche - France within
the EMINENT Project ANR-19-CE24-0001

[1] S. Davidson and S. B. Furber, “Comparison of artificial and spiking
neural networks on digital hardware,” Frontiers in Neuroscience, vol. 15,
2021.

[2] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive
survey on model quantization for deep neural networks in image
classification,” ACM Trans. Intell. Syst. Technol., vol. 14, no. 6, nov
2023. [Online]. Available: https://doi.org/10.1145/3623402

[3] V. Rajagopal, C. K. Ramasamy, A. Vishnoi, R. N. Gadde, N. R.
Miniskar, and S. K. Pasupuleti, “Accurate and efficient fixed point
inference for deep neural networks,” in 2018 25th IEEE International
Conference on Image Processing (ICIP), 2018, pp. 1847–1851.

[4] B. D. L. N. Yamazaki K, Vo-Ho VK, “Spiking neural networks and their
applications: A review,” Brain Sci., vol. 12, no. 7, 2022.

[5] M. M. Waldrop, “The chips are down for moore’s law,” Nature News,
vol. 530, no. 7589, p. 144, 2016.

[6] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature photonics, vol. 11,
no. 7, pp. 441–446, 2017.

[7] F. Ashtiani, A. J. Geers, and F. Aflatouni, “An on-chip photonic deep
neural network for image classification,” Nature, vol. 606, no. 7914, pp.
501–506, 2022.

[8] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T.
Chu, B. E. Little, D. G. Hicks, R. Morandotti et al., “11 tops photonic
convolutional accelerator for optical neural networks,” Nature, vol. 589,
no. 7840, pp. 44–51, 2021.



[9] A. Ruospo, G. Gavarini, C. de Sio, J. Guerrero, L. Sterpone, M. S.
Reorda, E. Sanchez, R. Mariani, J. Aribido, and J. Athavale, “Assess-
ing convolutional neural networks reliability through statistical fault
injections,” in 2023 Design, Automation Test in Europe Conference
Exhibition (DATE), 2023, pp. 1–6.

[10] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee,
N. Mulholland, D. Brooks, and G.-Y. Wei, “Ares: a framework for
quantifying the resilience of deep neural networks,” in Proceedings of
the 55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3195970.3195997

[11] A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, and
A. Bosio, “Investigating data representation for efficient and
reliable convolutional neural networks,” Microprocessors and
Microsystems, vol. 86, p. 104318, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933121004786

[12] Y.-J. Jung, S.-H. Han, and H.-J. Choi, “Explaining cnn and rnn using
selective layer-wise relevance propagation,” IEEE Access, vol. 9, pp.
18 670–18 681, 2021.

[13] C. Bolchini, L. Cassano, A. Miele, and A. Nazzari, “Selective hard-
ening of cnns based on layer vulnerability estimation,” in 2022 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2022, pp. 1–6.

[14] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[15] A. Mahmoud, S. K. Sastry Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing selective protection for CNN resilience,” in 2021 IEEE
32nd International Symposium on Software Reliability Engineering
(ISSRE), 2021, pp. 127–138.

[16] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[17] A. Ruospo, G. Gavarini, I. Bragaglia, M. Traiola, A. Bosio, and
E. Sanchez, “Selective hardening of critical neurons in deep neural
networks,” in 2022 25th International Symposium on Design and Di-
agnostics of Electronic Circuits and Systems (DDECS), 2022, pp. 136–
141.

[18] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), 2018, pp. 979–984.

[19] L. Liu and J. Deng, “Dynamic deep neural networks: optimizing
accuracy-efficiency trade-offs by selective execution,” in Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, ser. AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[20] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[21] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[22] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez, “A suitability
analysis of software based testing strategies for the on-line testing of
artificial neural networks applications in embedded devices,” in 2021
IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2021, pp. 1–6.

[23] W. Li, Y. Wang, H. Li, and X. Li, “Rramedy: Protecting reram-based
neural network from permanent and soft faults during its lifetime,” in
2019 IEEE 37th International Conference on Computer Design (ICCD),
2019, pp. 91–99.

[24] A. Ruospo, G. Gavarini, A. Porsia, M. S. Reorda, E. Sanchez, R. Mari-
ani, J. Aribido, and J. Athavale, “Image test libraries for the on-line self-
test of functional units in gpus running cnns,” in 2023 IEEE European
Test Symposium (ETS), 2023, pp. 1–6.

[25] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. SAÏGHI, T. Serrano-Gotarredona, J. Wijekoon,
Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,”
Frontiers in Neuroscience, vol. 5, 2011. [Online]. Available:
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.
2011.00073

[26] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa,
D. Vuillaume, C. Gamrat, and B. DeSalvo, “Phase change memory as
synapse for ultra-dense neuromorphic systems: Application to complex
visual pattern extraction,” pp. 4.4.1–4.4.4, 2011.

[27] A. Basu, J. Acharya, T. Karnik, H. Liu, H. Li, J.-S. Seo, and C. Song,
“Low-power, adaptive neuromorphic systems: Recent progress and fu-
ture directions,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 8, no. 1, pp. 6–27, 2018.

[28] E. I. Vatajelu and L. Anghel, “Fully-connected single-layer stt-mtj-based
spiking neural network under process variability,” in 2017 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH),
2017, pp. 21–26.

[29] E.-I. Vatajelu, G. Di Natale, and L. Anghel, “Special session: Reliability
of hardware-implemented spiking neural networks (snn),” in 2019 IEEE
37th VLSI Test Symposium (VTS), 2019, pp. 1–8.

[30] G. K. C. N. T. Garrick Orchard, Ajinkya Jayawant, “Converting static
image datasets to spiking neuromorphic datasets using saccades,” Front.
Neurosci, Sec. Neuromorphic Engineering, vol. 9, 2015.

[31] M. Baharloo, M. Abdollahi, and A. Baniasadi, “System-level
reliability assessment of optical network on chip,” Microprocessors
and Microsystems, vol. 99, p. 104843, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933123000893

[32] H. Zhou, J. Dong, J. Cheng, W. Dong, C. Huang, Y. Shen, Q. Zhang,
M. Gu, C. Qian, H. Chen et al., “Photonic matrix multiplication lights
up photonic accelerator and beyond,” Light: Science & Applications,
vol. 11, no. 1, p. 30, 2022.

[33] W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon, D. Englund,
F. Morichetti, and A. Melloni, “Programmable photonic circuits,” Na-
ture, vol. 586, no. 7828, pp. 207–216, 2020.

[34] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund,
M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-
optic phase shifter in silicon,” Optics express, vol. 22, no. 9, pp. 10 487–
10 493, 2014.

[35] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice,
H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial
intelligence and neuromorphic computing,” Nature Photonics, vol. 15,
no. 2, pp. 102–114, 2021.

[36] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental
realization of any discrete unitary operator,” Physical review letters,
vol. 73, no. 1, p. 58, 1994.

[37] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, and
K. Bergman, “Silicon photonics codesign for deep learning,” Proceed-
ings of the IEEE, vol. 108, no. 8, pp. 1261–1282, 2020.

[38] L. De Marinis, M. Cococcioni, P. Castoldi, and N. Andriolli, “Photonic
neural networks: A survey,” IEEE Access, vol. 7, pp. 175 827–175 841,
2019.

[39] Y. Bai, X. Xu, M. Tan, Y. Sun, Y. Li, J. Wu, R. Morandotti,
A. Mitchell, K. Xu, and D. J. Moss, “Photonic multiplexing techniques
for neuromorphic computing,” Nanophotonics, vol. 12, no. 5, pp.
795–817, 2023. [Online]. Available: https://doi.org/10.1515/nanoph-
2022-0485

[40] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
I. A. Walsmley, “Optimal design for universal multiport interferometers,”
Optica, vol. 3, p. 1460, 12 2016.

[41] I. A. D. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, and
S. Fan, “Reprogrammable electro-optic nonlinear activation functions for
optical neural networks,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. 26, no. 1, pp. 1–12, 2020.

[42] A. Jha, C. Huang, and P. R. Prucnal, “Reconfigurable all-optical
nonlinear activation functions for neuromorphic photonics,” Opt. Lett.,
vol. 45, no. 17, pp. 4819–4822, Sep 2020. [Online]. Available:
https://opg.optica.org/ol/abstract.cfm?URI=ol-45-17-4819

[43] R. Cardoso, C. Zrounba, M. Abdalla, P. Jimenez, M. Gomes, B. Char-
bonnier, F. Pavanello, I. O’Connor, and S. Le Beux, “Photonic convolu-
tion engine based on phase-change materials and stochastic computing,”



in 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2023, pp. 1–6.

[44] A. Jha, C. Huang, H.-T. Peng, B. Shastri, and P. R. Prucnal, “Photonic
spiking neural networks and graphene-on-silicon spiking neurons,” Jour-
nal of Lightwave Technology, vol. 40, no. 9, pp. 2901–2914, 2022.

[45] M. Abdalla, C. Zrounba, R. Cardoso, P. Jimenez, G. Ren, A. Boes,
A. Mitchell, A. Bosio, I. O’Connor, and F. Pavanello, “Minimum
complexity integrated photonic architecture for delay-based reservoir
computing,” Opt. Express, vol. 31, no. 7, pp. 11 610–11 623, Mar 2023.
[Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-31-
7-11610

[46] X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson,
“Process variation in silicon photonic devices,” Appl. Opt.,
vol. 52, no. 31, pp. 7638–7647, Nov 2013. [Online]. Available:
https://opg.optica.org/ao/abstract.cfm?URI=ao-52-31-7638

[47] Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and
L. Chrostowski, “Performance prediction for silicon photonics integrated
circuits with layout-dependent correlated manufacturing variability,”
Optics express, vol. 25, no. 9, pp. 9712–9733, 2017.

[48] M. Nikdast, G. Nicolescu, J. Trajkovic, and O. Liboiron-Ladouceur,
“Chip-scale silicon photonic interconnects: A formal study on fabrica-
tion non-uniformity,” Journal of Lightwave Technology, vol. 34, no. 16,
pp. 3682–3695, 2016.

[49] F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and
F. Sciarrino, “Benchmarking integrated linear-optical architectures for
quantum information processing,” Scientific Reports, vol. 7, no. 1, p.
15133, 2017.

[50] Y. Zhu, G. L. Zhang, B. Li, X. Yin, C. Zhuo, H. Gu, T.-Y. Ho, and
U. Schlichtmann, “Countering variations and thermal effects for accurate
optical neural networks,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1–7.

[51] S. V. R. Chittamuru, I. G. Thakkar, and S. Pasricha, “Analyzing voltage
bias and temperature induced aging effects in photonic interconnects for
manycore computing.” 2017.

[52] P. Dumon, R. Kappeler, D. Barros, I. McKenzie, D. Doyle, and
R. Baets, “Measured radiation sensitivity of silica-on-silicon and silicon-
on-insulator micro-photonic devices for potential space application,” in
Photonics for Space Environments X, vol. 5897. SPIE, 2005, pp. 119–
128.

[53] Y. Xie, M. Nikdast, J. Xu, W. Zhang, Q. Li, X. Wu, Y. Ye, X. Wang, and
W. Liu, “Crosstalk noise and bit error rate analysis for optical network-
on-chip,” in Proceedings of the 47th Design Automation Conference,
2010, pp. 657–660.

[54] D. Gizopolous, G. Di Natale, S. Di Carlo, A. Bosio, and R. Canal,
Cross-layer Reliability of Computing Systems, ser. Materials, circuits
and devices series. Institution of Engineering and Technology, 2020.
[Online]. Available: https://books.google.fr/books?id=Ef45zgEACAAJ

[55] S. Banerjee, M. Nikdast, and K. Chakrabarty, “Characterizing coherent
integrated photonic neural networks under imperfections,” Journal of
Lightwave Technology, vol. 41, no. 5, pp. 1464–1479, 2022.

[56] R. Hamerly, S. Bandyopadhyay, and D. Englund, “Asymptotically fault-
tolerant programmable photonics,” Nature Communications, vol. 13,
no. 1, p. 6831, 2022.

[57] K. H. R. Mojaver, B. Zhao, E. Leung, S. M. R. Safaee, and O. Liboiron-
Ladouceur, “Addressing the programming challenges of practical in-
terferometric mesh based optical processors,” Optics Express, vol. 31,
no. 15, pp. 23 851–23 866, 2023.

[58] M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and
M. R. DeWeese, “Design of optical neural networks with component
imprecisions,” Optics express, vol. 27, no. 10, pp. 14 009–14 029, 2019.

[59] R. Cardoso, C. Zrounba, M. Abdalla, P. Jimenez, M. G. de Queiroz,
B. Charbonnier, F. Pavanello, I. O’Connor, and S. Le Beux, “Towards
a robust multiply-accumulate cell in photonics using phase-change
materials,” in 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2023, pp. 1–2.

[60] P. Agnihotri, P. Kalla, and S. Blair, “Transfer-matrix abstractions to an-
alyze the effect of manufacturing variations in silicon photonic circuits,”
in 2022 IEEE International Test Conference India (ITC India). IEEE,
2022, pp. 1–8.

[61] A. Shafiee, S. Banerjee, K. Chakrabarty, S. Pasricha, and M. Nikdast,
“Analysis of optical loss and crosstalk noise in mzi-based coherent
photonic neural networks,” Journal of Lightwave Technology, 2024.

[62] Y. Liu, J. Zhang, J. Feng, S. Chen, and J. Xu, “A reliability concern on
photonic neural networks,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 1059–1064.

[63] S. Yu and N. Park, “Heavy tails and pruning in programmable photonic
circuits for universal unitaries,” Nature Communications, vol. 14, no. 1,
p. 1853, 2023.

[64] M. G. de Queiroz, R. Cardoso, P. Jimenez, M. Abdalla, I. O’Connor,
A. Bosio, and F. Pavanello, “Power reduction in photonic meshes by
mzi optimization,” in Frontiers in Optics. Optica Publishing Group,
2023, pp. JW4A–7.


