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Henri PRADE FUZZY PROGRAMMING : WHY AND HOW ?

- SOME HINTS AND EXAMPLES - %)

I - INTRODUCTION

The procedures used by the human mind, as the data manipulated by these
procedures are not always precisely specified. This situation 1s not generally
due to an intrinsic imprecision of the matural language we used : English or
French, for instance, are certainly able to express things in a precise way
most of the times. It is not generally for the pleasure that people may be imprecise
or vague in stating facts or methods, although some of them take advantage of it
when they want to hide something ! It is not even due to some intrinsic inability
of the mind to put things into words. The deep reason of possible imprecision in
specifying seems to be elsewhere. Sometimes precise data are simply not available
because we have not the tools to perform precise measures or because it is impos-
sible to doit : the processing time of an operation which has not been performed
yet can be only evaluated on the basis of our apriori knowledge : this evaluation
is more or less precise according to the situations ; we have a possibility distri-
bution concerning the value of the processing time. When the information is stored
in our memory, we may be somewhat uncertain if we try to remember too precise facts.
Other times, precision is not meaningful, especially in the human affairs ; for
example, the required profile of a candidate to an employ ment are linguistically
specified, even if the elements of this profile can be more or less evaluated or
graded in a numerical way. Although we may assess arbitrary values to what is only
roughly specified, or we may refuse to consider what is imprecise, it seems more
natural and useful to accept imprecise data or procedures and try to deal with
them as such, because imprecision or fuzziness is often an unavoidable feature in
humanistic systems. Moreover, Zadeh (1973) has pointed out that human mind often
uses fuzzy labels in reasoning processes : "Thus, the ability to manipulate fuzzy
sets and the consequent summarizing capability constitute one of the most important
agsets of the human mind as well as a fundamental characteristic that distinguishes
human intelligence from the type of machine intelligence that is embodied in
present~day digital computers”. There is a balance between the imprecision of a

procedure and its adaptability to a variety of situations.

(¥, Presentea at the Invited Session 'Computer Applications of Fuzzy
Setc Theory' of the 4th 1EEE Int. Computer Software & Applications

Conierence. Chicago, October 27-31, 1980,
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Let us give two examples of fuzzy procedures to which it is referred in
the following. First, a fuzzy decision procedure concerning selection of students:
The considered examination criteria are for instance : Mathematics, English and
French. For each of them, the global evaluation is bulilt as a weighted mean of
the grades got by the student during the past year. These grades are supposed to
belong to the set of six levels A,B,C,D, E,F which may be linguistically inter-
preted respectively as 'very good' , 'good' , 'rather goed' , 'rather bad', 'bad’',
'very bad' (This kind of grading has been actually used in French schools). What
is required to be selected is for instance "to be at least good in mathematics
and to be at least rather good in French or English". The second example is a
fuzzy guidance procedure, such that : "Go about 300 meters towards North ; you
will see a narrow street ; you will take it and almost immediately you will see
a bank". Note that in this example the success of the procedure is guaranteed
(if backtracking is allowed) by the existence of a landmark (i.e.the bank) which

enables to control (in the sense of automatics) the position.

In the following, we first consider the various kinds of fuzzy instructions
(we are not concerned here with the understanding and the translation (into fuzzy
instructions) of imperatives expressed in natural language). A semantic pattern—
matching procedure taking into account the uncertainty in meaning is then briefly
sketched and its use is emphésized. Finally, preliminary discussions about fuzzy

data types are presented.

1l = FULZY INSTRUCTIONS

An instruction may be fuzzy because of the presence of fuzzy arguments
(i.e. arguments whose values are fuzzy entities), or of fuzzy functions (i.e.
functions whose values are fuzzy entities whatever their arguments) or of fuzzy
predicates (i.e. predicates yielding truth-values other than true or false). An
instruction may be also fuzzy because its arguments are fuzzily designated (even

if thé value of each possible argument is non-fuzzy),

Fuzzy arguments are, for instance, fuzzy sets on which are performed
adapted versions of set-theoretic operations (Umano et al. 1978). Another impor-
tant type of rfuzzy data is 'fuzzy number'. For example, in the selection proce-
dure stated above, we have to compute the weighted mean of grades which are fuzzy
sets of Tne real interval {C,20], i.2. Fuzzy numbers such the ones whose membership

functions are pictured below
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Owing to a parametered represenmtation of the membership functions, arith-
metic operations extended to fuzzy numbers are easy to perform (Dubois & Prade -
1980). Note that what we get is a parametered representation of a fuzzy set, not
its semantic label ; if we want a linguistic output, it is necessary to have a
linguistic approximation function for labelling fuzzy sets of a given universe of
discourse (Bonissone 1978, Eshragh & Mamdani 1979, Mandic & Mamdani 1980). The
arithmetic-operations performed on fuzzy numbers are not fuzzy functions because

when restricted to ordinary numbers, they yield the usual results.

A fuzzy function such as "INCREASE_SLIGHTLY" may be defined via usual
arithmetic operations and fuzzy numbers (e.g. x - x @ EPS where EPS is the label
of a fuzzy number whose possible values are small) or directly byéanalytical function
mapping ¥ € R on a fuzzy number (then, this function can be canonically éxtended

to include fuzzy numbers in its domain).

Conditional instructions, which control the sequencing, may have premises

(i.e. the "if part" of the instructions) which are fuzzy because of two reasons
= the predicate is fuzzy (e.g. LARGE , APPROXTMATELY EQUAL)

- the values of the arguments are fuzzy, because they result from the

execution of fuzzy instructions belonging to the kinds studied above.

For instance, in the selection procedure, we may add : "if the candidate
is YOUNG, then, INCREASE SLIGHTLY his global grade in mathematics'. But, YOUNG is
a fuzzy predicate modeled by a fuzzy set on the universe of ages, therefore the
consistency between the age of a considered candidate and YOUNG mav be intermediary
between O and 1 ; in other words, it is neither completely true that the candidate

is YOUNG nor completely false.

The height of the intersection of the fuzzy or non-fuzzy set modeling the

value of the argument with the fuzzy or non-fuzzy set modeling the predicate will
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be interpreted as the truth-value of the premise (consistency degree of the values
of the argument and of the predicate). This truth-value will be denoted by
h(ARr)PRE). AR and PRE respectively label the fuzzy set of possible values of the

argument and the fuzzy set of the elements satisfying the predicate.

A similar procedure can be used to determine the truth-value of the premise
when the predicate is n—ary (Dubois & Prade 1980, Adamo 1980). After the evaluation
of the truth-value of the premise two actions are possible : either execute the
'then part" of the instruction or go to the following instruction. A truth-value
equal to h (ARerRE) is associated to the first action. The quantity h (AR(\?EE)
is associated to the second one ; PRE has a membership function which is deduced

from this of PRE by complementation to 1.

Generally we have

h (ARMPRE) # 1 - h (AR, PRE)

The formula h (ARn PRE) = 1 - h (ARnPRE)

holds if the argument has a non—fuzzy value.

If we concurrently consider both go-valued actions, we can develop a graph
of possibilities which represents a non—deterministic program, whose halting
conditions are difficult to determine (Floyd 1967), Practically we are led to use
the rule of the preponderant term of the alternative (Zadeh 1973) : only the action
corresponding to the greater truth-value is executed.

However, in case where the different branches of the control structure
correspond to different modifications of the EEEE set of variables and have the
same sequencing after, it is possible to execute one intermediary instruction,
which uses the conditional statements as a table giving a sampling of fuzzy points
of a function, in order to "extrapolate" the result according to Zadeh's theory of
approximate reasoning (1978). For instance, it would lead to modulate the slight
increasing of the grade in mathematics according to the age of the candidate in

the above example,

In the preceding, the manipulated fuzzy entities were non-fuzzily desi-
gnated. When, entities are reachable by a fuzzy designation it may exist some
ambiguity regarding the addressed entity, if its designation is too fuzzy in the

rontext.

Examples : LIST-ALL BIG OBJECTS
ADD ( WEIGHT BIG BOX ) ( WEIGHT LITTLE BOX )
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In the [irst example, the system has to find out all the more or less big
objects recorded in its associative memory. In the second example, the system has
to find out the box whose qualification by BIG has a maximal meaningfulness,
(Goguen 1976), the box whose qualification by LITTLE has a maximal meaningfulness
and finally to add their weights., Tn both cases, a procedure of fuzzy pattern-

matching (see next section) is needed.

Note that the result, is non-fuzzy as soon as, when the designation is
ambiguous in the context, the fuzzy pattern-matching procedure indicates it and
stops the evaluation. Another kind of execution will lead to list all the objects
with non-zero membership grade in the fuzzy set BIG, with the corresponding grades,
for the first cxample (Le Faivre 1974). A similar execution of the second instruc—

tion would yield the possibility distribution of the weights we can obtain !

Especially in robotics, in order to execute fuzzy instructions we have
to interpret them in a non-fuzzy way. This "defuzzification" is now imposed by
the confrontation with the real world. The execution may remain fuzzy if the real

conditions of the execution are ignored.

Examples :
(a) do some steps on the left

(B) increase by x the pressure (x is an identifier of thz already
computed fuzzy quantity)

(y) go—and-fetch the greenish big cub.

In examples (o) and (y) where the occurences must have discrete values (the
numbers of cubs ox steps are integers) a fuzzy instruction is defuzzified by using
the already cited maximum meaningfulness principle : from the possibility distri-
bution resulting from the evaluation of the fuzzy elements in the instruction, we
keep ‘among the really existing occurences those which correspond to a maximal
possibility. In the example (8) we directly take a pressure value which corresﬁonds
Yo the maximitd ¢ the possibility distribution associated with the fuzzy quantity x,
cccause the pressure can be continuously assigned. The second example of the intro-
duction shetches a robotics-like sequerce of fuzzy instructions. Note that in the
Swectinon o v Tastruction such fhpat Yoo sout 300 meters', a demoun {in the sense
Sroilield erelligence) should be zctiveted in order to indicate when begins
ang oote T waere Jtole net. v oiess sossible to find the narrow street the

(This n:en s detined by the support of the fuzzy set "about

sl L stanvoes wilh nop-zeoro membevship prades).
28



81

In robotics, after Zadeh's (1973) and Goguen's (1975) hints, Smith (1975)
designed, in the framework of JASON project, a plan genmerator fitted to an uncertain
environment and ill-stated problems. In the same spirit (Tanaka & Mizumoto 1975,
Uragami et al. 1976) have dealt with the control of robots by means of fuzzy ins-
tructions., Shaket's system (1976) allows fuzzy designations of objects in a Wino—
gradian world of blocks. Fuzzy hints are used by Gershman (1976) in order to guide

a robot 1n a maze.

In some situations, results have to be defuzzified in order to be used.
But in other situations fuzzy results can not only be accepted but even wanted.
Indeed, these fuzzy results are a powerful method to represent and communicate

information in a human-like way,

Examples of fuzzy results got after linguistic approximation :
. X is very large

the ‘temperature is rather small.

If the results are expressed in a procedural way, they can be viewed as
fuzzy instructions. Such fuzzy instructions may constitute valuable plans for a
robot. Using fuzzy designations is a way to sum up the useful information; the

recording of fuzzy plans may be a powerful way of planning.

111 - FUZZY PATTERN MATCHING

In the following a brief account of a pattern matching system developped

by Cayrol, Farreny & Prade (1980) is given. An example illustrates it.

The current pattegrmatching procedures are based on a rigid conception of
the gimilitude between the pattern and the datum under consideration. Comparing
patterns and data, ordinary methods decide if the datum is acceptable by the
pattern. Patterns and data are represented as nested lists of atoms. The similarity
between an atom of the datum and an atom of the pattern is considered as a two-valued
logical variable, even if this similarity is calculated through more complex func-
tions than the identity. The global similarity between the pattern and a datum is

computed as a logical combination of atomic similarities.
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In knowledge-based systems it is very convenient to use words of a natural

language as atoms.

This system is an attempt. to make more flexible the associative access by

taking into account the imprecisions due to the fuzziness of the words of natural

language.

A word of a natural language may often designate a collection of objects,
rather than a unique object ; moreover this collection has generally no crisp
boundary : it is more or less possible that an object of the collection is the
object actually described. This fuzzy set can be viewed as the meaning of the

word (Zadeh).

The membership function of the set is viewed as a possibility distribution.

In this approach a pattern is a tree-like structure whose leaves are
. b by e . . . . . .
"atomic pattern. A possibility distribution is associated with each of them. In
the same way the data arerepresented as tree like structures whose leaves are

"atomic data', also associated with possibility distributions.

Two measures of the similarity between the atomic pattern and an homelogous
atomic datum (homologous in the sense of the morphism between the structures) are

evaluated :

— The possibility (Zadeh) that what is designated in the datum is (at least appro-
ximate&kqual to what is required by the pattern. If!&P and 5 denote, respecti-
vely, the possibility distributions attached to an atomic pattern and an atomic
datum, the possibility measure is taken to be equal to :

T(PoR[D) = sup min (u,(u),up(v),up(u,v))
uel,velJ

where U is the universe of discourse, and yp_ is the membership function of a

R
relation of (possibly approximate) equality. Ur models a tolerance. In the

following example uR(u,v) = max (O,]nlu-vl/l) with A=0,



- The necessity N(P,R D) of the same event. This concept of necessity 1s a dual
concept of the one of possibility in the sense that! N(PORID) =1 - H(PORID) R
the necessity of an event is equal to "the impossibility of the opposite event"

which yields : N(PoR]D)==inf max (sup min (uP(u), uR(u,v)) , 1 -uD(v))
vell uell

These atomic measures of possibility and necessity are aggregated in order
to yield global measures between the whole pattern and the whole datum. This
aggregation (making use of "min" operator) preserves the respective semantics of

possibility and necessity of the measures.

Both similarity measures are computed between the pattern and each datum
present in the data basis., The data which have the best similarity measures with

respect to the pattern are yielded by the system. Several situations may happen :

- No datum sufficiently matches the pattern : the similarity measures are below

gsome thresholds,

= One or several data match the pattern in the same way ; there may be several data
which have (at least approximately) the same possibility measure and the same
necessity with respect to the pattern ; then the data are said to be interchan—

geable,

= Several non-interchangeable data are yielded : two data may be sufficiently
similar to the pattern, but one of them has the best possibility measure while
the other has the best necessity measure. In this case, interchangeable data are

gathered in a same cluster ; clusters are incomparable from a choice point of view.

The system described above is implemented in LISP and is currently experi-
mented. This system may be particularly useful in the framework of the communication
in natural language with robots, where approximate descriptions of real world

situations and approximatively specified rule are needed.
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The following example deals with (more or less approximate) description
of people. The data available in the considered data base are :

trls (JOHN THIRTY:AGE TALL:HEIGHT AROUND-SIXTY :WEIGHT)
Ly (PRETER ABOUT=FLFTY : AGE MEDIUs; HELGUT OVER=SEVENTY : wEIGHT)
3 (PAUL ABOUT-FORTY:AGE RATHER-TALL:HEIGHT ABOUT=-FLETY s WELGHT)
it (TOM RATHER-YQUNG:AGE SMALL: UEIGHT FIFTY :WEIGHT)
250 (RICHARD ABOUT-FORTY-FIVE:AGE TALL-HELCHT ABOQUT=SEVENTY-F LVE : WEIGHT)
Bt (HENRY AROUND-FORTY :AGE VERY-SMALL:HEIGHT AROUND=SIXTY ;WETGHT) .
D70 (ROBERT ABOUT=-FORTY-FIVE:AGE MEDIUM:HELGIT ABQUT-SEVENTY~FIVLE: WETGHT)
d8: (PATRICK AROUND=FORTY : AGE MORE-OR-LESS-MEDLUM: HELGHT ABUT=-5EVENTY=-FIVE WE LGHT)
DY (DAVID ARQUND-FORTY: AGE MEDIUM: HETCHT S1IXTY-NINE-AND-HALF : W IGHT)

The pattern 1s P @ (50X AROUND=FORTY: AGY, MEDIUM: HEIGHT OVER-SEVENTY: WEIGHT)

Phe rupresunLution(by é—tuplei)used 1n the exauples are given in appendix

with a tolerance equal to 0 (A =0) for each universe the pattern-matching
procedure yields as acceptable (because their similarity measures are above the
tresholds) the data b7, D8, DY. The data D7 and D8 are interchangeable : the
dillerence between the homologous similarity measures is below 0.05. More

precisely we have

M(P|D7) = | N(P|D8) = 1 M(P|D9) = 0.75
N(P|D7) = 0.42 N(P|DE) = 0.41 N(P|D9) = 0.5

We observe that D7 and D9 (or D8 and D9) are not interchangeable.

The effect of an increasing of the tolerance parameters of the
universe of heights is detailed in appendix . 1n this example, it does not

lead to select more data. For gsure it is not always the case.

Note that the results are coherent with our intuition. The system

yields the data that iay correspond to the pattern.

The selection procedure sketched in the introduction, once computed the
global profile of each candidate, obviously corresponds to a fuzzy pattern—-matching

problem.
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A little more fuzzy, is the concept of fuzzy rejection, It corresponds to
the ordinary functions equipped with a fuzzy domain A (see Dubois & Prade 1980) .
It means that all the elements of X are not equally suitable as inputs of the
function under consideration. Thus each x is rejected with a degree equal to
1-uA(x) (if uA(x)==O the output of the function is the classical REJECT). We

have, thus an example of fuzzy control !

Already intrinsically fuzzy are the data types where some primitive opera-
tions or functions are fuzzy. The members are or are not fuzzy. The axioms are
classical ones : it is not because an operation is fuzzy that it interacts in a

fuzzy manner with itself or others.

Lastly, the axioms of a data type may be themselves fuzzy, even if the
operations or/and the members are not fuzzy. What is a fuzzy axiom . It is a
fuzzy description of the way operations are allowed to interact with one another.
The description in fuzzy because the allowed interaction is supposed ill-known.
For instance, we may say that the operation * ig approximateycommutative if A»B
is approximately equal to B*A for all A and B where "approximately equal' i
modelled by a fuzzY relation. * is approximately commutative in an another sense
if A*B = B*A\/ggfl;_ of the A an B. Fuzzy axioms are linguistic statements on the
allowed interactions of the operationms. Linguistic statements can be represented

using possibility distributions.

Thus there are several kinds of fuzzy data types because, members, opera-

tions and even axioms may be fuzzy independently of each other.
Obviously, it is there just some hints. The theory remains to be done.

V — CONCLUDING REMARKS

Fuzzy programming does not seem to be either a dream or a dubious
speculation. Fuzzy procedures may be useful in many problems of Artificial
Intelligence. A language such asLISP seems to be a good support to implement

fuzzy procedures after defining some general facilities as fuzzy pattern matching

or manipulation of fuzzy numbers,
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