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Abstract—The paper deals with the detection performance of
a moving target in multispectral IR image sequences with low-
SNR. In this context, track-before-detect (TBD) is the generally
used method, which consists in accumulating raw images over
time to track before detect. For each target hypothesis (position,
velocity, amplitude), the signal is integrated over time. In this way,
the potential target with the best spatio-temporal correlation will
be a candidate for a detection test. In this paper, we develop a
minimum detection bound regardless of the TBD method used.
Specifically, this bound gives the minimum average number of
multispectral images required to detect the target.

Index Terms—target detection, stopping time, sequential test,
track-before-detect, multispectral Infrared images, particle filter

I. INTRODUCTION

Detecting and tracking small targets in infrared images is
an important topic, in medical and security fields for example,
but also a challenging task in computer vision, especially
when it comes to differentiating these targets from noisy or
textured backgrounds. In recent years, multispectral sensors
have been developed, combining visible and thermal wave-
lengths domains [1]–[3]. They can help improve the tracking
accuracy and the detection for low contrast targets in single-
band visible or infrared images, and solve some camouflage
and decoy problems. In order to assess the contribution of the
different spectral bands to the tracking and the detection, it is
key to obtain performance bounds for different multispectral
configurations.
We are specifically interested in estimating the minimum num-
ber of multispectral images required (called instant detection),
in average, to detect the target regardless of the detection
method. This bound will enable detection performance to
be evaluated in terms of the target’s IR signature on each
multispectral band and in terms of SNR.
In Section II, we present a simplified model of the problem
of target detection using multispectral images. In Section III,
we propose an estimate of the stopping time of the sequential
probability ratio test in the context of nonlinear filtering. From
this estimate, we develop in section IV a lower bound of the
number of images required for detection, regardless of the
detection method used. Section V is devoted to simulations
in which the lower bound is compared with the results of
a particle filter for track-before-detect [20]. The TBD is an

energy integration technique aimed at improving detectability
of weak targets [4]–[9].

II. PROBLEM MODELING

We assume that the target, if present, follows a rectilinear
motion in the multispectral infrared images. For each band i,
the target amplitude Ai is assumed to be constant. At time k,
the state vector Xk of dimension d = 4 +m is composed of
the positions, the amplitudes and of the velocities,

Xk = [xk, yk︸ ︷︷ ︸
x1,k

, {Ai}mi=1 , ẋk, ẏk︸ ︷︷ ︸
x2,k

]T (1)

where m is the number of bands. The target is assumed to have
a rectilinear motion in the image planes without dynamical
noise,

Xk = F Xk−1, (2)

where F is the transition matrix,

F =



1 0 · · · 0 ∆T 0
0 1 0 · · · 0 ∆T
0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1


(3)

∆T is the sampling period. At each sampling time k, we
have an image composed of m spectral bands, each of them
has M resolution cells. The initial incertitude of the position
components of X0 is the whole image. The intensity Y ik (τ) of
the target in the band i into the cell τ is modeled as follows,

Y ik (τ) = Ai φ
i
psf (τ, x1,k) + εik(τ) (4)

The point-spread function φipsf (PSF) describes the contribu-
tion of the intensity of the target localized in x1,k to the cell
τ . εik(τ) is a centered Gaussian random variable. Generally
the PSF is shift invariant, it depends only on the difference
τ −x1,k, namely: φipsf (τ, x1,k) = φipsf (τ −x1,k). We assume
that the noises εik(τ) are independent from cell to cell and
from band to band. The PSF is normalized such as the total



target’s energy becomes one:
∫
R2(φipsf )2(τ, x) dτ = 1. For

convenience, we vectorize the equation (4) as follows,{
Yi
k =

[
Y ik (τ1), . . . , Y ik (τM )

]T
Φi
k(x1,k) =

[
φipsf (τ1, x1,k), . . . , φipsf (τM , x1,k)

]T (5)

where τ j = [τx, τy]j for j = 1, . . . ,M are the cartesian
coordinates of the cell τ j in the image plane. The measure-
ments vector Yi

k of dimension M × 1 and the multispectral
measurements Yk can be expressed in a compact form as
follows, {

Yi
k = Ai Φ

i(x1,k) + εik
def
= hi(Xk) + εik

Yk
def
= {Yi

k}mi=1

(6)

The noise εik is normally distributed with zero mean and with
the diagonal spatial covariance matrix: Ri = diag(σ2

i ). Ri
is of dimension M ×M . The likelihood gk is expressed as
follows,

gk(Xk)
def
= P(Yk|Xk) ∝

m∏
i=1

exp

(
−1

2
[Yi

k −Ai Φi(x1,k)]TR−1i [Yi
k −Ai Φi(x1,k)]

)
(7)

The computation of the likelihood is performed in a vicinity
of x1,k where Φi(·) does not vanish as suggested in [10]. For
each band i, the signature of the target is characterized by the
PSF φipsf (4). The SNR, expressed in decibels, for each band
i is defined as follows,

SNR(i) = 10 log10

[
A2
i

σ2
i

]
(8)

In the following, we seek to determine the minimum number of
multispectral IR images required to detect a target, regardless
of the detection method used. For this purpose, we rely on the
stopping time of the sequential detection test.

III. STOPPING TIME OF THE SPRT

The sequential probability ratio test (SPRT) minimizes the
average number of measurements [11], [12]. Specifically,
given a detection probability Pd and a false alarm probability
Pfa, no other test can achieve the same Pd and Pfa with a
smaller expected number of samples. In our case, the samples
are the multispectral images. We recall the formalism of the
SPRT applied to nonlinear filtering [13].

A. SPRT for nonlinear filtering

Consider the following detection framework where H0 is
the null hypothesis ”no target” and where H1 is the hypothesis
”target present”,{

H0 : Yk = εk (noise only)
H1 : Yk = A Φ(x1,k) + εk = h(Xk) + εk

(9)

where Yk denotes the observations Yi
k of all the m bands at

time k. The SPRT is based on the likelihood ratio considered
sequentially. The likelihood ratio (LR) is defined as,

Λk =
P(Y1:k|H1)

P(Y1:k|H0)

def
=

P1(Y1:k)

P0(Y1:k)
=

∏k
n=1 P1(Yn|Y1:n−1)∏k
n=1 P0(Yn|Y1:n−1)

where Y1:k is the measurement vector up to time k. We
express the LR in terms of random walk [14]:

Zk = log(Λk) =

k∑
n=1

log

[
P1(Yn|Y1:n−1)

P0(Yn|Y1:n−1)

]
def
=

k∑
n=1

zn (10)

In average, the random walk Zk increases under H1 and
decreases under H0 (E1(zn) ≥ 0) [14]. The test accepts H1

as soon as the trajectory (Zk, k ≥ 1) exceeds a threshold and
accepts H0 as soon as Zk falls below a threshold,{

as soon as Zk ≤ log(Γ0)⇒ noise only
as soon as Zk ≥ log(Γ1)⇒ target present

(11)

The threshold Γi depends on the false alarm probability Pfa
and on the detection probability Pd we set. When Pd is close
to one and Pfa close to 0, the following bounds are appropriate
[14],

Γ0 =
1− Pd
1− Pfa

, Γ1 =
Pd
Pfa

(12)

Indeed, one can prove that the risks (probabilities of wrong
decisions) of the test (11) are controlled. Precisely, using
these bounds (12), we have: P [decideH1|H0] ≤ Pfa and
P [decideH0|H1] ≤ 1− Pd.
Let K be the first time such that Zk exceeds the threshold,

K
def
=

{
inf k : Zk =

k∑
n=1

zn ≥ log(Γ1)

}
(13)

K is a (random) stopping time since it depends on the
measurements Y1:k. When the variables zn are i.i.d, thanks
to the Wald identity, the expected stopping time, for each
hypothesis, can be approximated as follows,

E0(K) ≈ log(Γ0)

E0(z1)
, E1(K) ≈ log(Γ1)

E1(z1)
(14)

We are interested in estimating E1(K) that is, the minimum
number of multispectral images required, in average, to detect
the target regardless of the estimation method used. In our
case, the random variables zn are independent but do not have
the same expectation (10). Therefore, (14) cannot be applied.
In this case of non-stationary observations, a lower bound of
E1(K) has been proposed [15]. But the latter is intractable.

B. Approximation of E1(K)

We propose the following approximation of E1(K). In the
following, we will call E1(K) the detection instant.

Proposition 1. If ϕ(k)
def
=
∑k
i=1 E1(zi) is nearly linear, the

the detection instant can be approximated as follows,

E1(K) ≈ K∗ def
=

{
inf k :

k∑
n=1

E1[zn] ≥ log(Γ1)

}
(15)



where K∗ is deterministic.

Proof. As the random variables [1K≤n−1] and zn are inde-
pendent, we have,

E1

[
K∑
n=1

zn

]
=

∞∑
n=1

E1 [1K≥n zn] =

∞∑
n=1

E1[zn]P1(K ≥ n)

Now, by summation by parts, we obtain,

N∑
n=1

E1[zn]P1(K ≥ n] = P1(K ≥ N)E1(ZN )

+

N−1∑
n=1

ϕ(n) [P1(K ≥ n)− P1(K ≥ n+ 1)]

= P1(K ≥ N)E1(ZN ) +

N−1∑
n=1

ϕ(n)P1(K = n)

Assuming limN→+∞ P1(K ≥ N)E1(ZN ) = 0, we obtain,

E1

[
K∑
n=1

zn

]
=

∞∑
n=1

[
n∑
k=1

E1(zk)

]
P1(K = n)

= E1

[
K∑
n=1

E1(zn)

]
≈

E1(K)∑
n=1

E1(zn) (16)

The last approximation is valid because ϕ is assumed to be
nearly linear.
When Zk (10) exceeds log(Γ1) for the first time, Zk is close to
log(Γ1), as the increments zn are relatively small. Therefore,
by definition of K (13) and K∗ (15), we have,

E1

[
K∑
n=1

zn

]
≈ log(Γ1)

K∗∑
n=1

E1(zn) ≈ log(Γ1)

(17)

Now, using (16), we obtain the desired result,

E1(K)∑
n=1

E1(zn) ≈
K∗∑
n=1

E1(zn) (18)

In the case where the variables zn have the same mean, we
retrieve the Wald identity (14) from (16) and (17).
Note that it is not necessary for the function ϕ to be ap-
proximately linear on the whole positive half-line to obtain
E1[ϕ(K)] ≈ ϕ[E1(K)]. In fact, it is sufficient for this function
to be approximately linear on an interval containing K with
a probability close to 1. This is the case for example if V(K)
is small which occurs when the SNR (8) is low (E1(zK+1)
close to E1(zK)). It remains to estimate E1[zn].

IV. LOWER BOUND OF THE DETECTION INSTANT

A. Cramér-Rao bound

We recall briefly the Cramér-Rao lower bound (CRB). The
CRB captures the information of the target signature for each
IR band. As will be seen below, the CRB is involved in the
estimation of the detection instant.
The CRB [16] is a useful tool in signal processing that ap-
plies in particular for evaluating the performances of tracking
algorithms. This bound has been generalized to random dy-
namic process: the posterior Cramér-Rao lower bound (PCRB)
[17]. This bound does not depend on the realizations on
the observation process but depends only on the dynamic
process model and on the observation process model. It can
be calculated offline and reflects the performances of an ideal
filter: the estimation errors of the unknown state obtained by
any unbiased estimator are lower bounded by the PCRB,

∀n ≥ 0 Pn ≥ J−1n = PCRB(n) (19)

where Pn is the covariance matrix of any filter. Asymptotically
as (n → ∞) an efficient filter generally reaches this bound.
Hereafter, we derive the CRB for the observation model (4).
Since noises are independent from band to band, the global
information matrix Jn at time n is the sum of the individual
information matrices J in for the band i. In the case in which
the dynamic is linear and noise free (2), the PCRB reduces to
the classical CRB. The CRB at time n is the inverse of Jn.
The latter is expressed recursively as follows,

Jn =

m∑
i=1

∂hTi (Xn)

∂Xn
R−1i

∂hi(Xn)

∂Xn
+ (FT )−1Jn−1 F

−1

(20)

where F is the transition matrix (3) and where the measure-
ment functions hi are defined in (6). The recursion starts with
J0 = P−10 , the inverse of the initial covariance matrix of the
initial state X0. Jn is of dimension (4+m, 4+m) where m is
the number of bands. The matrices J in are function of the PSF
φipsf in each band i and function of the SNR different from
band to band. For example, we can consider an elliptically
distributed target signature in the band i, characterized by the
covariance matrix Σi. This yields,

Y i
k (τ) =

Ai
√
π det(Σi)

1
4

exp

(
−1

2
[τ − x1,k]T Σ−1

i [τ − x1,k]

)
+ εik(τ)

= Ai φ
i
psf (τ, x1,k) + εik(τ) = hi(Xk, τ) + εik(τ) (21)

The target energy is normalized such that∫
R2(φipsf )2(τ, x) dτ = 1. To assess the information matrix

(20) we calculate the derivatives of the observation function



hi. For each cell τ and for each band i, we have,

∂hi
∂x1,k

(Xk, τ) =−Ai Σ−1i (x1,k − τ)φipsf (τ, x1,k)

∂hi
∂Ai

(Xk, τ) = φipsf (τ, x1,k)

∂hi
∂ẋk

(Xk, τ) = 0

∂hi
∂ẏk

(Xk, τ) = 0

(22)

B. Lower bound of the detection instant

We aim to estimate a tight lower bound of K∗ (15) which
approximates E1(K) (15), the minimal number, in average, of
images to detect a target. To do this (15), we first approximate
the following jump of the random walk (10),

zn = log

[
P1(Yn|Y1:n−1)

P0(Yn|Y1:n−1)

]
(23)

The next proposition provides an approximation of zn as
function of the SNR and of the information matrix Jn.

Proposition 2. Assuming that the predicted density
P1(Xn|Y1:n−1) is Gaussian, the jump of the random
walk zn can be approximated as follows,

zn ≈−
1

2
log det(Ĵn) +

1

2
log det(Ĵn|n−1)

− 1

2

m∑
i=1

[
Yi
n − hi(x̂n)

]T
R−1i

[
Yi
n − hi(x̂n)

]
− 1

2

[
x̂n − x̂n|n−1

]T
Ĵn|n−1

[
x̂n − x̂n|n−1

]
+

1

2

m∑
i=1

(Yi
n)TR−1i Yi

n (24)

where Ĵn = Jn(x̂n) and Ĵn|n−1 = (FT )−1Ĵn−1(x̂n)F−1

are the information matrices (20) evaluated at the maximum
a posteriori (MAP) x̂n and where x̂n|n−1 = F x̂n−1 is the
predicted MAP.

Proof. For the sake of clarity the approximation is proved for
the one band case (m = 1). The predicted pdf of Yn given
the past observations Y1:n−1 can be expressed as follows,

P1(Yn|Y1:n−1) =

∫
Rd

P1(Yn|Xn)︸ ︷︷ ︸
Likelihood

P1(Xn|Y1:n−1)︸ ︷︷ ︸
Predicted density

dXn

(25)
We approximate this integral by applying the Laplace method
which states that,∫

Rd

e−ψn(x)dx ≈ (2π)d/2e−ψn(x̂n) det [ψ′′n(x̂n)]−1/2 (26)

with

ψn(x)
def
= − logP1(Yn|Xn = x)− logP1(Xn = x|Y1:n−1)

(27)

x̂n is the global minimum of ψn namely the MAP,

x̂n = arg max
x∈Rd

P1(Yn|Xn = x)P1(Xn = x|Y1:n−1) (28)

The approximation (26) is generally very accurate particularly
where the integrand has an exponential decay. We assume that
the predicted density P1(Xn = x̂n|Y1:n−1) is a Gaussian
pdf with mean x̂n|n−1 and with covariance matrix Ĵ−1n|n−1.
The likelihood P1(Yn|Xn = x̂n) is a Gaussian pdf with
mean h(x̂n) and with covariance matrix R (6). Note that
ψ′′(x̂n) = Jn(x̂n) is the observed (or posterior) information
matrix. Thanks to (26), we obtain after some calculations,

logP1(Yn|Y1:n−1) = −1

2
log det(Ĵn)− 1

2
log det(R)

− 1

2
log det(Ĵn|n−1)− 1

2
[Yn − h(x̂n)]

T
R−1 [Yn − hi(x̂n)]

− 1

2

[
x̂n − x̂n|n−1

]T
Ĵn|n−1

[
x̂n − x̂n|n−1

]
− M

2
log(2π)

(29)

where M is the dimension of Yn (5). We derive now
P0(Yn|Y1:n−1) (under H0), the pdf of the Gaussian noise
distribution (6),

logP0(Yn|Y1:n−1) = logP0(Yn)

= −M
2

log(2π)− 1

2
log det(R)− 1

2
YT
nR
−1Yn (30)

Putting together the equations (29) and (30), we obtain the
desired result.

The proof can be extended simply in the case of m bands.
Indeed, since the bands (Yi

n , i = 1, . . . ,m) are indepen-
dent given Xn, the cumulative likelihood is expressed as:
P1(Yn|Xn) =

∏m
i=1 P1(Yi

n|Xn). We apply then the Laplace
method by taking ψn (27) in which P1(Yn|Xn) is now the
cumulative likelihood and in which P1(Xn = x|Y1:n−1) is
the predicted pdf given the past of all multispectral images.
We now need to estimate E1(zn) (15) to assess the detection
instant (15). To be more precise, the next proposition provides
an upper bound of E1(zn).

Proposition 3 (Upper bound of the jump of the random walk).
Under the hypothesis H1 (target present), the average jump
of zn (10) verifies,

E1(zn) ≤ 1

2

m∑
i=1

A2
i

σ2
i

+
1

2
log

[
det (Jn−1 )

det (Jn)

]
def
= βn (31)

Jn and Jn−1 are evaluated at the true state respectively at
Xn and Xn−1.

Proof. We calculate E1(zn) term by term using (24). The
expectations under H1 of the observed information matri-
ces (24) are approximated by substituting the MAP with
the true values of the state. That is, E1[log det(Ĵn)] ≈
log det[Jn(Xn)] and the same applies for E1[log det(Ĵn−1)].
Note that det(Ĵn|n−1) = det(Ĵn−1) since det(F ) = 1 (3). We
also have E1[

(
Yi
n − hi(x̂n)

)T
R−1i

(
Yi
n − hi(x̂n))

]
≈ M ,



the degree of freedom of the χ2 distribution (M is the
dimension of Yi

n and Ri the covariance matrix of Yi
n). Under

H1 (target present), we have (6),

E1

[
(Yi

n)TR−1i Yi
n

]
= E1

[
(Yi

n −AiΦi)TR−1i (Yi
n −AiΦi)

]
+ 2Ai E1(Yi

n)R−1i Φi −A2
i (Φ

i
)TR−1i Φi

Recall that Ri = diag(σ2
i ) and (Φi)TΦi = 1 (see section II),

we obtain: E1

[
(Yi

n)TR−1i Yi
n

]
= M +

A2
i

σ2
i

. Denoting ξn =

− 1
2

[
x̂n − x̂n|n−1

]T
Ĵn|n−1

[
x̂n − x̂n|n−1

]
, we finally derive

an approximation of E1(zn),

E1(zn) ≈ 1

2

m∑
i=1

A2
i

σ2
i

+
1

2
log

[
det (Jn−1 )

det (Jn)

]
− 1

2
E1(ξn)

(32)

The expectation of the positive random variable ξn is difficult
to estimate.

The mean of the random jump E1(zn) is thus upper
bounded resulting in a lower bound of E1(K) (15) subject
to the following proposition. Indeed, with a larger positive
increment βn (31), fewer increments are required for the
deterministic walk to exceed log(Γ1) (15).

Proposition 4 (Lower bound of the detection instant). The
minimum detection instant, in average, obtained by any de-
tection test based on the dynamics model (2) and on the
measurement model (6) is lower bounded as follows,

E1(K) ≥ K̃∗ def
= {inf k :

k

2

m∑
i=1

A2
i

σ2
i

+
1

2

k∑
n=1

log

[
det (Jn−1)

det (Jn)

]
≥ log(Γ1)}

(33)

where Γ1 = Pd

Pfa
and where Jn and Jn−1 are evaluated at the

true state respectively at Xn and Xn−1.
∑m
i=1A

2
i /σ

2
i stands

for the multispectral SNR.

Therefore, K̃∗ provides a lower bound of the minimum
number of multispectral images, in average, required to detect
the target. K̃∗ depends on all the parameters setting the
model. It depends on the signature of the target (PSF) in each
band through the information matrix Jn (20) and on the SNR
of each band (8). Jn is based on the recursion (20) where
P0 is the initial covariance matrix of the state. Note that the
computing cost of K̃∗ is negligible. Moreover, the matrices
Jn can be computed offline as they depend entirely on the
observation and dynamic process models. This bound allows
the detection performance to be evaluated as function of the
target’s IR signature on each multispectral band and of SNR.

V. EXPERIMENTAL

In this section, we evaluate the relevance of the lower bound
K̃∗ (33) by comparing it with the empirical instant detections

provided by a track-before-detect (TBD) method. The TBD is
an energy integration technique aimed at improving detectabil-
ity of weak targets. A number of techniques for TBD design
and implementation have been proposed, including particle
filtering [4]–[7] that we will use. Useful surveys can be found
in [18], [19].
The particle filter aims to estimate the posterior pdf at time k,

pk(xk)
def
= p(Xk = xk|Y1:k) ∝ gk(xk) qk(xk) (34)

where qk(xk) = p(Xk = xk|Y1:k−1) is the prior (or
predicted) pdf and where gk is the likelihood (7). The posterior
is approximated by a weighted sum of N Dirac functions,

pk(xk) ≈
N∑
i=1

wik δ(xk = Xi
k) (35)

where the particles {Xi
k}Ni=1 are approximatively samples of

the posterior,

Xi
k = [xik, y

i
k,
{
Aij
}m
j=1

, ẋik, ẏ
i
k]T (36)

We apply here the Laplace particle filter (LPF) described in
[20]. We recall briefly this TBD algorithm based on the LPF.

A. Laplace particle filter

The principle behind this filter is based on a new resam-
pling stage taking (see algorithm 1) into account the current
measurement Yk. At this stage, new particles X̃i

k are sampled
around local maxima a posteriori (MAP) ξ̂jk solutions of (28).
Precisely, the particles X̃i

k are generated according to the
following importance function (IF),

q̃k(x) =

nc∑
j=1

ρjk φ
(
x, ξ̂jk, Pk|k−1

)
(37)

with
∑nc

j=1 ρ
j
k = 1. φ is a Gaussian pdf with mean ξ̂jk

and predicted covariance matrix Pk|k−1 defined in (38). The
maximum number of local MAP, nc, is a parameter we set.
The weights ρjk and the way to obtain a fast estimation of the
local MAP are described in [20].
The predicted pdf qk is assumed to be Gaussian with mean
X̂k|k−1 and covariance matrix Pk|k−1,

X̂k|k−1 =

N∑
i=1

wi
k−1X

i
k|k−1

Pk|k−1 =

N∑
i=1

wi
k−1(Xi

k|k−1 − X̂k|k−1)(Xi
k|k−1 − X̂k|k−1)T

(38)

B. Empirical detection instant

When a new IR multispectral image Yn is available, we can
update the random jump zn (23). To this end, we first esti-
mate the distribution P1(Yn|Y1:n−1) using the particles. The
particle filter draws weighted samples {Xi

n|n−1, w
i
n−1}Ni=1

(prediction step in algorithm 1) from the predicted distribution



Algorithm 1 The Laplace-based particle filter

1) Initialisation (k=1) For i = 1, . . . , N . Generate
the particles Xi

k−1. Put the particles xi1,k−1 (the
position components) in each cell and generate xi2,k−1
(amplitude and velocities) randomly with the weights
wik−1 ≡ 1/N

2) Prediction For i = 1, . . . , N . Propagate the weighted
particles by applying the target dynamics (2),
Xi
k|k−1 = F Xi

k−1

3) Correction For i = 1, . . . , N . Compute the likelihood
(7) gk(Xi

k|k−1) = P (Yk|Xi
k|k−1) and the weights

wik ∝ gk(Xi
k|k−1)wik−1 such that

∑N
i=1 w

i
k = 1.

Compute Neff = 1∑N
i=1[w

i
k]

2

* If Neff ≥ Nth. The corrected particles are(
Xi
k, w

i
k

)
=
(
Xi
k|k−1, w

i
k

)
* If Neff < Nth. Perform Laplace-based resampling.
Compute the local modes of the posterior {ξ̂jk}

nc
j=1 (28)

Generate samples X̃i
k from the proposal q̃k (37) and

compute the importance weights w̃ik ∝
gk(X̃

i
k) qk(X̃

i
k)

q̃k(X̃i
k)

such that
∑N
i=1 w̃

i
k = 1.

The corrected particles are
(
Xi
k, w

i
k

)
=
(
X̃i
k, w̃

i
k

)
4) State estimation The state is estimated by

X̂k =
∑N
i=1 w

i
kX

i
k

Go to the prediction step with (k = k + 1)

P1(Xn|Yn−1) which allows us to apply the following Monte
Carlo integration,

P1(Yn|Y1:n−1) =

∫
Rd

P1(Yn|Yn−1, Xn)P1(Xn|Yn−1) dXn

≈
N∑
i=1

win−1 gn(Xi
n|n−1)

where gn is the likelihood (7).
The distribution P0(Yn|Yn−1) is simply the distribution of
the observation noise,

P0(Yn|Yn−1) = P0(Yn) ∝
m∏
i=1

exp

(
−1

2
Yi
nR
−1
i Yi

n

)
We can then estimate Zk (10) and evaluate K̂, the empirical
detection instant (13), i.e. the first time such that the empirical
estimation of Zk exceeds the threshold log(Γ1).

C. Experimental data

We evaluate the relevance of the lower bound K̃∗ (33) by
comparing it with the empirical instant detections provided by

the LPF. The images are composed of 3 bands with different
SNR and different PSF. We consider the case of an isotropic
PSF different for each band (21),

Σi =

[
σ2
i,psf 0

0 σ2
i,psf

]
(39)

We have performed 100 Monte Carlo trials of the LPF for
different global multispectral SNR (

∑m
i=1

A2

σ2
i

). The noise Std
σi and the PSF are described below. The tuning parameter µ
is such that the global SNR varies from 0 dB to 10 dB.

Scenario data

• Number of spectral bands: m = 3
Image size: M = 100× 100
Sampling period : ∆T = 0.1 s

• Std of the PSF for the 3 bands:
σ1,psf = 1.5, σ2,psf = 2, σ3,psf = 2.5 (cells)

• Target amplitude: A = 1
Covariance noise matrices: Ri = diag(σ2

i )
Noise Std for the 3 bands:
σ1 = 1× µ, σ2 = 1.5× µ, , σ3 = 2× µ

• Number of particles: N = 10000
Maximal number of local MAP: nc = 10
Threshold redistribution: Nth = 2

500N

• Initial location of the target in the image:
x0 = 28, y0 = 35 (cells)
Velocities: ẋ = 0.37, ẏ = −0.12 (cell/s)

• Detection probability: Pd = 0.99
False alarm probability: Pfa = 10−6

• Initial incertitude of the target position: one particle
per resolution cell of the image
Initial velocities incertitudes: σẋ = σẏ = 2 (cell/s)
Initial amplitude incertitude: A ∈ [0, 5]

For each Monte Carlo trial i, the particle filter provides the
detection instant K̂i (see section V-B). This instant is the first
time such that the random walk Zk exceeds the threshold (13).
In the presence of a target, Fig. 1 shows a few random walks
that exceed the threshold log(Γ1) (10) for global SNR=6 dB.



Fig. 1. Random walks Zk provided by the particle filter. SNR = 6 dB.
(–): threshold log(Γ0), (–): threshold log(Γ1)

Fig. 2. Comparison of the lower bound K̃∗ with the empirical mean detection
instant K̂ provided by the particle filter.

By averaging K̂i, for each SNR, we derive the empirical
mean detection to be compared with the lower bound K̃∗ (33).
Fig. 2 compares the empirical detection instants with the the-
oretical lower bound K̃∗. The empirical results are consistent
with the proposed lower bound. Performance detection is fairly
predicted by the lower bound. However, for low SNR values,
this bound is optimistic or, on the contrary, the particle filter is
not optimal. Future work will attempt to answer this question.

VI. CONCLUSION

A new method was proposed for estimating the minimum
number of multispectral images required to detect a target,
regardless of the detection method used. This lower bound is
calculated from an estimate of the stopping time of the optimal
sequential ratio test in the case of non-stationary observations.

Simulations of a particle filter for track-before-detect show that
detection performance is fairly well predicted by the proposed
bound. Further work will aim to improve this bound.
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