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1. Supplementary Methods 
 

1.1 Preprocessing of MRI data 

 

Preprocessing of anatomical images consisted in skull-stripping using an atlas-registration-based 

method by transforming the structural image of each patient to the atlas image, using the linear and non-

linear block-matching algorithm (2,3) available in the image processing toolbox Anima 

(https://github.com/Inria-Visages/Anima-Public/wiki). 

For the fMRI images, the following preprocessing was performed. The first four volumes from each 

subject were discarded to allow the signal to reach equilibrium and the participants to adapt to the 

scanning noise. A fieldmap was estimated based on two EPI references with opposing phase-encoding 

directions using topup. The estimated fieldmap was applied to the fMRI images using fugue.  Head-

motion parameters with respect to the median or mean fMRI volume (transformation matrices, and six 

corresponding rotation and translation parameters) were estimated before applying spatiotemporal 

filtering using mcflirt. BOLD runs were slice-time corrected using slicetimer. A bandpass filtering was 

applied to the BOLD signal to filter time series frequencies between 0.01 and 0.1 Hz. The median fMRI 

volume was co-registered to the participant’s structural image, using a rigid body transformation model 

(6 parameters). The structural image was then transformed to the Montreal Neurological Institute (MNI) 

template, using the linear and non-linear block-matching algorithms (2,3). For each subject, two image 

transformations were computed: the transformation from the mean functional volume to the structural 

volume and the transformation from the individual structural volume to the MNI template.  By 

concatenating the above transformations sequentially, we obtained a direct transformation from each 

initial functional volume to the MNI space. The inverse of the transformation was applied to the Human 

Connectome Project (HCP) multimodal parcellation(4) to register this atlas in the fMRI native space. 

After these steps, nuisance regression was performed with 3 kinds of regressors. Residual motion was 

removed with the parameters estimated by FSL’s mcflirt, computed by backwards differences (6 

regressors). The physiological noise was reduced using regressors calculated by the CompCor method 

(5), implemented in nilearn (http://nilearn.github.io/). These 5 regressors correspond to the principal 

components from noisy regions-of-non-interest, such as white matter, cerebral spinal fluid and non-

brain signals. The global signal was included as a regressor by inspection of the connectivity matrix. 

Individual structural and functional images were inspected to remove subjects with significant artifacts 

or lesions. Participants were excluded if any of the following image quality metrics were above/below 

the specified threshold. Exclusion criteria were specified as an AFNI’s mean quality index(“aqi”) index 

> 0.025, computed by the 3dTqual routine (6), a signal to noise ratio < 1, a root-mean-square head 

motion above 2mm for translations and 1° for rotation, as accepted in elderly population (7). With these 

criteria, 3 LLD subjects were excluded, two for significant artifacts and one for excessive head motion.  

https://github.com/Inria-Visages/Anima-Public/wiki
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For diffusion images, the preprocessing pipeline consisted of these following steps, using the the Anima 

toolbox. Eddy current correction was performed by registering linearly then non-linearly each sub-

volume of the CUSP data to the first sub-volume. Each non-linear transformation is computed only in 

the phase encoding direction. Then, distortion correction was designed to register two b0 images of 

opposite phase encoding directions using a block-matching correction (8). The transformation was 

applied to all diffusion-weighted images volumes to obtain an unwrapped volume.  Denoising was based 

on a 3-D optimized blockwise version of the non-local means filter using the redundancy of information 

to remove the noise (9). Skull-stripping was performed on the MPRAGE image using an atlas-

registration-based method. The structural image of each patient was transformed to the MNI152 atlas 

image (10), using the linear and non-linear block-matching algorithms (2). Finally, a rigid 

transformation was computed between the structural image and the diffusion-weighted image volume 

of the subject, and the composition of the two transformations was finally inversely applied to the atlas 

mask to obtain the diffusion-weighted mask.  

 

1.2 Preprocessing of Accelerometry 

 

Post-filtered acceleration values were summed at each axis into epochs of 30 seconds and transformed 

into counts values. The vector magnitude of the count in the three axes was calculated at each second. 

Data were first visually inspected on the Actilife® software and kept if at least 72 hours of activity were 

recorded (11). Recordings of accelerometry between midnight and 5 a.m. were excluded due to the high 

rate of estimated missing values by the accelerometer device. One subject was excluded because of 

insufficient recording. 

Daytime motor activity was smoothed using a generalized additive mixed model (12) with a Tweedie 

link function, with the mgcv package (13)  in RStudio. The model's log-likelihood was penalized by 

estimating a restricted maximum likelihood smoothing parameter. We chose a cyclic cubic regression 

spline as basis for the fixed effect of time, constraining the activity at the beginning and end of the day 

to have the same value and rate of change over time. We tested 5 models by combining parameters 

(Supplementary Table S1): with or without a common smoothing function and with or without a 

common smoothing parameter across subjects. The best model was selected based on the Akaike 

criterion (14), minimal mean squared error and mean total out-of-sample deviance by leave-one out 

cross validation score (12).  

 

1.3 Statistical Methods 

 

Threshold-free Network Based Statistics 
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The functional connectivity measures between any pair of ROIs were estimated using a Pearson’s 

correlation. A Fisher’s r-to-z transformation was applied to normalize the coefficients. The threshold-

free network-based statistics (TFNBS) (15,16) combines the network-based statistics approach (15) and 

the threshold-free cluster enhancement algorithm adapted for graphs. The algorithm computes the 

likelihood of each set of connected edges that surpass an initial statistical threshold, also referred to as 

components of interest (COI). Such likelihood estimation is based on the number of connected edges 

and how it compares to a null distribution generated by permutations of the original data. However, 

contrary to NBS, an adaptive threshold was implemented without having to set arbitrary a priori 

thresholds. The method consists of the 4 following steps (see Baggio et al., 2018): (i) The z-scores are 

corrected for confounders of age, gender and education using a linear regression method. The association 

between the principal component score and the COI is investigated by three distinct linear models, one 

per resting state network. (ii) A threshold is applied to the obtained F-statistics matrix at a series of steps 

h, with a step interval defined as a hundredth of the maximum value of the matrix. (iii) At each 

thresholding step, the value of each matrix suprathreshold element belonging to a connected component 

is replaced by the component's number of connections raised to the power E, multiplied by the 

component's height raised to the power H. As recommended (16), the E parameter values were set to 

0.75 combined with H parameter values of 3.25. (iv) The matrices obtained at each step were 

subsequently summed giving the final TFNBS score for every network edge. Statistical significance was 

established through permutation testing over 10000 permutations. At each permutation, principal 

component score was shuffled across subjects, and the steps above repeated. FWE‐corrected p-values 

were obtained by comparing each connection's TFNBS score with the null distribution of maximal sub-

connectome‐wise scores at each permutation. The alpha FWE‐corrected p-value for statistics 

significance of the network was set as 0.05 / number of models. 

 

 

2. Supplementary Results 
 

2.1 Association between patterns of activity and apathy in LLD controlling for 

depression severity 

 

Demographic and clinical variables of the LLD group (apathetic and non-apathetic) are reported in Table 

S2. This provides a broad comparison between apathetic and unapathetic patients based on the 2018 

Diagnostic Criteria of Apathy. However, apathy was evaluated with two more clinical scales.  Twenty-

seven LLD participants met the DCA criteria of apathy against eleven non-apathetic LLD. Both groups 

had a majority of unipolar depression, with similar proportions between the groups and an increased 
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depression severity tendency in the apathetic group (puncorrected=0.06).  Apathetic and non-apathetic 

groups were similar in terms of age, gender, years of education and executive functions 

 

2.2 Association between patterns of activity and apathy in LLD controlling for depression 

severity 

As requested after review, we performed the analyses between apathy and  adding the MADRS total 

score as covariates. As expected, we found significant or near-significant correlations between MADRS 

and AES (rpearson= 0.41, p=0.008), MADRS and AMI (rpearson= 0.31, p=0.06), as well as MADRS and 

DCA (rpearson= 0.33, p=0.038). Including MADRS as a covariate in the regression model, we found a 

strengthened association between AES and fPC1 (t=-2.85, p=0.0073), but a slightly decreased 

association between AMI and fPC2 (t=-2.38, p=0.02) in comparison with the model without MADRS. 

The association between DCA and apathy remain non significant after correction for multiple 

comparisons (t=-2.07, p=0.045). These results suggest that mean motor activity is associated with apathy 

independantly from depression symptoms severity, while the association between late-chronotype and 

social apathy is mildly affected by depression severity. Due to the intricacy of apathy symptoms in 

depression and the debated nature of apathy, as a type of depression or a distinct entity in dementia, we 

present these results as complementary to our main analyses.  
 

2.3 Association between patterns of activity and functional  brain connectivity in LLD 

controlling for duration of depression 

 
As requested after review, we performed brain connectivity analyses controlling for disease duration 

because of the variability of disease duration within the sample.  

The effect of mean diurnal activity on functional connectivity with disease duration, we found similar 

results our original analysis. The significant intra-DMN network had 98.6% overlapping regions than 

our original model (5 new regions and 6 not found anymore), 97.6% overlapping regions for the CON 

(11 new regions found and 11 not found anymore) and 96.8% for the FPN (10 new regions found and 

14 not found anymore).  

The effect of chronotype on functional connectivity with disease duration was also similar to our original 

analysis. The significant intra-DMN network had 98.6% overlapping regions than our original model (8 

new regions and 6 not found anymore), 97.6% overlapping regions for the CON (7 new regions found 

and 7 not found anymore) and 96.8% for the FPN (15 new regions found and 15 not found anymore).  

 Because multiple mechanisms could yield to persistent depression, it is unclear which confounding 

variables we are accounting for and whether they should or should not be taken into consideration to 
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measure the relationship between brain connectivity and motor activity. We decided to report this 

result in complement to the main analyses.   
 

 

3. Supplementary Tables 
 

 
Table S1. Model fits comparison of predicted smoothed accelerometry data 

We compared five generalized additive models of motor activity as a function of time: model G (mod_G) 
corresponding to a global smoother across subjects, model GS (mod_GS)  which has a global smoother 
plus group-level smoothers that have the same wiggliness (or a shared penalty), model GI (mod_GI) 
which has a global smoother plus group-level smoothers with individual wiggliness (or individual 
penalties), model S (mod_S) with group-specific smoothers without a global smoother but with the same 
wiggliness, and model I (mod_I) corresponding to group-specific smoothers with different wiggliness. 
Model I was selected for principal component analysis as it had the lowest AIC, MSE and mean out-of-
sample deviance. Acronyms:  AIC: Akaike Information Criterion; MSE: Mean-Squared Error. 

 

 

 

 

 

 

 

 

 

 

  

Model Degrees of freedom AIC MSE Mean out-of-
sample deviance 

Mod_S  487 511 440 0.45 13 178 
Mod_I  392 562 348 0.45 13 260 
Mod_GI  355 562 745 0.45 13 470 
Mod_G   48 568 422 0.47 15 573 
Mod_GS  1143 527 011  2.26 16 421 
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LLD  
Apathetic 
(n = 27) 

LLD 
Non-apathetic 
(n = 11) 

Statistics p-value 
LLD 
Total 
(n = 38) 

Age (years) 
75 
72 – 81 

72 
71 – 78 

t = 1.22  p = 0.23 
74 
72 – 80.75 

Gender (M:F) 11:16 1:10 χ2 = 2.31 p = 0.13 12:26 

Education (years) 
10 
8 – 12.5 

12 
11 - 15 

t = -1.61 p = 0.13 
12 
8 – 13.75 

Medical comorbidities 

Cardiovascular 11% 18% χ2 = 0.26 p = 0.61 13% 

Neurological 0% 0%   0% 

Pneumological 4% 10% χ2 = 0.40 p = 0.52 16% 

Rhumatological 11% 27.3% χ2 = 1.06 p = 0.30 5% 

Depression characteristics 

Type of depression  
(MDD : Bipolar disorder) 

 
  21:6 

 
10:1 

 
χ2 = 0.01 

 
p = 0.92 

 
31:7 

Duration of depression (years) 
25 
7 - 40 

22 
1 - 48 

U = 119    p = 0.85 
24 
4 – 40 

MADRS 
27 
25 - 30 

22 
21 - 27 

t = 1.94     p = 0.06 
25 
22 – 30 

Apathy 
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AES 
48 
40 – 52 

34 
32 – 39 

t = 3.72 p < 0.001 
42 
37 – 50 

AMI 
33 
29 – 36 

20 
18 – 24 

t = 4.82 p < 0.001 
30 
18 – 36 

Psychotropic drugs 
(1 or more per subject) 

Antidepressants 85% 82% χ2 = 0.25 p = 0.88 84% 

Mood Stabilizers 15% 9% χ2 = 0.47 p = 0.79 13% 

Benzodiazepines 37% 45% χ2 = 0.23 p = 0.89 39% 

Antipsychotic 15% 0% χ2 = 0.58 p = 0.44 11% 

Cognitive Evaluation 

DRS 
132 
128 – 136 

136 
132 – 141 

t = -1.20 p = 0.24 
134 
128 – 137 

TMT-A 
54 
36.5 – 67.0 

39.0 
35.0 – 51.5 

U = 108.5 p = 0.20 
47.5 
36.0 – 64.8 

Stroop interference score 
-73.5 
-92.3 – -54.0 

-73.5 
-106.0 – -60.75 

U = 103.5 p = 0.36 
-73.5 
-97.3 – -54.8 

TMT B-A 
76.0 
48.8 – 139.5 

80.0 
69.0 – 100.0 

U = 127 p = 0.89 
80.0 
57.0 – 124.0 

MCST 
perseverative errors 

3.5 
1.8 – 6.0 

1.5 
0.3 – 3.0 

U = 79 
 

p = 0.12 
 

3.0 
1.0 – 5.8 
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MCST 
Complete categories 

6.0 
4.0 – 6.0 

6.0 
4.3 – 6.0 

U = 124.5 p = 1 
6.0 
4.0 – 6.0 

Verbal Fluencies 
 
Semantic 

 
 
22.0 
18.0 – 27.0 

 
 
26.0 
22 – 29.9 

 
 
t = -2.21  

 
 
p = 0.03 

 
 
23.5 
18.0 – 28.3 

Phonemic 
18.0 
10.8 – 23.8 

21 
14.5 – 24.5 

t = -0.57 p = 0.58 
18.0 
13.0 – 24.0 

 
Table S2. Demographic and clinical data in apathetic and non-apathetic LLD groups 

The entire LLD group was used for further analyses. Here, we present the apathetic and non-apathetic depression groups, based on the diagnostic criteria of 

apathy, to describe the participants characteristics with and without significant apathy impacting functioning.   

Summary descriptive results: Mean, minimum – maximum. Acronyms:  AES: Apathy Evaluation Scale; AMI: Apathy Motivation Index; LLD: Late-Life 

Depression participants, MCST: Modified Card Sorting Test; MDRS: Mattis Dementia Rating Scale; TMT-A: Trail A of the Trail Making test; TMT B-A: 

difference in scores between versions B and A of the Trail.  
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Apathy 
Measures 

fPC1 fPC2 fPC3 fPC4 

t-value p-value t-value p-value t-value p-value t-value p-value 

AES -2.85 0.007 -1.35 0.185 0.59 0.56 -0.73 0.47 
AMI -0.02 0.24 -2.38 0.02 -0.17 0.48 -0.68 0.50 
DCA -1.09 0.28 --2.07 0.045 -1.18 0.25 -1.00 0.33 

 

Table S3. Associations between principal components scores and apathy controlling for 

depression severity 

Statistically significant associations between functional principal components (fPC) and apathy 

measures are reported in bold. Significant p-value had to be less than 0.017 (0.05/3) to correct for the 

number of apathy variables tested. Acronyms: AES: Apathy Evaluation Scale; AMI: Apathy Motivation 

Index; DCA: Diagnostic Criteria for apathy, fPC#, functional principal component number #. 
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Region ROI Association 
with fPC1 

Association with 
fPC2 

DMN 

Frontal polar 

10d 
Left -4.84 2.32 

Right -1.93 -1.61 

10pp 
Left -3 2.53 

Right -3.51 2.74 

10r 
Left -1.75 -1.46 

Right - -0.42 

Superior Frontal 
Cortex 

8Ad 
Left -3.57 -3.05 

Right -3.71 2.25 

8Av 
Left 2.35 4.8 

Right -0.05 -2.3 

8BL 
Left -0.17 2.09 

Right -2.08 - 

9a 
Left -1.92 - 

Right -3.44 - 

9m 
Left -0.36 -1.69 

Right -1.98 - 

9p Right -0.78 3.18 

Inferior Frontal 
Cortex 

47l 
Left -0.19 2.9 

Right -2.61 1.98 

47s 
Left -2.39 -0.59 

Right -2.02 - 

Orbital Frontal 
Cortex 

47m 
Left 2.24 -2.96 

Right -0.88 1.28 

OFC 
Left -2.36 0.36 

Right -4.09 -2.34 

subgenual ACC 

25 
Left 2.19 -1.03 

Right -1.09 -3.6 

10v 
Left -3.72 -1.83 

Right -2.58 3.18 

s32 Left -2.52 1.84 
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Right -0.35 0.56 

pregenual ACC a24 
Left -2.19 -4.84 

Right -3.97 -2.78 

dorsal ACC 

d32 
Left -4.18 2.09 

Right -2.74 -2.48 

p32 
Left -0.46 -2.29 

Right -2.78 -1.8 

PCC 

23d 
Left -2.13 -3.41 

Right 0.06 -1.95 

31a 
Left 2.34 -2.35 

Right -1.03 -4.52 

31pd 
Left -5.01 3.77 

Right -2.87 -0.73 

31pv 
Left -1.13 4.3 

Right -1.76 0.28 

d23ab 
Left 1.02 3.15 

Right -2.97 3.74 

POS1 
Left 3.29 -0.64 

Right 3.17 -3.98 

v23ab 
Left 0.99 -2.3 

Right -0.69 -1.33 

Precuneus 7m 
Left 1.79 2.43 

Right -1.86 1.76 

Hippocampus H 
Left -1.22 -3.67 

Right -1.58 0.34 

Parahippocampal 
Cortex 

EC 
Left -0.81 3.44 

Right 1.88 - 

PHA1 
Left 1.18 1.73 

Right 0.62 1.47 

PHA2 
Left 1.25 -1.87 

Right -0.01 2.14 

PreS 
Left - 2.15 

Right -2.47 -3.26 
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Inferior Temporal 
Gyrus 

TE2a 
Left - 6.28 

Right -0.84 -0.04 

TE1a 
Left -1.1 2.82 

Right -2.15 4.97 

TE1m Left 3.58 3.93 

Temporal Pole TGd 
Left 2.21 1.6 

Right 1.47 -4.34 

Superior Temporal 
Gyrus 

STSva 
Left -0.97 -1.37 

Right -1.19 - 

STSvp 
Left - 1.17 

Right -0.41 1.16 

Inferior Parietal 
Lobule 

PGi 
Left -0.92 2.00 

Right -0.72 1.79 

PGs 
Left -2.56 6.36 

Right -0.44 2.00 

FPN 

Frontal polar 

a10p 
Left -1.15 1.69 

Right -3.07 -2.68 

a47r 
Left -2.61 1.1 

Right -3.69 -3.33 

p10p Left -2.79 -0.31 

p47r 
Left -3.2 -0.33 

Right -1.73 - 

Superior Frontal 
Cortex 

8BM 
Left -1.5 - 

Right -0.88 1.58 

i6-8 
Left -0.44 1.42 

Right 0.96 - 

s6-8 
Left 0.05 - 

Right 1.86 4.52 

DLPFC 

8C 
Left  3.92 

Right -0.93 -1.94 

a9-46v Left 1.42 -2.75 

p9-46v Left 1.76 1.49 
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Right -1.56 - 

Inferior Frontal 
Cortex 

IFJp 
Left -0.86 -2.1 

Right 2.27 - 

IFSa 
Left -2.1 -1.46 

Right -1.25 -3.52 

Anterior Insula AVI 
Left -3.53 - 

Right -2.33 1.9 

Orbital Frontal 
Cortex 

11l Right -1.9 4.22 

13l 
Left 1.67 -1.92 

Right - -1.96 

Retrosplenial Cortex RSC 
Left -1.08 - 

Right -2.06 3.12 

PCC POS2 
Left -2.07 3.38 

Right 1.39 2.15 

Precuneus 7Pm 
Left -1.24 3.45 

Right  5.27 

Inferior Parietal 
Lobule 

IP1 
Left  -1.79 

Right  -3.24 

IP2 
Left -1.09 -2.95 

Right 0.21 3.4 

PFm 
Left -3.12 -1.97 

Right -0.31 -5.2 

Middle Temporal 
Gyrus TE1p 

Left -1.53 - 

Right -1.79 -1.55 

CON 

Frontal polar 9-46d 
Left - -1.4 

Right - 1.92 

Superior Frontal 
Cortex 46 

Left -2.43 -1.78 

Right -2.32 4.13 

Premotor Cortex 6r 
Left -1.45 1.69 

Right -1.01 2.73 

Paracentral Lobule 5mv 
Left -2.02 -0.03 

Right -1.62 -0.37 
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FEF 
Left 2.61 -3.72 

Right -1 2.01 

Supplementary Motor 
Area 

6ma Left -0.48 2.26 

SCEF 
Left 2.02 -2.17 

Right 2.98 1.65 

dorsal ACC 

33pr 
Left 2.84 4.13 

Right -1.56 - 

a32pr Right - 3.26 

p24 
Left - 3.56 

Right 2.56 4.52 

p24pr 
Left -3.53 -1.28 

Right -1.75 4.23 

p32pr 
Left -1.47 2.39 

Right -2.3 3.33 

Mid-cingulate cortex a24pr 
Left -3.46 4.75 

Right -1.93 2.73 

PCC 23c 
Left -2.43 -2.45 

Right -2.08 - 

Anterior Insula 

43 
Left -1.62 -0.91 

Right 0.69 -0.1 

FOP1 
Left -1.35 2.49 

Right - -2.62 

FOP3 
Left -0.77 2.41 

Right - -2.98 

FOP4 
Left 0.11 1.97 

Right - -3.61 

FOP5 
Left 3.51 0.55 

Right 2.04 -0.04 

Middle Insula MI 
Left -0.42 2.19 

Right -0.3 -0.57 

Posterior Insula 
PI 

Left 0.25 -4.22 

Right -2.42 -2.72 

PoI1 Left -1.48 0.02 
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Right -3.42 - 

PoI2 
Left -1.65 -1.09 

Right -2.56 0.67 

Inferior Parietal 
Lobule PFop 

Left 1.78 -3.91 

Right -0.76 -1.69 

Supramarginal Gyrus 

PF 
Left -1.74 - 

Right - -2.09 

PFcm 
Left -0.42 -1.37 

Right - -4.27 

Superior Parietal 
Lobule 7Am Left 3.23 - 

 
Table S4. Associations between principal components scores and functional brain connectivity  

Brain ROIs significantly associated with functional principal components (fPC) of motor activity via TFNBS. The 

direction of the association is given by estimated marginal effect at the ROI level of the interaction effect between 

ROIs correlation and fPC. For more clarity, we classify the HCP’s ROI label into broader brain areas following 

current nomenclature from the Glasser atlas (32). 

Acronyms: CON: Cingulo-Opercular Network, DMN: Default-Mode Network, fPC#, functional principal 

component number #, FPN: Fronto-Parietal Network. 
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Tracts 

DTI NODDI 

Fractional Anistropy Mean Diffusivity Orientation Dispersion Index Partial Volume 

Corr. 

Coef. 

Nb of clusters > 

Cluster 

uncorrected 

Corr. 

Coef. 

Nb of clusters > 

Cluster 

uncorrected 

Corr. Coef. 

Nb of clusters > 

Cluster 

uncorrected 

Corr. 

Coef. 

Nb of clusters > 

Cluster 

uncorrected 

CA 0.51 2* 0.61 1* 0.47 0 0.54 0 

CC_1 -0.34 0 0.38 0 -0.32 0 -0.25 0 

CC_2 -0.45 0 0.42 0 -0.49 0 0.45 0 

CC_3 -0.33 0 -0.18 0 -0.41 0 -0.38 0 

CC_4 -0.36 0 0.15 0 -0.35 0 0.35 0 

CC_5 -0.28 0 0.50 0 -0.30 0 0.49 0 

CC_6 -0.34 0 0.30 0 -0.53 1* 0.36 0 

CC_7 -0.27 0 -0.38 0 -0.37 0 0.39 0 

CG_left -0.44 1* 0.59 2* -0.34 0 0.31 0 

CG_right -0.37 0 0.43 1* -0.36 0 0.24 0 

CST_left -0.34 0 0.47 0 -0.37 0 0.43 0 

CST_right -0.33 0 0.32 0 0.29 0 0.41 0 

ILF_left -0.31 0 0.29 0 -0.34 0 0.30 0 

ILF_fight -0.35 0 0.44 0 -0.45 0 0.38 0 

SLF_I_left -0.29 0 0.49 1* -0.35 0 0.35 0 

SLF_I_right -0.32 0 0.31 0 -0.40 0 0.35 0 

SLF_II_left -0.30 0 0.39 0 0.32 0 0.42 0 

SLF_II_right -0.40 0 0.39 0 -0.31 0 0.27 0 

SLF_III_left -0.52 0 0.39 0 0.36 0 0.39 0 

SLF_III_right -0.45 0 0.36 0 -0.30 0 0.30 0 

UF_left -0.38 0 0.22 0 -0.41 0 -0.33 0 

UF_right -0.34 0 0.31 0 -0.39 0 0.32 0 

 

 

Table S5. Associations between diffusion MRI metrics and first principal component of motor activity without adjustment on the number of tracts 

Along each white matter tract, significant clusters of metrics associated with fPC1 had to be greater than the familywise error rate cluster size, for a p-value of 0.05. We reported the number of significant clusters with an asterix (*) without the adjustment for 

multiple comparisons for the number of tracts. An adjustment is still performed  for the 100 points along each tract. Acronyms: DTI: Diffusion Tensor Imaging, Corr. Coef: Pearson correlation coefficient, NODDI: Neurite Orientation Dispersion and Density 

Imaging, fPC1: first principal component scores of motor activity. 
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3. Supplementary Figures 

 

 
Figure S1. Examples of predicted smoothed accelerometry data from the selected model 

Mean ± 2 standard errors of the predicted smooth activity as a function of time from model S are 
reported, against observed activity in eight randomly selected patient (4 from Rennes and 4 from Tours).  
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