
HAL Id: hal-04564336
https://hal.science/hal-04564336v1

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantifying Apathy in Late-Life Depression: Unraveling
Neurobehavioral Links through Daily Activity Patterns

and Brain Connectivity Analysis
Jean-Charles Roy, Renaud Hédouin, Thomas Desmidt, Sébastien Dam, Iris

Miréa-Grivel, Weyl Louise, Elise Bannier, Laurent Barantin, Dominique
Drapier, Jean-Marie Batail, et al.

To cite this version:
Jean-Charles Roy, Renaud Hédouin, Thomas Desmidt, Sébastien Dam, Iris Miréa-Grivel, et al.. Quan-
tifying Apathy in Late-Life Depression: Unraveling Neurobehavioral Links through Daily Activity
Patterns and Brain Connectivity Analysis. Biological Psychiatry: Cognitive Neuroscience and Neu-
roimaging, 2024, pp.1-30. �10.1016/j.bpsc.2024.04.002�. �hal-04564336�

https://hal.science/hal-04564336v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


iological

sychiatry:
NNI
Archival Report

B
P
C

Quantifying Apathy in Late-Life Depression:
Unraveling Neurobehavioral Links Through Daily
Activity Patterns and Brain Connectivity Analysis

Jean-Charles Roy, Renaud Hédouin, Thomas Desmidt, Sébastien Dam, Iris Mirea-Grivel,
Louise Weyl, Elise Bannier, Laurent Barantin, Dominique Drapier, Jean-Marie Batail,
Renaud David, Julie Coloigner, and Gabriel H. Robert
ISS
ABSTRACT
BACKGROUND: Better understanding apathy in late-life depression would help improve prediction of poor prognosis
of diseases such as dementia. Actimetry provides an objective and ecological measure of apathy from patients’ daily
motor activity. We aimed to determine whether patterns of motor activity were associated with apathy and brain
connectivity in networks that underlie goal-directed behaviors.
METHODS: Resting-state functional magnetic resonance imaging and diffusion magnetic resonance imaging were
collected from 38 nondemented participants with late-life depression. Apathy was evaluated using the diagnostic
criteria for apathy, Apathy Evaluation Scale, and Apathy Motivation Index. Functional principal components (fPCs)
of motor activity were derived from actimetry recordings taken for 72 hours. Associations between fPCs and
apathy were estimated by linear regression. Subnetworks whose connectivity was significantly associated with
fPCs were identified via threshold-free network-based statistics. The relationship between apathy and
microstructure metrics was estimated along fibers by diffusion tensor imaging and a multicompartment model
called neurite orientation dispersion and density imaging via tractometry.
RESULTS: We found 2 fPCs associated with apathy: mean diurnal activity, negatively associated with Apathy
Evaluation Scale scores, and an early chronotype, negatively associated with Apathy Motivation Index scores. Mean
diurnal activity was associated with increased connectivity in the default mode, cingulo-opercular, and frontoparietal
networks, while chronotype was associated with a more heterogeneous connectivity pattern in the same networks.
We did not find significant associations between microstructural metrics and fPCs.
CONCLUSIONS: Our findings suggest that mean diurnal activity and chronotype could provide indirect ambulatory
measures of apathy in late-life depression, associated with modified functional connectivity of brain networks that
underlie goal-directed behaviors.

https://doi.org/10.1016/j.bpsc.2024.04.002
Late-life depression (LLD) represents a public health concern
given its high prevalence and detrimental impact on well-
being (1,2). Apathy, defined by diminished motivation and
reduced interest and lack of engagement in activities (3,4),
has been linked to poorer treatment outcomes (5,6) and
an elevated risk of dementia in LLD (4,7). A deep under-
standing of the brain mechanisms that underlie apathy in
LLD is essential for accurately stratifying individuals with
LLD and preventing negative outcomes associated with
apathy. To accurately measure apathy, it is necessary to go
beyond self-reported and heteroquestionnaires. Question-
naires may lack accuracy in measuring goal-directed behaviors
related to brain mechanisms, which can affect their construct
validity (8,9), and are biased by cognitive impairment and
altered self-awareness (10).

Accelerometry, a method for quantifying physical activity
using wearable devices, offers an opportunity to objectively
ª 2024 Society of Biological Psychiatry. Pu
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assess behavioral engagement in activities in real-world set-
tings. Principal component analysis (PCA) of daily activity is a
simple method for estimating patterns of motor activity asso-
ciated with apathy in dementia and psychiatric disease. For
example, earlier waking and bedtime schedules, as well as
bimodal diurnal activity, have been associated with apathy in
Alzheimer’s disease (11) and in mild cognitive impairment (12)
and were predictive of decreased cognition in a community
sample of older adults (13). However, motor activity and apathy
are complex phenomena that require comprehensive mea-
surement of apathy. Because apathy is a debated concept
(11,12) and the scales that measure it have distinct psycho-
metric properties, we decided to incorporate 3 complementary
measures of apathy: the Apathy Evaluation Scale (AES) (13),
which defines apathy as a subjective reduction of motivation;
the Apathy Motivation Index (AMI) (14), which captures
engagement in social interactions; and the diagnostic criteria
blished by Elsevier Inc. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

639

nce and Neuroimaging July 2024; 9:639–649 www.sobp.org/BPCNNI

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1016/j.bpsc.2024.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sobp.org/BPCNNI


Activity and Brain Connectivity in Late-Life Depression
Biological
Psychiatry:
CNNI
for apathy (DCA) (9), which provide a clinical account of the
functional impairment induced. As shown in a previous study
(15), the choice of which apathy scale to use may have direct
implications for the underlying biological mechanisms that are
relevant, such as functional brain connectivity, and could be
helpful for to dissociating common components of apathy from
the specific characteristics of each scale.

Coupling accelerometry measurements with neuroimaging
techniques, such as structural and resting-state functional
magnetic resonance imaging (rs-fMRI), could provide an
objective multidimensional examination of the neural corre-
lates of ecologically measured apathy. Apathy has been
associated with increased resting-state functional connec-
tivity (rsFC) between the anterior cingulate cortex (ACC) and
anterior insular and orbital cortices but decreased rsFC with
prefrontal lateral regions (15–17). Higher rsFC between the
anterior insula and the right dorsolateral prefrontal cortex
(DLPFC) and premotor regions but reduced rsFC with the
bilateral parietal posterior regions was also correlated with
apathy (18,19). In LLD, hypoconnectivity between the dorsal
ACC (dACC) and DLPFC is correlated with poorer executive
functions (20) and apathy during effortful emotion recognition
(17). Moreover, diffusion MRI can identify and elucidate the
white matter microstructure modifications associated with
apathy in LLD (21), such as reduced anisotropy of the sple-
nium of the corpus callosum and cingulum (15). These results
suggest that apathy in LLD is underpinned by modifications in
functional and structural connectivity of goal-oriented net-
works, namely the default mode network (DMN), frontopar-
ietal network (FPN), and cingulo-opercular network (CON).
However, it remains unclear whether objective patterns of
motor activity in LLD could capture impaired connectivity in
these networks.

We proposed to integrate brain connectivity and accel-
erometry to unravel the neural mechanisms that underlie
apathy in LLD. To this end, we recorded the motor activity of
participants with LLD for 3 days. We estimated the associ-
ation between PCA scores of motor activity and apathy
clinical scores. Then we aimed to identify the rsFC sub-
networks and structural white matter lesions associated with
the apathy-related motor components. We hypothesized that
comparable patterns of physical activity, similar to those
outlined in apathy in dementia, would be correlated with the
functional and structural networks underlying goal-oriented
behaviors. This study is a continuation of a previous study
(15) investigating the association between apathy and rsFC
in LLD.

METHODS AND MATERIALS

Participants

Thirty-eight patients with LLD were recruited from the French
old-age psychiatry centers of Rennes (25 participants) and
Tours (13 participants) between October 2019 and April 2022.
Inclusion and exclusion criteria were assessed during a psy-
chiatric interview conducted by a trained geriatric psychiatrist.
Inclusion criteria were age .60 years with DSM-5 and Mini-
International Neuropsychiatric Interview criteria for major
depressive disorder. Noninclusion criteria comprised DSM-5
criteria for major cognitive disorder and Mattis Dementia
640 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
Rating Scale ,125; neurological diseases; inflammatory or
mechanical diseases impeding motor activity; severe sarco-
penia defined as a walk test ,1 m/second; extrapyramidal
symptoms assessed by the Unified Parkinson’s Disease Rat-
ing Scale – Part III; having an antipsychotic prescription; high
suicidality defined as a Clinical Global Impression Suicide
Scale score .4; legal protection, deprived of liberty; and MRI
contraindications. Written informed consents were collected.
The study was approved by the relevant institutional review
board (ID-RCB 2018-AO2643-52, NCT03807167).

Procedure

After inclusion, each participant underwent a neuropsycho-
logical assessment, and their motor activity was recorded for
72 hours using an accelerometer (wGT3X-BT; ActiGraph) worn
on the nondominant wrist. On the last day of recording, pa-
tients underwent a structural and rs-fMRI scan.

Clinical Assessment. During the psychiatric interview,
apathy was assessed by the DCA of the 2018 international
consensus group (9), the clinician-rated version of the AES
(13), and the AMI (14). These measures provide complemen-
tary evaluations of apathy, with the AES evaluating the
cognitive, behavioral, and emotional dimensions of apathy, the
AMI adding a social dimension of apathy, and the DCA
considering functional impairment caused by apathy. Depres-
sion severity was measured via the Montgomery–Åsberg
Depression Scale (22).

Participants’ cognitive profiles were established by trained
neuropsychologists. Executive functions were evaluated by
the Modified Wisconsin Card Sorting Test (23) for planning and
set shifting, the Trail Making Test (24) A and B for speed
processing and cognitive flexibility, and the Stroop test for
cognitive control (25). Language was evaluated via semantic
and phonemic verbal fluencies (26).

MRI Acquisition. All participants underwent MRI on 3T
scanners of the same brand and model at both sites to reduce
between-site variability. Whole-brain T1-weighted images
were acquired by magnetization-prepared rapid acquisition
gradient-echo with repetition time = 1.9 seconds, echo time =
2.26 ms, inversion time = 900 ms, flip angle = 9�, 1 mm
isotropic, field of view = 2563 256 mm2, 176 slabs. Transverse
rs-fMRI echo-planar images aligned with the anterior and
posterior commissures were acquired with the following pa-
rameters: repetition time = 1224 ms, echo time = 30 ms, flip
angle = 65�, multiband acceleration factor 3, in-plane resolu-
tion = 2.5 3 2.5 mm2 isotropic, field of view = 210 3 210 mm2,
54 axial slices with a thickness of 2.5 mm, and an anterior-
posterior phase-encoding direction. A total of 288 volumes
were collected as well as a few reversed phase-encoding
volumes for distortion correction. Diffusion-weighted MRI
was acquired by a 60-gradient multishell cube and sphere
sequence (27) with 2-mm isotropic resolution, repetition time =
5216 ms, echo time = 54.4 ms, multiband acceleration factor 2,
parallel imaging with generalized autocalibrating partially par-
allel acquisitions 2, field of view = 220 3 220 mm2, 72 axial
slices and an acquisition matrix size of 110 3 110, 6/8 partial
Fourier, 60 gradient orientations with b values ranging from
uly 2024; 9:639–649 www.sobp.org/BPCNNI
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0 to 3000 s/mm2, and 7 b0 with an anterior-posterior phase-
encoding direction and an additional b0 with reversed (P . A)
phase encoding.

Image Processing

Preprocessing of Accelerometry Data. Preprocessing
of accelerometry data is detailed in Supplemental Methods. To
summarize, accelerometer data were measured every 30-
second interval between 5 AM and midnight for 72 hours. One
participant was excluded due to insufficient recording. Daytime
motor activity was smoothed from a selected model to ac-
count for the short recording period. Functional principal
components (fPCs) of activity were calculated from the pre-
dictions of the selected model using singular value decom-
position. The fPC eigenfunctions provided a qualitative
representation of interindividual variations in activity patterns
while eigenvalues summarized these variations quantitatively
(28). The top 4 fPCs were selected (28). Individual scores for
each component were calculated that summarized the partic-
ipant’s mean variation at each fPC.

Preprocessing of MRI Data. Details of the preprocessing
of T1-weighted images, fMRI, and diffusion data, including
motion correction and nuisance regression, are reported in
Supplemental Methods.

Brain Regions of Interest. For fMRI data, cortical regions
of interest (ROIs) were selected from the asymmetric Human
Connectome Project atlas (29) consisting of 360 ROIs.
Following the Cole-Anticevic brain-network parcellation (30),
we investigated the intranetwork connectivity of the DMN,
CON, and FPN.

For diffusion MRI data, white matter segmentation was
performed based on a convolutional neural network that
segments tracts infields of fiber orientation distribution func-
tion peaks pretrained on high-quality diffusion images ac-
quired for the Human Connectome Project and implemented
in TractSeg (31). This algorithm was applied on preprocessed
diffusion data after a rigid alignment on the Montreal Neuro-
logical Institute template. Based on previous studies of LLD
or apathy (32–34), we selected 22 bundles of interest a priori:
7 parts from the corpus callosum comprising the rostrum,
genu, posterior midbody, isthmus, and splenium; the anterior
commissure; bilateral cingulum; bilateral superior longitudinal
fascicles (divided into 3 parts); bilateral inferior longitudinal
fascicles; bilateral corticospinal tracts; and bilateral uncinate
fascicles.

Diffusion Model. Two water diffusion models were esti-
mated: diffusion tensor imaging (DTI) and neurite orientation
dispersion and density imaging (NODDI). The classical DTI
model is calculated on the 30 diffusion-encoding gradients on
a shell at b = 1000. Fractional anisotropy (FA) and mean
diffusivity scalar maps were derived from the DTI model (35). In
NODDI, the diffusion signal is decomposed into 2 compart-
ments: an anisotropic compartment corresponding to the
intraneurite space and an anisotropic Gaussian space related
to the extraneurite compartment including cell bodies (36). The
NODDI-derived metrics are intracellular volume fraction
Biological Psychiatry: Cognitive Neuroscience and
corresponding to neurite density and the orientation dispersion
index representing angular variation of neurites.

Statistical Analyses

Participants’ Characteristics. Demographic, clinical, and
psychological data of participants with apathetic and non-
apathetic LLD were compared using c2 tests for qualitative
variables and independent t tests otherwise (or Mann-Whitney
U tests if distributions were non-Gaussian).

Association Between Daily Activity and Apathy
Scores. Three multiple linear regression models were tested
with the apathy score as the dependent variable (AES, DCA, or
AMI) and the fPC scores of accelerometry as independent
variables (4 components), with age, sex, and years of educa-
tion as covariates. The p value was set as .05/3 (number of
networks tested). Results controlling for depression severity
are reported in the Supplemental Results.

Association Between Daily Activity and rsFC.
Functional connectivity between ROIs was assessed using
Pearson’s correlations, normalized through r-to-z trans-
formation. The association between fPC of motor activity and
rsFC was estimated via threshold-free network-based statis-
tics (TFNBS) (37,38) (detailed in Supplemental Methods). This
method combines the network-based statistics approach (37)
and the threshold-free cluster enhancement algorithm. It
computes the likelihood that a set of connected edges asso-
ciated with a variable surpasses a range of statistical thresh-
olds, without having to choose an arbitrary threshold. The
association between connectivity and fPC scores was cor-
rected for age, gender, and education using linear regression.
Statistical significance was established through permutation
testing over 10,000 permutations. Familywise error (FWE)–
corrected p values were obtained by comparing each con-
nection’s TFNBS score with the null distribution of maximal
subconnectome-wise scores. The p value for the statistical
significance of the network was set as .05/3.

While TFNBS provides a score to identify the significant
subnetwork associated with a variable, it does not give the
direction of the association. For interpretation, we reported the
marginal mean effect at each ROI level. Marginal mean effects
are conditional averages that correspond to the expected
change in correlation for an ROI with all other ROIs for an in-
crease of fPC scores, holding other predictor variables con-
stant (39). To do this, a linear mixed-model effect was applied
to the subnetwork detected by TFNBS with the ROI-to-ROI
correlation as the response, the interaction between the
values of the apathy evaluations and the ROI as fixed effects of
interest, adjusted for age, sex, years of education, and with the
participant as a random intercept.

Information on statistical adjustment for depression dura-
tion is available in the Supplemental Results.

Association Between Daily Activity and Diffusion
MRI. For each bundle, the center line of the tract was
computed using the minimum distance–flipped metric (40) and
resampled to 100 equidistant segments. Microstructure met-
rics were projected on the center line via a cKDTree algorithm
Neuroimaging July 2024; 9:639–649 www.sobp.org/BPCNNI 641
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(40). The association between the fPC scores of motor activity
and diffusion metrics along the bundle was evaluated using a
linear model with age, sex, and center as covariates. At each
tract point, we used a nonparametric permutation-based sta-
tistical comparison with 5000 iterations to account for multiple
comparisons given the correlative structure between adjacent
points and the number of tracts tested (41). We report the
number of clusters whose size exceeded the specified
threshold with adjustment for the number of tracts and points.

RESULTS

Demographic Variables and Clinical Measures

Demographic and clinical characteristics of the LLD group are
reported in Table 1. The mean age of the sample was 74 years,
with 26 female and 12 male participants. The participants had
Table 1. Demographic and Clinical Characteristics of the
LLD Group

LLD, n = 38

Age, Years 74 [72–80.75]

Gender, Female:Male 26:12

Education, Years 12 [8–13.75]

Medical Comorbidities

Cardiovascular 13%

Neurologic 0%

Pneumological 16%

Rheumatological 5%

Depression Characteristics

Type of depression, MDD:bipolar disorder 31:7

Duration of depression, years 24 [4–40]

MADRS 25 [22–30]

Apathy

AES 42 [37–50]

DCA 27:11

AMI 30 [18–36]

Psychotropic Drugs, 1 or More Per Participant

Antidepressants 84%

Mood stabilizers 13%

Benzodiazepines 39%

Antipsychotic 11%

Cognitive Evaluation

DRS 134 [128–137]

TMT-A 47.5 [36.0–64.8]

Stroop interference score 273.5 [297.3 to 254.8]

TMT B2A 80.0 [57.0–124.0]

MCST, perseverative errors 3.0 [1.0–5.8]

MCST, complete categories 6.0 [4.0–6.0]

Verbal Fluencies

Semantic 23.5 [18.0–28.3]

Phonemic 18.0 [13.0–24.0]

Values are presented as n, %, or mean [minimum–maximum].
AES, Apathy Evaluation Scale; AMI, Apathy Motivation Index; DCA, diagnostic

criteria for apathy; LLD, participants with late-life depression; MADRS,
Montgomery–Åsberg Depression Rating Scale; MCST, Modified Card Sorting
Test; TMT-A, Trail A of the Trail Making Test; TMT B2A, difference in scores
between versions B and A of the TMT.
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moderate to severe depression. Twenty-seven participants
with LLD met the DCA criteria for apathy compared with 11
participants with nonapathetic LLD.

Association Between Patterns of Activity and
Apathy in LLD

The first 4 components of motor activity, which explained 85%
of the total variance, are presented Figure 1.

The first fPC (fPC1), which accounted for 51% of the vari-
ance in motor activity, identified participants’ mean daily ac-
tivity. The second fPC (fPC2), which explained 16% of the
variance, distinguished participants with high morning activity
and reduced evening activity (red curve) from participants with
reduced morning activity and high evening activity (green
curve). The third fPC, which explained 13% of the variance in
motor activity, distinguished individuals with low activity at
waking and before sleeping, associated with bimodal activity
(red curve), from individuals with higher baseline and constant
diurnal activity. The fourth fPC, which captured 6% of the
variance, identified a pattern with high activity in the early af-
ternoon and low activity in the late afternoon in participants
with low activity in the early afternoon and high activity in the
late afternoon.

Regarding the associations with apathy (Table 2) (significant
results p , .017), we found a significant association between
fPC1 and AES scores (z37 = 23.37, p = .002) and a tendency
with DCA (z37 = 22.50, p = .018) suggesting that apathy
severity was associated with reduced mean activity but not
with AMI scores (p = .07). The fPC2 scores were negatively
associated with AMI scores (z37 = 22.78, p = .016) but not with
the other measures (all ps . .017), suggesting that apathetic
individuals exhibited decreased motor activity during the
morning and higher activity in the evening. We found no sig-
nificant association between apathy and third or fourth fPC.

Association Between Motor Activity and rs-fMRI
Intranetwork Connectivity in LLD

Association Between the First PC of Activity and
Brain Intranetwork Functional Connectivity. The sta-
tistically significant results are reported in Figure 2A and
Table S3.

For the DMN, we used TFNBS to identify 1 subnetwork
associated with fPC1 scores (all pFWE-corrected , .0001). Con-
nectivity between regions of this subnetwork containing
medial, lateroinferior, and superior prefrontal regions; inferior
temporal regions; the posterior cingulate and cuneus; and
inferoparietal cortices was negatively associated with reduced
fPC1. The direction of the association between connectivity
and motor activity varied between the left and right hemi-
spheres for the hippocampus, parahippocampal regions, and
the subgenual ACC.

For the CON, we used TFNBS to identify 1 subnetwork
associated with fPC1 scores (all pFWE-corrected , .0001). Con-
nectivity between regions of this subnetwork was negatively
associated with reduced fPC1 for insular regions, dorsal and
mid ACC regions, and the left inferoparietal cortex. Connec-
tivity was increased bilaterally in fronto-opercular regions and
the dACC.
uly 2024; 9:639–649 www.sobp.org/BPCNNI

http://www.sobp.org/BPCNNI


Figure 1. Functional principal components (fPCs) of motor activity in late-life depression. The first 4 components of the fPC analysis of actimetry. The PC
functions are shown as perturbations of the mean activity (gray). The red curve shows what happens when a small amount of PC is added to the mean.
Similarly, the green curve shows what happens when a small amount of PC is subtracted.
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For the FPN, we used TFNBS to identify 1 subnetwork
associated with fPC1 scores (all pFWE-corrected , .0001). Con-
nectivity between regions of this subnetwork was negatively
associated with reduced fPC1 for bilateral parietal regions and
the medial prefrontal region, right polar cortex, DLPFC regions,
and left precuneus. Connectivity was increased in left pre-
frontal regions and in the right precuneus.

Association Between the Second PC of Activity
and Brain Intranetwork Functional Connectivity
Activity. The statistically significant results are reported
Figure 2B and Table S3.

For the DMN, we used TFNBS to identify 1 subnetwork
associated with fPC2 (all pFWE-corrected , .0001). Connectivity
between regions of this subnetwork containing bilateral pos-
terior cingulate regions, bilateral parietal regions, medial,
bilateral superior temporal sulcus, left temporal pole, and right
medial polar prefrontal regions was positively associated with
reduced fPC2. Connectivity was decreased in bilateral pre-
genual ACC regions, bilateral inferior temporal regions, left
polar prefrontal medial regions, left posterior cingulate regions,
and left hippocampal and parahippocampal regions.
Table 2. Associations Between PC Scores and Apathy

Apathy Measure

fPC1 fPC2

z Value p Value z Value p

AES 23.37a .002 21

AMI 21.89 .07 22.53a

DCA 22.5 .018 21.9

AES, Apathy Evaluation Scale; AMI, Apathy Motivation Index; DCA, diagnostic crite
aStatistically significant associations between fPCs and apathy measures. To be co

number of apathy variables tested.

Biological Psychiatry: Cognitive Neuroscience and
For the CON, we used TFNBS to identify 1 subnetwork
associated with fPC2 scores (all pFWE-corrected , .0001). Con-
nectivity between regions of this subnetwork was positively
associated with reduced fPC2 for bilateral dACC, left insular
regions, and right frontal superior regions. Connectivity was
reduced for the left dACC, the dorsal medial region, and the
anterolateral regions, right fronto-opercular cortices, and
inferior parietal lobule.

For the FPN, we used TFNBS to identify 1 subnetwork
associated with fPC2 (all pFWE-corrected , .0001). Connectivity
between regions of this subnetwork was positively associated
with reduced fPC2 for bilateral precuneus regions and left
lateropolar and DLPFC regions. Connectivity was reduced
bilaterally in the anterior, lateral, prefrontal, superior parietal,
and right parahippocampal cortices.

Association Between Motor Activity and Structural
Connectivity

There were no significant associations between DTI or NODDI
metrics along the tracts and fPC1 or fPC2 after adjustment for
the number of tracts (Table 3). Results uncorrected for the
number of tracts are reported in the Supplement.
fPC3 fPC4

Value z Value p Value z Value p Value

.3 1 .3 0.2 .2

.016 0.78 .4 22.1 .04

.07 20.7 .48 22.1 .04

ria for apathy; fPC, functional principal component.
nsidered statistically significant, p value had to be ,.017 (.05/3) to correct for the

Neuroimaging July 2024; 9:639–649 www.sobp.org/BPCNNI 643
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Figure 2. Brain subnetworks associated with reduced scores of principal components (PCs) of motor activity in late-life depression. (A) Brain regions whose
connectivity was significantly associated with scores of the first functional PC (fPC1), detected by threshold-free network-based statistics. Estimated marginal
effects of each region of interest are reported to interpret the direction of the association when scores of fPC1 are reduced, i.e., when apathy severity in-
creases. (B) Brain regions whose connectivity was significantly associated with scores on the second fPC (fPC2) detected by threshold-free network-based
statistics. Estimated marginal effects of each region of interest are reported to interpret the direction of the association when scores of fPC2 are reduced, i.e.,
when apathy severity increases. CON, cingulo-opercular network; DMN, default mode network; FPN, frontoparietal network.
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DISCUSSION

We investigated the interplay between apathy, actimetry, and
MRI-derived functional and structural connectivity in LLD. Our
primary findings indicate that 2 patterns of motor activity were
significantly associated with apathy. Reduced motor activity
was associated with reduced connectivity within the DMN,
CON, and FPN, while late chronotype was associated with
more heterogeneous connectivity between both hemispheres
in the same regions. There were no significant associations
between microstructural metrics of white matter and patterns
of motor activity. These results suggest that motor activity
patterns and their associated functional neural connectivity
play a pivotal role in understanding the complex interplay be-
tween apathy and LLD.

Patterns of Motor Activity Were Associated With
Apathy

We found that apathy severity was associated with reduced
mean activity while low AMI scores were associated with late
chronotype in LLD. The 2 patterns of activity were robustly
found in the general adult population, notably in older adults
644 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
(42,43), as well as in patients with bipolar depression (44) and
Alzheimer’s disease (45). The relationship between decreased
mean activity and the severity of apathy in LLD is consistent
with that reported in apathy in Alzheimer disease (11), poor
health (42) and increased depression symptoms in the general
population (43), and bipolar disorder. Mean activity is also
predictive of dysexecutive function (43) and mortality (42,43) in
old age, thereby confirming its potential predictive utility in
LLD. The pattern of activity characterized by late morning and
late sleep suggests that the individuals’ chronotypes were
captured (46). In depression, the late chronotype has been
associated with elevated depression severity (47,48), cognitive
complaints (49), and risk of depressive episodes (50), puta-
tively by a deficit in emotion regulation (51,52). The association
between the late chronotype and AMI but not AES suggests
that this pattern of activity may be specific to social apathy.
This supports previous findings that link the late chronotype
with reduced social activity in the general population (42).
However, the early chronotype was associated with informant-
rated scores of apathy in Alzheimer’s disease or cognitive
decline in older adults (43,53). Because the AMI is a self-report
questionnaire that measures distinct subtypes of apathy (14),
uly 2024; 9:639–649 www.sobp.org/BPCNNI
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Table 3. Associations Between Diffusion MRI Metrics and First Principal Component of Motor Activity by Tract

Tract

DTI NODDI

FA MD ODI Partial Volume

Corr.
Coef.

Min. Cluster
Size FWE

Corr.
Coef.

Min. Cluster
Size FWE

Corr.
Coef.

Min. Cluster
Size FWE

Corr.
Coef.

Min. Cluster
Size FWE

AC 0.51 35 0.61 58 0.47 31 0.54 33

CC_1 20.34 35 0.38 58 20.32 31 20.25 33

CC_2 20.45 35 0.42 58 20.49 31 0.45 33

CC_3 20.33 35 20.18 58 20.41 31 20.38 33

CC_4 20.36 35 0.15 58 20.35 31 0.35 33

CC_5 20.28 35 0.50 58 20.30 31 0.49 33

CC_6 20.34 35 0.30 58 20.53 31 0.36 33

CC_7 20.27 35 20.38 58 20.37 31 0.39 33

CG_left 20.44 35 0.59 58 20.34 31 0.31 33

CG_right 20.37 35 0.43 58 20.36 31 0.24 33

CST_left 20.34 35 0.47 58 20.37 31 0.43 33

CST_right 20.33 35 0.32 58 0.29 31 0.41 33

ILF_left 20.31 35 0.29 58 20.34 31 0.30 33

ILF_fight 20.35 35 0.44 58 20.45 31 0.38 33

SLF_I_left 20.29 35 0.49 58 20.35 31 0.35 33

SLF_I_right 20.32 35 0.31 58 20.40 31 0.35 33

SLF_II_left 20.30 35 0.39 58 0.32 31 0.42 33

SLF_II_right 20.40 35 0.39 58 20.31 31 0.27 33

SLF_III_left 20.52 35 0.39 58 0.36 31 0.39 33

SLF_III_right 20.45 35 0.36 58 20.30 31 0.30 33

UF_left 20.38 35 0.22 58 20.41 31 20.33 33

UF_right 20.34 35 0.31 58 20.39 31 0.32 33

Along each white matter tract, significant clusters of metrics associated with fPC1 had to be greater than the familywise error rate cluster size, for a p value of .05. No
clusters were statistically significant.

AC, anterior commissure; CC, corpus callosum; CG, cingulum; Corr. Coef., Pearson correlation coefficient; CST, corticospinal tract; DTI, diffusion tensor imaging; FA,
fractional anisotropy; FWE, familywise error; ILF, inferior longitudinal fascicle; MD, mean diffusivity; Min, minimum; NODDI, neurite orientation dispersion and density
imaging; ODI, orientation dispersion index; SLF, superior longitudinal fascicle; UF, uncinate fascicle.
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lower scores may be associated with higher self-recognition of
social impairment induced by depression than by cognitive
deficits.

Within–Resting-State Network Connectivity
Associated With Mean Diurnal Motor Activity

We found that mean motor activity was associated with
increased rsFC within the DMN, the CON, and the FPN in LLD.

The DMN is central in depression pathogenesis (54,55).
Sedentary motor behavior is correlated with reduced connec-
tivity of the DMN in old (56) and younger adults (57), particularly
between the ventromedial regions of the DMN (52). Hippo-
campal and parahippocampal volumes were also found to be
associated with physical activity in healthy older adults (58–60)
and vascular mild cognitive impairment (61). Therefore,
sedentary behavior resulting from apathy may contribute to the
persistence of depression and increase the risk of dementia
(3,7) by exacerbating dysfunctions in the DMN that are asso-
ciated with LLD.

The CON was positively associated with mean activity,
confirming previous findings in older adults (56). More spe-
cifically, increased connectivity between the dACC, anterior
insula, and supplementary motor area were predictive of
sedentary behaviors in old age (62). However, key regions
Biological Psychiatry: Cognitive Neuroscience and
implicated in motor cognitive control showed a negative as-
sociation with mean activity; namely, dACC regions and
bilateral fronto-opercular cortex. While one seed-based study
found a positive association between dACC and motor ac-
tivity in vascular mild cognitive impairment (63), the choice of
the seed might have limited detection of a heterogeneous
effect across dACC subregions, contrary to the Glasser’s
atlas (30).

Regarding the FPN, we found a global positive association
between rsFC and mean motor activity and a reduced rsFC in
the left DLPFC. As reported in healthy older adults (64,65),
these regions are involved in motor planning and cognitive
control (66,67), with their activation during executive function
tasks being moderated by physical activity. Therefore, mean
motor activity may indirectly measure dysexecutive syndrome,
which is considered central in LLD and apathy development
(68,69).

Within–Resting-State Network Connectivity
Associated With Diurnal Chronotype

The diurnal chronotype was associated with heterogeneous
rsFC between the left and right hemispheres in LLD compared
with fPC1. DMN activity has been shown to be correlated with
the late chronotype in healthy adults, with higher connectivity
Neuroimaging July 2024; 9:639–649 www.sobp.org/BPCNNI 645
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between the precuneus and medial prefrontal cortex (70), while
reduced connectivity between the posterior DMN (71) and the
amygdala was found to mediate the association between the
late chronotype and depression symptoms (72). Abnormal
expression of genes regulating chronotypes had been reported
in the ACC, the hippocampus, and the DLPFC in depression
(73), suggesting that dysregulation of circadian rhythm is
central in depression pathogenesis by disrupting DMN
connectivity.

Regarding the CON, we found that late-chronotype partic-
ipants had increased rsFC in the bilateral dACC and modified
connectivity between the insula, supramarginal gyrus, and
supplementary motor areas. In depression, the late chronotype
has been associated with impaired functional activity of the
supramarginal cortex and superior orbitofrontal regions (74)
and reduced rsFC between the dACC and the amygdala (75).
These changes in CON connectivity related to chronotype may
be indicative of the modulating effect of circadian rhythm on
reward processing (76) in apathy in LLD because reduced
dACC activity was reported in late-chronotype participants
during a monetary reward paradigm (77,78).

For the FPN, we found an association between the late
chronotype and DLPFC, precuneus, and superior parietal cor-
tex connectivity. The rsFC between the DLPFC and the cuneus
has been found to mediate the impact of the late chronotype on
subclinical depressive symptoms in adults (79). Reduced
expression of circadian-regulating genes in the DLPFC has
been reported in depression compared with healthy control
participants (73,80). The modified connectivity in the FPN, as in
the DMN, may be closely related to circadian rhythm dysregu-
lation, which contributes to depression severity.

Absence of Association Between Patterns of Motor
Activity and White Matter Connectivity

We did not find any significant associations between DTI or
NODDI metrics and activity patterns, in contrast to our ex-
pectations based on the literature on LLD (81,82). DTI studies
with older adults have found correlations between global FA
and physical activity (83–86), as well as between physical
activity and FA in the body of the corpus callosum or tem-
poral areas (33,83,84). In adults, FA levels in the corpus
callosum were associated with physical activity in bipolar
disorder (85) and moderated the association between phys-
ical activity and working memory (86). All these studies
combined tensor diffusion metrics with tract-based spatial
statistics (87). While providing high statistical power, this
method may suffer from a high false-positive rate, notably in
regions of crossing pathways such as between the superior
projections of the corpus callosum and the corona radiata
fibers (88). The multicompartment model that we used was
meant to identify these tracts more precisely (89). However,
correcting for multiple comparisons may have prevented us
from reproducing the results from the aforementioned
studies, these latter having focused on global brain or tract-
specific metrics.

Limitations

Several limitations of the current study should be considered.
Our study used a cross-sectional design with a recording
646 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
period of 3 days. While being the minimal period for acceptable
estimation of motor activity (90,91), this short period may have
prevented us from more robust assessment of participants’
activity.

Moreover, PCA is subject to high variance and may not be
exactly replicable across cohorts. Nevertheless, the top 2 fPCs
are stable across studies (11,12,41–44), which can be
explained by the fact that fPC1 summarizes the maximum total
variance explained, i.e., the mean, while fPC2 is often related
to the rate of change of motor activity over time. Nonetheless,
PCA of motor activity alone may miss important aspects of
apathy that qualitative behavioral description (92,93) or mea-
sures of underlying decision processes (94) could provide.

Furthermore, our sample size was relatively small. This may
have limited our ability to detect a pattern of motor activity
associated with functional impairment. The multiple compari-
sons performed in the study, particularly for white matter
metrics across 22 bundles, further exacerbated this issue.

Finally, the inclusion of a control group in future studies will
be important to validate the impact that LLD itself has on motor
activity.

Conclusions

Our results provide new insights into the cerebral basis of
apathy-related patterns of actimetry in LLD. We showed that
these markers are more strongly associated with functional
connectivity changes than the microstructure of white matter
tracts. These results suggest that actimetry provides a mea-
sure of apathy related to brain functional dysconnectivity in
networks related to goal-directed behaviors. Improvement in
recruiting patients with LLD without criteria for significant
apathy may increase between-group differences, especially for
detecting microstructural white matter lesions.
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