
HAL Id: hal-04564290
https://hal.science/hal-04564290v2

Preprint submitted on 11 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An interconnected discrete time cascaded semi-implicit
differentiation

Loïc Michel, Malek Ghanes, Yannick Aoustin, Jean-Pierre Null Barbot

To cite this version:
Loïc Michel, Malek Ghanes, Yannick Aoustin, Jean-Pierre Null Barbot. An interconnected discrete
time cascaded semi-implicit differentiation. 2024. �hal-04564290v2�

https://hal.science/hal-04564290v2
https://hal.archives-ouvertes.fr


An interconnected discrete time cascaded semi-implicit differentiation

Loı̈c MICHEL, Malek GHANES, Yannick AOUSTIN and Jean-Pierre BARBOT

Abstract— This study is dedicated to the design of a digital
differentiator for a triple integrator. A cascade of two intercon-
nected semi-implicit Euler double differentiators approach is
proposed. This allows the digital differentiator to benefit from
similar structure of second order discrete-time homogeneous
differentiators, such as modularity and more degree of free-
dom regarding the parameter settings. Numerical results are
presented to support the rightness of the proposed method.

Index Terms— Discretization, Homogeneous differentiator,
correcting terms, interconnected systems

I. INTRODUCTION

The use of a limited number of proprioceptive sensors
helps reducing the costs of its implementation and increases
its reliability (i.e. software sensor redundancy, expensive
physical sensor, cost of maintenance, ...). Thus, the utilization
of differentiators contributes to this effort to reduce the
number of sensors on an experimental process while allow-
ing its control. The digital implementation of differentiator
algorithms is often necessary as a part of industrial and/or
experimental processes that requires numerical estimation of
derivative. Especially, discrete-time differentiators are rele-
vant with respect to engineering applications: for example,
the discrete-time optimal control based tracking differentiator
[15] and the super-twisting algorithm [23] are two widely
used algorithms but it is still a difficult problem to estimate
the exact derivative signals from the noise-corrupted inputs
[38].

Time discretization has a considerable influence on the be-
havior and properties of sliding mode multi-valued controls
or differentiators [10]. In order to overcome some limitations
of the classical sliding-mode, such as cancellation of the
chattering effect as well as robustness of the estimation
under lower sampling frequencies, Acary et. al. [2] introduce
an implicit discretization technique. The principle of this
method is to replace the classical sign function by an implicit
projector and some recent successful experiments through
implicit based sliding mode control algorithms have been
obtained (see e.g. [17], [1], [18], [37], [7], [19], [8], [11]
[21] and [9]). In the framework of the discrete homogeneous
differentiation, the semi-implicit differentiator combines ex-
plicit terms with implicit ones including projectors in order
to reduce the effects of chattering [28].
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Inspired by the work of Andrieu et al [6], which proposes a
continuous time cascade of interconnected second order dif-
ferentiators, the authors presented recently the derivation of a
cascaded version of second order semi-implicit homogeneous
differentiator [26], [29]. Two stages of differentiators are
considered for which the homogeneous degrees (exponent
parameters) can be adjusted separately. In addition, in [27],
the authors presented also a semi-implicit based third dif-
ferentiator including additional Taylor expansion corrective
terms (inspired from [5], [24]) to improve the precision.

The proposed contribution is to enhance the semi-implicit
cascade version including corrections terms aiming to reduce
the estimation error. Such implementation takes benefit from
gain flexibility in order to tune the differentiators as well as
modularity (i.e. by using the same structure of second order
discrete-time differentiator on each part of the cascade).

The paper is outlined as follows. Section II recalls the
background about the explicit and implicit Euler discretiza-
tion. Section III is focused on the cascade of two discretized
second order differentiators with correcting terms. Section
IV, dedicated to simulations results, highlights the well
founded of the proposed algorithms. The paper ends, in
section V, with a conclusion and some perspectives.

II. EXPLICIT AND IMPLICIT DISCRETIZATION

Considering the following analytic autonomous system:

ẋ = f(x) (1)

where x ∈ ℜn is the state vector and f(x) an analytic vector
field. A formal solution in exponential Lie development [14],
[32] is:

x(t+ δ) = eLfδId|x(t) =

∞∑
i=0

δi

i!
Li

fId|x(t) (2)

with Lf :=
∑n

j=1 fj
∂

∂xj
the classical Lie derivative,

|x(t) means that all functions are evaluated at x(t) and
δ0

0! L0
f Id|x(t) = x(t). For obvious computational reasons, the

discretization is often truncated, which has also an advantage
with respect to the zero dynamic under sampling [31], [39].
One of the ways of obtaining an exact solution to the dis-
cretization of equation (1) is for it to be nilpotent. Equation
(1) is nilpotent [16], [20] if there exists an integer k such
that:

eLfδId|x(t) =

k∑
i=0

δi

i!
Li

fId|x(t) (3)

Since the work of B. Brogliato and co-authors [3] on the
discretization of differential inclusions dedicated to control



and/or observation under sampling, the question of implicit
or explicit discretization has been raised, but what this
meaning of both discretization types?
Equation (2) is the explicit discretization of (1), while the
following equation is its implicit version:

x(t+ δ) = x(t) +

∞∑
i=1

(−δ)i

i!
Li

fId|x(t+δ) (4)

This equation comes from a simple manipulation of the
following equation:

x(t) = eLf(−δ)Id|x(t+δ) =

∞∑
i=0

(−δ)i

i!
Li

fId|x(t+δ)

The advantages of Euler implicit discretization (i.e. approx-
imation in O(δ2)) have been demonstrated in numerous
articles for both control [22], [33] and differentiation [30],
[34].
Let us recall the exact discretization for a double integrator,
considering the following controlled and perturbed system:

ẋ1 = x2

ẋ2 = u+ p (5)

where u is the control input and p a perturbation both
are considered slowly variable with respect to the sampling
period δ i.e. ∀ t > 0 and ∀ θ ∈ [0, δ] u(t+θ)−u(t) ≃
0 and p(t+ θ)− p(t) ≃ 0. Then, for time periods of the
order of δ, equation (5) can be rewritten as follows in term
of triple integrator without input:

ẋ1 = x2

ẋ2 = x3 + u (6)
ẋ3 = 0

where x3 := p.
From (4) and (3) the implicit discretization of (6) is:

x+
1 = x1 + δx+

2 − δ2

2!
(x+

3 + u+)

x+
2 = x2 + δ(x+

3 + u+) (7)
x+
3 = x3

where xi, i ∈ {1, 2, 3}, stands for xi(kδ) and x+
i stands for

xi((k + 1)δ).

III. CASCADE OF TWO SEMI-IMPLICIT DISCRETE
DIFFERENTIATORS INCLUDING CORRECTION TERMS

In order to obtain more degrees of freedom in the param-
eter settings and to deal only with differentiators of order 2,
this section presents a cascade of semi-implicit Euler order
2 differentiators with correcting terms.
This approach is inspired by the continuous-time articles [4]
and [12]. In [4], a cascade of differentiators is introduced and
in [12], a step-by-step observer is proposed. Nevertheless, the
basic idea still remains to use the equivalent vector principle
[36], which is only possible under sampling in implicit Euler
discretization [6] and semi-implicit Euler discretization [25],
[30], [34].

The cascade of two semi-implicit Euler double differentiators
for system (7), is then proposed as follows and depicted in
Fig 1:
(a) the first differentiator stage is:

z+1 = z1 + δ(z+2 + λ1|e1|α1N1)−
δ2

2
(Ē2z̄

+
2 fwd + u+)

z+2 = z2 + δ(λ2|e1|2α1−1N2 + Ē2z̄
+
2 fwd + u+) (8)

where e1 = x1 − z1 (i.e. e1 = 0 defines the sliding
surface), including the notation ⌈•⌋α1 = | • |α1sgn(•).
z̄+2 fwd is the correction term that comes from the second
differentiator. The associated projectors N(q,θ) with q ∈
{1, 2}, α ∈ [ 23 , 1[ and θ ∈ [0, 1[ are defined by:

N(q,θ) :=



if (1− θ)|e1|q(1−α) < λqδ
q

→ Nq = (1− θ)
⌈e1⌋q(1−α)

λqhq

if (1− θ)|e1|q(1−α) ≥ λqδ
q

→ Nq = sgn(e1)

(9)

Moreover, E2 is defined such as:

E2 :=

{
if (1− θ)|e1|2(1−α) < λ2δ

2 → E2 = 1
if (1− θ)|e1|2(1−α) ≥ λ2δ

2 → E+
2 = 0

(10)
(b) by considering the general definition of (9) and (10), the

second differentiator is:

z̄+1 = z̄1 + δ(z̄+2 + u+ + λ̄1|ē1|α2N̄1) (11)
z̄+2 = z̄2 + δλ̄2|ē1|2α2−1N̄2 (12)

where ē1 = x̄1 − z̄1 with x̄1 = z2.

z̄+2 fwd = z̄2 fwd + λfwd(z̄2 − z̄2 fwd) (13)

Remark that (13) has been designed using the z transform
of first order law pass filter with s = 1−z−1

δ . Concerning
the tuning of the parameters, from the gained experience,
the amplification parameters λ1, λ2, λ̄1, and λ̄2 are set
to ensure the stability following a standard pole placement.
The parameters α1 and α2 are chosen to make a trade-off
between the noise and perturbation rejection (see [13] for
the continuous case). Moreover, the role of the parameter θ
is to reduce the sensitivity with respect to the noise inside
the projector. Practically, these parameters can be set using a
direct estimation with respect to the dynamics and the power
of noise, or set using an optimization algorithm (using e.g.
the BFO algorithm [35]).

Proposition 1: For θ = 0, a sufficiently small δ > 0, an
appropriate choice of the parameters λi, λ̄i for i ∈ {1, 2}
and λfwd, the cascade of differentiators (8)-(11) converges
asymptotically to the solution of (7).

Considering the observation error, after convergence
(e1 → 0) the first row gives:

e+1 = δe+2 − δ2

2
(x+

3 − Ē2z̄
+
2 fwd) (14)

This equation (14) gives after one more iteration:

e2 =
e1
δ

+
δ

2
(x3 − Ē2z̄2 fwd) (15)



Differentiator 1

Differentiator 2

z
1

z
2

z
1

z
2

x
1

+

-

+x =z
21

-

z
1

z
2
+E

2

Digital
Filter

Fig. 1: Cascade of two differentiators under sampling with
correction terms.

Using (15) in the second row of the observation error one
obtains:

e+2 = e1
δ + δ

2 (x3 − Ē2z̄2 fwd)
+ δ(λ2|e1|2α1−1N2 + x+

3 − Ē2z̄
+
2 fwd)

(16)

After convergence (cancellation of e1
δ ), one has:

e+2 =
δ

2
(x3 − Ē2z̄2 fwd) + δ(x+

3 − Ē2z̄
+
2 fwd) (17)

From the fact that the input of the second semi-implicit Euler
double integrator is y2 = z2 = x2 − e2, and x̄1 = z2 and
x̄2 = x3 are set. The predicted state calculated by the second
differentiator is:

x̄+
1 = x̄1 + e2 + δx+

3 − e+2
x̄+
2 = x̄2 (18)

From (11) and (18) the observation error for ē1 is:

ē+1 = x̄1 + e2 + δx+
3 − e+2 − z̄1 − δ(z̄+2 + λ̄1|ē1|α2N̄1)

after convergence (i.e. cancellation of x̄1 − z̄1 by
δλ̄1|ē1|α2N̄1), one obtains:

ē+1 = e2 + δx̄+
2 − e+2 − δz̄+2 (19)

The second row of the second differentiator is:

z̄+2 = z̄2 + δλ̄2|ē1|2α2−1N̄2 (20)

Moreover, as x̄2 = x3, one has:

x̄+
2 = x̄2 (21)

and the second state of observation error is: ē2 = x̄2 − z̄2 =
x3 − z̄2.
Rewriting (19) such as:

ē1 = e−2 + δx̄2 − e2 − δz̄2 (22)

this implies that ē2 = x̄2 − z̄2 is given by:

ē2 =
ē1
δ

+
e2 − e−2

δ
(23)

Using (23) in the second row of the observation error of the
second differentiator leads to:

ē+2 =
ē1
δ

+
e2 − e−2

δ
− δλ̄2|ē1|2α2−1N̄2 (24)

after convergence (i.e. cancellation of ē1
δ ), one has:

ē+2 =
e2 − e−2

δ
(25)

Is it possible to know x+
3 ? Yes, thanks to the available

observation errors i.e e1 and ē1. Considering firstly that both
differentiators are in the sliding strip, then using two times
equation (15) in (19) in order to substitute e2 and e+2 , this
gives:

ē+1 =
e1
δ
+
δ

2
(x3−z̄2 fwd)−(

e+1
δ
+
δ

2
(x+

3 −z̄+2 fwd))+δ(x+
3 −z̄+2 )

(26)
which gives after a reordering:

ē+1 +
e+1 − e1

δ
=

δ

2
(x3−z̄2 fwd)−

δ

2
(x+

3 −z̄+2 fwd)+δ(x+
3 −z̄+2 )

The parameter λfwd is chosen such that in (13), z̄2 fwd

converges asymptotically to z̄2. Since x+
3 = x3, then asymp-

totically the following equation is verified:

ē+1 +
e+1 − e1

δ
= δ(x+

3 − z̄+2 )

which gives:

x+
3 = x3 =

ē1
δ

+
e+1 − e1

δ2
+ z̄+2 (27)

Finally, as x3 is asymptotically estimated then asymptotically
e1 = e2 = ē1 = ē2 = 0 and x̄2 = z̄2 = x3. □

Remark 1: In (13), if λfwd = 1 then z̄+2 fwd is equal to z̄+2
and due to the fact that the second differentiator is computed
after the first one, then this introduces an extra delay in the
correction terms z̄2 fwd, which leads to instability. In the
same way, the phenomena occurs if the second differentiator
is computed before the first one. Viewed that the input of
the second differentiator is the output of the the first one
with one step of delay and introduce also one delay in the
correction terms and instability, this is the reason of using
(13).

IV. NUMERICAL RESULTS AND DISCUSSION

The implicit double integrator system (6) is simulated con-
sidering the following initial conditions: x1(0) = x2(0) =
x3(0) = 0 and the particular input u such as u = 1 if t < 30
s and u = −1 if t ≥ 30 s is applied to the system. The
perturbation p is set to p = 0.5.

The gains and parameters for each stage of the cascade
are set as follows:
(a) λ1 = 2102, λ2 = 4104 and α1 = 0.95;
(b) λ̄1 = 2102, λ̄2 = 4104 and α2 = 0.98.

All simulations are running over 60 sec (and the input u
switches between +1 and −1 at t = 30 sec). The following
results present five cases illustrating different configurations



of the differentiator1. For all cases, the initial conditions of
the cascade is set to z1(0) = −0.7, z2(0) = −1, z̄1(0) =
0.5, z̄2(0) = 1. The θ projector is in action only in the case
5 (set to θ = 0.5) and is set to θ = 0 in the other cases.

The parameter λfwd = 0.3 has been set to give a slow
interconnection response (the influence of λfwd will be
discussed later).

• Case 1 : Cascade with the correction terms and the
knowledge of u
Figures 2 and 3 depict respectively the states estimation
and the estimation error considering the inclusion of the
correction terms and knowledge of u.

Fig. 2: State estimation (with correction terms and knowledge
of u).

Fig. 3: Differentiation estimated errors (with correction terms
and knowledge of u).

• Case 2 : Cascade with the correction terms and without
the knowledge of u
Figure 4 depicts the estimation error considering the
inclusion of the correction terms but without the knowl-
edge of u.

• Case 3 : Cascade without the correction terms and
without the knowledge of u
Figure 5 depicts the estimation error without the cor-
rection term and without the knowledge of u.

1Simulation code can be found in the repository:
<https://github.com/LoicMichelControl/
Interconnected-Cascaded-Semi-Implicit-Differentiation
---Supplementary-Material.git>.

Fig. 4: Differentiation estimated errors (with correction terms
and without knowledge of u).

Fig. 5: Differentiation estimated errors (without correction
terms and without knowledge of u).

• Case 4 : Cascade with the correction terms and the
knowledge of u and the presence of noise for θ = 0
Figures 6 and 7 depict respectively the states estimation
and the estimation error, for which the noise2 is obtained
by a random generator that is multiplied by η0 = 0.1.
This noise is added to the x1 state.

Fig. 6: State estimation (with correction terms and knowledge
of u) for θ = 0.

• Case 5: Cascade with the correction terms and the
knowledge of u and the presence of noise for θ > 0

2The noise is computed under Matlab® using the instruction eta0 *
rand() where eta0 is a factor that multiplies the noise.



Fig. 7: Differentiation estimated errors (including correction
terms and knowledge of u) in presence of noise for θ = 0.

Figure 8 depicts respectively the states estimation and
the estimation error, for which a noise of amplitude
η0 = 0.1 is added to the x1 state. In this case, the
efficiency of the θ parameter (included in the projector
(9)) is evaluated considering θ = 0.5.

Fig. 8: Differentiation estimated errors (without correction
terms and knowledge of u) for θ = 0.5.

The Tables I and II summarizes the properties of the
errors with respect to each studied case: the averaged errors,
denoted respectively ea1 , e

a
2 , and ea3 , as well as the sum of

square errors (SSE), denoted respectively es1, e
s
2, and es3 are

calculated over the last 15 sec. The maximum of the errors
over the 60 sec is denoted respectively em1 , em2 , and em3 .

case # ea1 em1 ea2 em2 ea3 em3
1 < 10−10 0.70 < 10−10 12.8 < 10−10 70.2
2 < 10−10 0.70 < 10−10 12.6 < 10−10 69.2
3 -0.004 0.7 -0.07 12.69 < 10−10 69.2
4 0.0004 0.78 -0.008 14.4 0.04 78
5 0.0002 0.75 0.005 3.82 0.017 15.9

TABLE I: Properties of the differentiation error (averaged
error and max. of the error) with respect to each case.

The cases 1 and 2 show a great precision thanks to the
correction terms, and the knowledge of the input u is slightly
better to estimate properly the perturbation p. However, when
the correction terms are not in effect, like in the case 3,
the precision is largely decreased on e1 and e2, highlighting
the accuracy of the forwarded information from the highest

case # es1 es2 es3
1 < 10−10 < 10−10 < 10−10

2 < 10−10 < 10−10 < 10−10

3 < 10−10 < 10−10 < 10−10

4 0.0049 1.32 57.8
5 0.0016 0.041 1.21

TABLE II: Properties of the differentiation error (sum of
square error) with respect to each case.

derivative stage of the differentiator to ”refine” the Taylor
expansion on the first stage, giving hence more accuracy to
the estimation. Let us emphasize the fact that the high values
of the λ parameters that have been chosen for this particular
system, allow a good initial transient toward the ”tracking”
of the estimation. In addition, the intrinsic tuning flexibility
of the cascade allows giving different α parameters, thus
allowing a slightly better rejection of the noise in the
second differentiation stage by choosing α2 > α1. However,
dealing with two separate stages may introduce oscillations
due to the interconnection (for which the lower stage has
to ”absorb” stiff changes of the perturbation estimation),
which can be overcame using a simple first order filter
(whose time-constant has to be chosen to damp transient
of the forwarded high order derivative estimation). Remark
that setting λfwd = 1 induces strong oscillations on the
estimation due to the delay in the correction terms that may
create instability. At the opposite, a small λfwd slows down
the transient of the interconnection inducing therefore a very
slow global dynamics of the cascade. A proper choice of
λfwd is a compromise between the time response of the
estimation and the whole stability. From the noise rejection
point of view, the previous experience has shown that the
use of θ projector has improved greatly (about fifty time)
the accuracy of the rejection as shown by the SSE index
between the case 4 (θ = 0) and the case 5 (θ = 0.5) in
the Table II. Another advantage of θ > 0 is the attenuation
of em2 and em3 for which the overshoots are attenuated
in amplitude but stay longer in time. Combined with the
proposed interconnected architecture of differentiation, it
improves slightly the reduction of the noise as shown in the
case 5 (for which θ has been set to 0.5), compared with the
case 4 (θ = 0) since the cascade offers already good filtering
properties.

Such properties of filtering associated to the interconnec-
tion offer kind of modularity of the proposed architecture,
hence using a “bloc” of differentiation including the flexi-
bility of tuning separately the parameters as well as taking
from the benefit of the interconnections to improve the state
estimation.

V. CONCLUSION

This work presented an interconnected cascade differentia-
tor based on semi-implicit discrete differentiation. The pro-
posed contribution aims to include correction terms in order
to improve the accuracy. Numerical simulations highlight the
well founded of the proposed approach. Future perspectives
include to develop an optimization procedure to better tune



the parameters and also use the variable exponent in order to
adapt the degree of homogeneity with respect to the noise.
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[14] W Gröbner. Die lie-reihen und ihre anwendungen, springer verlag,
berlin (1960)(it. transi.: 1973, le serie di lie e le loro applicazioni).
1973.

[15] J. Han. From pid to active disturbance rejection control. [IEEE
Transactions on Industrial Electronics, 56(3):900–906, 2009.

[16] Henry Hermes. Nilpotent approximations of control systems and
distributions. SIAM Journal on Control and Optimization, 24(4):731–
736, 1986.

[17] O. Huber, V. Acary, and B. Brogliato. Comparison between ex-
plicit and implicit discrete-time implementations of sliding-mode
controllers. In 52nd IEEE Conf. on Decision and Control, pages 2870–
2875, 2013.

[18] O. Huber, V. Acary, and B. Brogliato. Enhanced matching perturba-
tion attenuation with discrete-time implementations of sliding-mode
controllers. In 2014 European Control Conference, pages 2606–2611,
2014.

[19] O. Huber, V. Acary, and B. Brogliato. Lyapunov stability and
performance analysis of the implicit discrete sliding mode control.
IEEE Trans. on Automatic Control, 61(10):3016–3030, 2016.

[20] Matthias Kawski. Nilpotent lie algebras of vectorfields. Journal fur die
Reine und Angewandte Mathematik, 1988(388):1–17, 1988. Funding
Information: *) This work was supported by NSF Grant DMS 8500911
and is part of the doctoral dissertation of the author at the University
of Colorado, Boulder.

[21] Stefan Koch and Markus Reichhartinger. Discrete-time equivalent
homogeneous differentiators. In 2018 15th International Workshop
on Variable Structure Systems (VSS), pages 354–359, 2018.

[22] A. Levant. Sliding order and sliding accuracy in sliding mode control.
Int. J. of Control, 58(6):1247–1263, 1993.

[23] Arie Levant. Robust exact differentiation via sliding mode technique.
automatica, 34(3):379–384, 1998.

[24] Miki Livne and Arie Levant. Proper discretization of homogeneous
differentiators. Automatica, 50(8):2007–2014, 2014.

[25] L. Michel, M. Ghanes, F. Plestan, Y. Aoustin, and J.P. Barbot. Semi-
implicit Euler discretization for homogeneous observer-based control:
one dimensional case. In Proc. of the IFAC-V 2020, World Congress,
Berlin, Germany, July 2020.

[26] L. Michel, S. Selvarajan, M. Ghanes, F. Plestan, Y. Aoustin, and J. P.
Barbot. An experimental investigation of discretized homogeneous
differentiators: pneumatic actuator case. IEEE Journal of Emerging
and Selected Topics in Industrial Electronics, 2(3):227–236, 2021.

[27] Loic Michel, Malek Ghanes, Yannick Aoustin, and Jean-Pierre Barbot.
A Third order Semi-Implicit Homogeneous differentiator: Experimen-
tal Results. In International Workshop on Variable Structure Systems
and Sliding Mode Control, Rio de Janeiro, Brazil, September 2022.

[28] Loı̈c Michel, Malek Ghanes, Franck Plestan, Yannick Aoustin,
and Jean-Pierre Barbot. Semi-implicit euler discretization for ho-
mogeneous observer-based control: one dimensional case. IFAC-
PapersOnLine, 53(2):5135–5140, 2020. 21st IFAC World Congress.

[29] Loı̈c Michel, Malek Ghanes, Franck Plestan, Yannick Aoustin, and
Jean-Pierre Barbot. Semi-implicit homogeneous euler differentiator
for a second-order system: Validation on real data. In 2021 60th IEEE
Conference on Decision and Control (CDC), pages 5911–5917, 2021.

[30] Mohammad Rasool Mojallizadeh, Bernard Brogliato, Andrey
Polyakov, Subiksha Selvarajan, Loı̈c Michel, Franck Plestan, Malek
Ghanes, Jean-Pierre Barbot, and Yannick Aoustin. Discrete-time
differentiators in closed-loop control systems: experiments on
electro-pneumatic system and rotary inverted pendulum. HAL-INRIA
[Research Report hal-031225960], 2021.

[31] S. Monaco and D. Normand-Cyrot. Zero dynamics of sampled
nonlinear systems. Systems & Control Letters, 11(3):229–234, 1988.

[32] S. Monaco and D. Normand-Cyrot. Issues on nonlinear digital control.
European Journal of Control, 7(2):160–177, 2001.

[33] Wilfrid Perruquetti, Thierry Floquet, and Emmanuel Moulay. Finite-
time observers: application to secure communication. IEEE Trans. on
Automatic Control, 53(1):356–360, 2008.

[34] Andrey Polyakov. Analysis of Homogeneous Dynamical Systems,
pages 225–270. Springer International Publishing, Cham, 2020.

[35] Margherita Porcelli and Philippe L. Toint. Bfo, a trainable derivative-
free brute force optimizer for nonlinear bound-constrained optimiza-
tion and equilibrium computations with continuous and discrete vari-
ables. ACM Trans. Math. Softw., 44(1), June 2017.

[36] Vadim Utkin. Sliding Modes and their Applications in Variable
Structure Systems. MIR publishers (Original version in Russian
(1974)), Moscow, 1978.

[37] B. Wang, B. Brogliato, V. Acary, A. Boubakir, and F. Plestan. Exper-
imental comparisons between implicit and explicit implementations
of discrete-time sliding mode controllers: Toward input and output
chattering suppression. IEEE Trans. on Control Systems Technology,
23(5):2071–2075, 2015.

[38] Juan Wang, Hehong Zhang, Gaoxi Xiao, Zhihong Dan, Song Zhang,
and Yunde Xie. A comparison study of tracking differentiator and
robust exact differentiator. In 2020 Chinese Automation Congress
(CAC), pages 1359–1364, 2020.
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