
HAL Id: hal-04564278
https://hal.science/hal-04564278

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Drawing the boundaries between blockchain and
blockchain-like systems: a comprehensive survey on

distributed ledger technologies
Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, Abdellatif

Mezrioui

To cite this version:
Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, Abdellatif Mezrioui. Drawing the bound-
aries between blockchain and blockchain-like systems: a comprehensive survey on distributed ledger
technologies. Proceedings of the IEEE, 2024, 112 (3), pp.247 - 299. �10.1109/JPROC.2024.3386257�.
�hal-04564278�

https://hal.science/hal-04564278
https://hal.archives-ouvertes.fr

Drawing the boundaries between Blockchain and
Blockchain-like systems: A Comprehensive Survey

on Distributed Ledger Technologies

Badr Bellaj * $, Aafaf Ouaddah*, Emmanuel Bertin §(IEEE Senior), Noel Crespi$(IEEE Senior), Abdellatif Mezrioui*
$Telecom SudParis, Paris, France, *Institut National des Postes et Télécommunications, Rabat, Morocco, §Orange, France

Corresponding e-mail: bellaj.badr@mchain.uk

Abstract—Bitcoin’s success as a global cryptocurrency has
paved the way for the emergence of blockchain, a revolutionary
category of distributed systems. However, the growing popularity
of blockchain has led to a significant divergence from its core
principles in many systems labeled as ”blockchain” This diver-
gence has introduced complexity into the blockchain ecosystem,
exacerbated by a lack of comprehensive reviews on blockchain
and its variants. Consequently, gaining a clear and updated
understanding of the diverse spectrum of current blockchain and
blockchain-like systems has become challenging. This situation
underscores the necessity for an extensive literature review and
the development of thematic taxonomies.

This survey seeks to offer a comprehensive and current
assessment of existing blockchains and their variations, while
delineating the boundaries between blockchain and blockchain-
like systems. To achieve this objective, we propose a holistic
reference model for conceptualizing and analyzing these sys-
tems. Our layer-wise framework envisions all distributed ledger
technologies (DLT) as composed of four principal layers: data,
consensus, execution, and application. Additionally, we introduce
a new taxonomy that enhances the classification of blockchain
and blockchain-like systems, offering a more useful perspective
than existing works.

Furthermore, we conduct a state-of-the-art review from a
layered perspective, employing 23 evaluative criteria predefined
by our framework. We perform a qualitative and quantitative
comparative analysis of 44 DLT solutions and 26 consensus
mechanism, while discussing differences and boundaries between
blockchain and blockchain-like systems. We emphasize the signif-
icant challenges and trade-offs encountered by distributed ledger
designers, decision-makers, and project managers during the
design or adoption of a DLT solution. Finally, we outline crucial
research challenges and directions in the field of DLTs.

Index Terms—Blockchain, DLT, Consensus, Blockchain-like.

I. INTRODUCTION

The blockchain space has rapidly evolved, starting with the
introduction of Bitcoin [1] a decade ago, and progressing to
the development of modern enterprise versions of DLT. Bitcoin
or Bitcoin-based project such as Litecoin [2] and Peercoin [3]
are often acknowledged as blockchain 1.0. The introduction of
Ethereum in 2015, along with projects like IOTA [4], Hyper-
ledger [5], and Solana [6], ushered in the era of blockchain 2.0.
This phase witnessed significant deviations from Nakamoto’s
original blockchain design, giving rise to a distinct category
of technologies. The emergence of this new category, deeply
influenced by blockchain principles but not confined to them,

has led the industry to market a more inclusive term: DLT
when describing this particular category. Despite this shift,
a lack of rigorously defined terminologies and a universally
accepted taxonomy has resulted in confusion. Terms such as
”blockchain,” ”DLT”, or even ”distributed database” have been
subject to misunderstanding, misuse, and misinterpretation.
Many projects and enterprises extensively employ the term
”blockchain” as mere marketing jargon, further complicating
the landscape. Despite several proposals aiming to standardize
blockchain (ITU [7], ISO [8]-[9], IEEE [10]), there is currently
no standardized recognized definition of blockchain or DLT.
Consequently, varying opinions may arise regarding the extent
to which a system qualifies as a blockchain. Additionally, a
noticeable pattern is the rising use of unclear and inconsistent
language in diverse projects. This has led to instances where
the same term signifies different concepts. This linguistic dis-
cordance poses a potential hindrance to the development and
widespread adoption of the DLT sector. Another ramification
of this lack of consensus and standardization manifests as a
deficiency in interoperability between DLT networks. The DLT
ecosystem lacks interoperability as the DLT community, driven
by intense competition and commercial pressures, focuses on
the introduction of new systems that emphasize improved
performance. Yet, the absence of a standard technical reference
model makes it challenging to evaluate and compare these
systems. In light of these challenges, our goal here is to es-
tablish clearer distinctions between different categories within
the DLT ecosystem. We propose a new taxonomy designed to
highlight the unique differences between different DLT groups.
Additionally, we adopt a systematic and holistic approach
to conceptualize and scrutinize DLTs as functional systems,
emphasizing key layers across four levels of analysis. This
comprehensive effort aims to provide a structured framework
for understanding the diverse technologies within the evolving
DLT landscape.

A. Motivation, aims and impact of the survey

1) Problem statement and motivations: At the time of
writing this survey, the evolution of blockchain technology
initiates an era marked by inconsistency and intense technical
variations. In fact, there is a big number of blockchain-
based projects under development. Some of which are sim-

ple replications of well-known projects, such as Bitcoin or
Ethereum, whereas others propose entirely new functionalities
and architectures. The current variations in blockchain sys-
tems pose a number of concerns from different perspectives,
particularly concerning heterogeneity, coupled with the lack of
interoperability, which may hinder the adoption of blockchains
in our techno- and socio-economic systems. Furthermore, the
diverse designs of DLT and their adaptable configurations
pose a challenge for software architectures and developers
when it comes to making informed decisions for construct-
ing genuinely decentralized systems.Furthermore, like other
technologies, the lack of standards harms privacy, security,
governance, and more importantly, interoperability.
Several potential issues may arise, including but not limited
to:

1) Hindering consistency in the formulation of of DLT
regulatory laws and policies.

2) Causing confusion in the application of consumer pro-
tection laws and regulations.

3) Diminishing the precision of academic research aimed
at exploring the foundational concepts essential for the
development of innovative applications and solutions,
thereby potentially impeding advancements in various
fields.

4) Hindering the widespread adoption of the technology
and its interoperability and integration with existing
standardized technologies, thus hindering the utilization
of blockchains/DLT and their potential applications.

In fact, any DLT or Cryptocurrency regulation or law begins
by providing a correct legal definition of these elements. A
DLT taxonomy helps establish that basis and assists reg-
ulators in crafting a flexible and granular DLT regulatory
framework that considers the differences between existing
projects rather than treating them as a single entity. For
certain regulations such as eIDAS (electronic Identification,
Authentication and Trust Services), the GDPR (General Data
Protection Regulation), or Mica(markets in crypto-assets),
the scope of applicability can differ from one category to
another, depending on the specifications of a given DLT
project (e.g., Data shareability). Thus, in the absence of a
standard that helps regulators differentiate between different
types of DLTs, confusion may arise regarding when to apply
consumer protection laws and regulations. Furthermore, the
visibility provided by the proposed framework makes it easier
to integrate blockchain-based registries into other legislation.

2) Our proposed approach and methodology: A compre-
hensive solution to the aforementioned challenges involves
proposing a reference model that delineates standardized
structures, elements, and relationships. Such a model would
serve as a framework for distinguishing authentic blockchain
systems from those that exhibit blockchain-like characteris-
tics. Establishing clear boundaries between these categories
is imperative to establish a fair and equitable environment,
facilitating the design and adoption of blockchain-based prod-
ucts or services by industry participants and community

members. Drawing parallels with the Internet, where various
standardization bodies (such as IETF in collaboration with
W3C, ISO/IEC, ITU) continually define standards to enhance
interoperability among systems and technologies, a similar
approach is essential for the blockchain domain. By instituting
blockchain standards, we can encourage the development
and widespread adoption of interoperable blockchain and
blockchain-like applications. Analogous to how standards for
the World Wide Web contribute to interoperability, accessibil-
ity, and usability of web pages, blockchain standards would
play a pivotal role in fostering the flourishing and widespread
use of blockchain technologies. To achieve this goal, we
conduct the following steps:
(1) Definition and Vocabulary Framework: An initial step

involves scrutinizing the vocabulary and terms to clarify any
ambiguities and resolve discrepancies. Conducting a litera-
ture review of existing technologies serves as the founda-
tion for streamlining complexity and structuring information
systematically. This process culminates in the development
of a comprehensive vocabulary encompassing key blockchain
terms. This established vocabulary serves as the groundwork
for readers, enabling a better understanding of the subsequent
classification and taxonomy presented in the analysis.
(2) Framework Setting Component and Property Iden-

tification: A review of the DLT literature by adopting a
common multi-layered approach that inspects each key design
separately. In fact, layering is a basic structuring technique
used in different models such as TCP/IP, Open Systems Inter-
connection (OSI) [11], and Linux Systems. This layerization
divides the studied systems into distinct layers to make it
easier to understand and analyze. The structure of the different
defined layers helps us to determine to which taxon a system
belongs.
(3) Blockchain Classification: Finally, by examining the

components and properties identified in each layer, we in-
troduce and compare two categories. However, due to the
continuous evolution of technology, these categories are ex-
panding over time. Consequently, for the purpose of simplicity,
our study focuses on two primary configurations for each
component and property.

3) Results and impact of the survey: The outcome of
the analysis at the component level yields a comprehensive
blockchain taxonomy and a layered framework. This frame-
work organizes major components hierarchically, elucidating
their functional relationships and potential design patterns.
This conceptual framework (DCEA) serves as a tool that
assists DLT designers and decision-makers in analyzing the
state of DLTs and their interactions for a comprehensive un-
derstanding of the DLT landscape and different proposed solu-
tions. Moreover, the proposed framework helps DLT designers
and DLT adopters build a structured vision of the proposed
solutions in different DLTs and thus opt for the suitable design
choice. In general, assessing the quality of a taxonomy or
ontology proves challenging, particularly in dynamic domains
such as blockchains. Taxonomies and ontologies are typically
crafted to manage complexity and structure information, each

serving distinct purposes and undergoing evolutionary changes
over time (as seen, for instance, in the evolution of the
renowned Linnaean taxonomy in biology). Our taxonomy
seeks to lay the groundwork for classifying diverse blockchain
components, acknowledging that it does not claim to be
the definitive structure. Nevertheless, the proposed taxonomy
holds practical significance in various scenarios. It can:
(1) Support software architectures in exploring different sys-

tem designs, evaluating, and comparing diverse design
options;

(2) Serve as preparatory work for the development of
blockchain standards, aiming to enhance the widespread
adoption of blockchain-based solutions and services;

(3) Facilitate research into architectural frameworks for
blockchain-based systems, fostering the adoption of
blockchain-based systems through increased interoper-
ability and compatibility.

B. Contributions
This paper significantly extends our previous works [12], [13],
contributing in the following key ways:

1) Reference Model Establishment: The paper introduces a
reference model that offers a comprehensive perspective
on Distributed Ledger Technology (DLT) systems over
time. This model categorizes current systems across
four distinct layers: data, consensus, execution, and
application, providing a thorough exploration of the state
of the art.

2) DLT Taxonomy: A novel taxonomy of DLTs is pro-
posed, challenging the distinctions between blockchain
and blockchain-like systems. This taxonomy is based
on different architectural configurations across the four
layers defined in the reference model.

3) Comprehensive Comparison: The paper provides the
first comprehensive comparison of a broad spectrum
of DLT technologies, encompassing 44 projects and 26
consensus mechanism, offering valuable insights into
their unique features and characteristics.

4) Consensus Mechanism Evaluation: A qualitative and
quantitative comparison of various consensus mech-
anisms, including recent contributions, is conducted
through the established framework. This evaluation en-
hances understanding and aids in decision-making for
system designers.

5) Academic Achievements Summary: The paper summa-
rizes practical academic achievements that have posi-
tively impacted the design and performance of DLTs.
This inclusion provides a succinct overview of advance-
ments in the field.

6) Exploration of New Trends: Emerging blockchain trends
such as Blockchain modularity, zKvms, accounts ab-
stractions, and others are presented and discussed. This
forward-looking analysis identifies and explores evolv-
ing aspects within the blockchain landscape.

The paper will serve as a valuable guide for blockchain
system designers, aiding them in making informed design

choices for new DLT implementations. By encompassing a
broad spectrum of DLT technologies, offering a novel tax-
onomy, and addressing current and future trends, the paper
provides a comprehensive resource for both researchers and
practitioners in the blockchain domain.

C. Paper’s Organization

The structure of the survey is outlined as follows. Section II
provides the necessary background, defines the adopted termi-
nology, and offers a synopsis of the contextualized history of
the Distributed Ledger Technology (DLT) evolution. In Section
III, the proposed DCEA framework is introduced, outlining its
layers and components. The section also elaborates on how
this framework is employed to classify Distributed Ledger
Technologies (DLTs). Sections IV, V, VI, and VII individually
delve into the DCEA layers, addressing the data, consensus,
execution, and application layers, respectively. Within each
section, we provide an overview of the key components
and properties of the examined layer, accompanied by an
exploration of the latest developments in the field. Section VIII
provides an in-depth comparative assessment and critical anal-
ysis of 44 diverse DLTs in academic and industrial settings.
This evaluation employs the proposed referential framework
and encompasses the examination of 26 consensus protocols.
Section IX discusses the lessons learned from the reviewed
literature. Section X focuses on the open challenges and
research directions. Finally, we conclude with a summary in
Section XI.

D. Comparison with existing surveys and tutorials

In the past few years, many studies have been conducted
on reviewing and taxonomizing DLT technologies, covering
multiple topics. Generally, we observe three types of surveys
as shown in Table I. First, there are components-oriented
surveys focusing on specific parts of DLTs, e.g., consensus
mechanisms. Second, application-oriented surveys covering
DLT applications in different domains; and third, surveys
providing conceptual and holistic views of the DLT landscape.
Our work belongs to the last category, even though none of the
prior work has the scope or the width we adopt in our survey.
A comparative summary of earlier similar works is shown in
Table III.

Here, we provide an overview of some recent holistic re-
search. [14] attempts to reflect the state of the art in the area of
fully distributed digital currencies. However, it predominantly
focuses on the Bitcoin protocol, its building blocks, and its
applications, with a very short introduction to other Bitcoin-
inspired projects. [15] proposes a taxonomy that captures a
limited number of architectural characteristics of blockchains,
namely: the level of decentralization, computation and client
storage, as well as blockchain configuration. Besides, the
authors provide only a brief surface-level review of concepts
and notions needed to understand or classify DLTs. In [16],
a good academic literature review on Blockchain technology
is presented, with a focus on providing a non-exhaustive list
of architecturally-relevant characteristics and quality attributes.

However, the authors define the blockchain as a distributed
ledger technology without setting a clear distinction between
the two.

Interestingly, [17] proposes a conceptual architecture, a
taxonomy that distinguishes cryptoeconomic design (CED)
from DLT, and a classification of 29 distributed ledger sys-
tems (DLT). However, the paper does not present a detailed
overview of the underlying concepts of DLTs. Besides, the
proposed taxonomy focuses more on CED and considers
the blockchain as a mere data structure without a clear and
systematic definition. Similarly, [18] introduced a comprehen-
sive taxonomy of DLTs with extensive coverage of multiple
relevant concepts that revolve around CED. The proposed
taxonomy lacks a conceptual architecture that defines what a
blockchain or a DLT is. More particularly, this taxonomy does
not explicitly differentiate between CED and DLT or between
different types of distributed ledgers.

[44] is a tutorial that explains the fundamental elements
of blockchains using Ethereum as a case study. The paper
considers comparing, at a high level, blockchains to traditional
distributed systems. However, the paper compares both cate-
gories in a manner that hardly differentiates between a tradi-
tional distributed system and a permissioned blockchain—at
least for many settings in which the private blockchain can be
configured.

[45] proposes an exhaustive literature review on blockchain
interoperability. The paper presents the necessary background
and highlights definitions tailored for both industry and
academia. It categorizes blockchain solutions into three cat-
egories considering solely the interoperability aspect.

[46] presents a comparative study of the applications and
trade-offs of blockchain. The paper explains the architecture
of the blockchain adopted by Bitcoin and Ethereum without
considering other variants, e.g., IOTA or Hyperledger. Besides,
most of the reviewed DLTs are briefly introduced without
discussing their inner working mechanisms.

[47] provides a conceptual framework with a multi-layer
abstraction of a blockchain. The authors propose a vademecum
containing the information necessary to understand blockchain
from a technical perspective, then introduce a decision model
on which, when, and how to use blockchain technology.
However, this paper covers a limited number of DLTs (7)
and consensus mechanisms, making it an incomplete guide for
readers looking to understand new DLT technologies operating
in different modes than conventional blockchains.

In summary, the current state of the art on DLT system
taxonomies suffers from a few limitations. First, the number
of evaluated DLTs or consensus mechanisms across the papers
varies significantly, from 0 to 29 for the DLTs and from 0 to 15
for the consensus mechanisms, and the provided evaluations
are often superficial. Second, most papers adopt the same
vision that often distinguishes real-world DLT systems based
on their operation modes—private or public—or based on
their access modes—permissioned or permissionless—which
are insufficient characteristics to define whether a system is
a blockchain or not. Third, none of the papers, except one,

proposes a conceptual framework for DLTs and blockchain
systems; none offers a systematic definition for fundamen-
tal notions like DLTs, Blockchain, DAGs (Directed Acyclic
Graph), and more.

Table II presents a comparison between our proposed tax-
onomy and other existing taxonomies. Guided by the adopted
criterion, our taxonomy surpasses the simplistic classifications
found in the literature, which typically distinguish DLTs based
on permissibility (permissioned or permissionless) or their
public or private nature. Our taxonomy introduces a new
perspective that aims to define what constitutes a blockchain
and differentiates it from similar systems.

The framework used for taxonomizing DLTs has a positive
impact on the DLT design process by facilitating decision-
making through a systematic comparison of the capabilities of
different design options. Furthermore, it illustrates the impact
of these design choices on various quality attributes. The trade-
off analysis of these quality attributes forms the foundational
basis for effective comparisons.

In contrast to existing literature, our contribution entails a
comprehensive, standalone tutorial offering a thorough explo-
ration of the architecture underlying blockchain technology.
Moreover, we propose a new taxonomy and classification
that is highly comprehensive with a robust view of the DLT
landscape based on a rigorous and systematic definition of
what blockchain is and is not. Furthermore, we evaluate
the largest number of DLTs (44) and consensus mechanisms
(26) compared to other holistic surveys with a focus on
covering the whole DLT landscape. Both the taxonomy and the
evaluation are intended to help decision-makers architecting
new blockchain-based systems or choosing among the existing
solutions through enabling a systematic comparison between
the capabilities of different design choices.

E. Survey’s approach and methodology

To conduct our survey, we followed the five-step process
outlined by Biolchini et al. [53] for elaborating a systematic
review, as explained below:

Problem Formulation:
• RQ1: How can blockchain technology be defined within

a unified layered-wise reference model?
• RQ2: What are the properties and components distin-

guishing each layer?
• RQ3: How can we distinguish a blockchain system from

a blockchain-like one?
• RQ4: What obstacles and challenges does blockchain

technology currently face?
• RQ5: What are the existing research gaps in the realm of

blockchain technology?
Data Collection: After defining the layered-wise reference

model, we gathered information for each layer from scientific
literature, official documentation of reviewed projects, and re-
liable online sources (e.g., DLT experts’ blogs), known as Grey
Literature. This collection and selection were carried out using
the systematic review protocol suggested by Kitchenham [54],

TABLE I
THREE BROAD TYPES OF SURVEY STUDIES REPORTED IN THE BLOCKCHAIN LITERATURE: COMPONENT-ORIENTED, APPLICATION-ORIENTED, AND

HOLISTIC SURVEYS.

Survey Type Subcategory Paper Year Targeted topic

C
om

po
ne

nt
-o

ri
en

te
d

Consensus protocols

[19] 2021 A survey and taxonomy of consensus protocols for blockchains
[20] 2022 A survey and taxonomy of consensus protocols for blockchains
[21] 2023 A Survey Paper on Blockchain Technology and Consensus Algorithms
[22] 2017 A Taxonomization and evaluation of consensus protocols

[23] 2019
A comprehensive survey
of permissionless blockchain consensus protocols focusing on the underpinning
incentive mechanism.

[24] 2019 A self-complete tutorial on different types of distributed consensus protocols.

[25] 2020 A survey taxonomizing blockchain consensus
algorithms based on incentivization.

Smart contract

[26] 2020 A survey on vulnerabilities and Attacks on Ethereum smart contracts
[27] 2019 A survey on security, application and performance of smart contracts.
[27] 2020 A survey on challenges, advances and platforms of Smart Contracts
[28] 2020 A Survey of Smart contracts for blockchain-based reputation systems.

Security and privacy
[29] 2020 A Survey on the attacks targeting the public blockchain
[30] 2020 A survey examining of the security aspects within blockchain systems
[31] 2023 A Survey on Blockchain Security and Its Impact Analysis

Scalability
[32] 2020 A survey on the Scalability of blockchain
[33] 2020 A survey on sharding in blockchains
[32] 2020 A survey on the scalability solution in blockchains

A
pp

lic
at

io
n-

or
ie

nt
ed IOT

[34] 2019 A survey on Blockchains in Internet of Things
[35] 2018 A survey on the application of Blockchain in Internet of Things
[36] 2019 A survey on Blockchain for Internet of Things
[37] 2020 A Applications in Blockchain Systems: Architecture, Consensus, and Traffic Modeling

Different domains [38] 2018 A Survey on Blockchain Applications in Different Domains
Smart cities [39] 2019 A Survey on the application of Blockchain Technology in Smart Cities
Telecoms [40] 2020 A state of the art survey on the application of Blockchain in 5G networks
Cloud and Edge computing [41] 2019 A survey on the application of Blockchain on Edge Computing Systems
Blockchain and machine learning [42] 2020 A survey on the application of Blockchain in machine learning
Blockchain and artificial intelligence [43] 2019 A survey on the application of Blockchain in AI

Holistic and
conceptual This category is presented separately in Table II

involving three stages: (1) elaborating the search string; (2) ap-
plying the string on chosen search engines; (3) filtering out and
extracting primary papers based on pre-established exclusion
criteria from search results. The implementation of these steps
is illustrated in a streamlined process model representing the
methodology employed in this research, as shown in Figure
1. The reviewed projects from both the scientific and Grey
literature are selected based on their notoriety and scientific
significance. We assessed the quality and relevance of the
sources from the grey literature within the exclusion criteria
suggested by Garousi et al. [55]. These criteria represent 7
quality categories, ranging from the credibility of the producer
to the objectivity of the study, as outlined in Table IV under
the assessment of quality grey literature.

The choice of the 44 studied solutions was driven by the
need to have good representativity of different components
defined by the DCEA framework. For instance, we aimed to
select DLTs that represent all different consensus mechanisms
(26 different consensus mechanisms) and other DLTs repre-
senting other settings defined by the DCEA framework at the
four layers.

• Data Evaluation: We systematically evaluate the DLT
literature, highlight the pros and cons of each solution,
and discuss how each solution matches the components
and properties defined in each layer.

• Analysis and Interpretation Process: Within the same

multi-layered approach, we conduct a qualitative and
quantitative analysis of the surveyed solutions based on
the 23 criteria (components and properties) defined in
the first step.

• Conclusion and Presentation: Finally, we discuss the main
remaining issues and draw future research directions and
insights for the four defined layers.

II. HISTORY AND BACKGROUND

A. Contextualized History

The earliest identified occurrences of the concept of a
‘blockchain’ can be traced back to a 1991 research paper [56]
entitled “How to Time-Stamp a Digital Document” by Haber
and Stornetta, introducing the notion of a cryptographically
secured chain of blocks. They proposed a timestamping sys-
tem where the server would link a document to a previous
document to avoid tampering with data. In 1992, they up-
graded their design by introducing Merkle trees and collecting
document certificates in blocks. Although their project has a
different structure than that of the current blockchain system,
they laid the basis for the modern blockchain.

Around the same time, cryptocurrencies were already
emerging. In fact, David Chaum proposed “untraceable pay-
ments” in 1983 [57], in which he conceptualized an anony-
mous cryptographic system for processing digital money that
could be transferred in the form of blindly signed coins. The

TABLE II
COMPARISON OF PROPOSED FRAMEWORKS FOR UNDERSTANDING AND UTILIZING BLOCKCHAIN TECHNOLOGY

Taxonomy Focus Classification
Dimensions

Strengths Limitations State-of-the-art Re-
view

Technical review Solutions
covered

A Taxonomy
of Blockchain
Consensus
Protocols [48]

Consensus protocols Fault tolerance
model, Block creation
method, Leader
selection mechanism,
Scalability

Technical precision
and depth of analysis

Limited to consensus
protocols

Partially - Focuses on
consensus protocols

Yes 28 consensus
protocols

A Taxonomy of
Centralization
in Public
Blockchain
Systems [49]

Centralization levels
in public blockchains

Application,
Contract, Consensus,
Incentive, Network
and Data layer

Captures various as-
pects of centralization
and evaluate multiple
research papers

Emphasizes the
assessment of
research papers rather
than concentrating on
Blockchain projects.
focuses on evaluating
research papers rather
than Blockchain
projects

Partially - Focuses on
centralization aspects

No 2 blockchain
projects

Taxonomy of
Blockchain
Technologies.
Principles of
Identification
and
Classification
[50]

Standardization
of blockchain
architectures

consensus, sharing
and rewarding
systems, Transaction
capabilities,
Native cur-
rency/Tokenization,
Extensibility, Security
and Privacy, Code
Base and Identity
Management

Bottom-up approach,
Component-based
taxonomy

Early stage analysis,
Potential complexity,
Focus on software
architecture, Limited
discussion of existing
projects

No - Engages
with research and
standardization
discussions, but
doesn’t explicitly
compare specific
frameworks or
solutions

No None

A Taxonomy
For Governance
Mechanisms
Oftowards A
Taxonomy For
Governance
Mechanisms
Of Blockchain-
Based Platforms
[51]

Blockchain
governance structures

Centralization level,
Decision-making
process, Stakeholder
participation

Analyzes different
governance models

Limited to blockchain
governance

Partially - Focuses
on formal governance
structures

No None

A Taxonomy for
Characterizing
Blockchain
Systems [52]

Composition of
blockchain systems

Platform, P2P
Network, Distributed
Ledger, Smart
Contract, Consensus
Protocol, Digital
Wallet, Token and
Network Node

Comprehensiveness,
Hierarchy, Software
Development
guidance, Case
Studies

Complexity, limited
discussion and
comparison,
The layer-based
taxonomy may result
in overlapping
classifications,
complicating
information
organization

Partially - Offers a
restricted overview of
the state-of-the-art,
focusing on whether
a layer or component
exists in a solution
without providing
detailed explanations.

Yes - Provides a
high-level technical
review and doesn’t
cover consensus
mechanisms.

10 blockchain
projects and
11 consensus
mechanism

A Vademecum
on Blockchain
Technologies
[47]

Practical guide to
blockchain decision-
making

Decision factors, Use
cases, Platform selec-
tion, Development

Accessibility to a
broad audience

Focuses primarily
on the decision-
making process for
adopting blockchain
technology, not
a comprehensive
analysis of the
technology itself. The
provided analysis
focuses on only seven
projects

No - Offers practical
insights, not exhaus-
tive review

Yes 7 blockchain
projects

A Taxonomy
of DLTs (Our
Work)

Reference model for
DLTs (blockchain and
blockchain-like)

Data, Consensus, Ex-
ecution, Application
layers

Comprehensiveness,
Component-based
taxonomy, Inclusion
of Blockchain
and Blockchain-
Like Systems, A
360° overview of
the technical and
practical dimensions
of DLTs, Technical
review of each layer
of the DLT

Analysis limited to 44
selected DLT projects

Yes - Comprehensive
examination of the
state-of-the-art, con-
sidering both techni-
cal and design per-
spectives.

Delve into the techni-
cal details of different
blockchain platforms
or specific implemen-
tation challenges.

44 projects
blockchain and
26 consensus
mechanism.

proposed blind signatures provide a cryptographic means to
prevent linking users to coins and to enforce fungibility, while
still allowing a central server to ensure protection against
double-spending. Later, Chaum proposed DigiCash [58] in
1990, as the first global electronic cash system. DigiCash
gained some interest, but its centralized nature led to its failure
and stoppage in 1998.

In 1997, the Hashcash [59] project proposed a cryptographic
hash-based algorithm called proof-of-work to protect against

denial of service, a concept that will be used later in Bitcoin
[1] as a fraud countermeasure. In 1998, Wei Dai proposed
”b-money” [60], characterized as a pseudo-anonymous, dis-
tributed electronic cash system with a replicated, transparent,
and public ledger. Several years later, in 2005, Nick Szabo
described Bit Gold; a decentralized cryptocurrency inspired
by Hashcash. Bit Gold was notable for using an underpinning
system similar to the current blockchain. It included many
of the basic components of modern cryptocurrencies, such

TABLE III
COMPARISON OF RELATED COMPREHENSIVE AND HOLISTIC SURVEYS

Paper Publication
year

Conceptual
framework

Taxonomy
of DLTs

Number of
DLTs attributes

Evaluated
DLTs

Evaluated
consensus

Limitations Solutions Surveyed
layers*

DLTs categories Applica-
tions

[45] 2020 No No 18 21 0 Yes Yes C,E No Yes
[44] 2020 No No 17 9 5 Yes Yes C,E Yes (Distributed Database, Blockchain) No
[47] 2019 No Yes 19 7 15 Yes Yes D,C,E No Yes
[46] 2019 No Yes 11 7 5 Yes No D,C No Yes
[17] 2018 Yes Yes 10 29 0 No No D,C,A Yes (Cryptoeconomic design, distributed ledger) No
[16] 2018 No No 13 0 7 Yes Yes D,C,E No Yes
[15] 2017 No Yes 4 0 4 Yes No D,C No No
[18] 2017 No Yes 25 0 6 No No D,C,E Yes (Cryptoeconomic design, distributed ledger) No
[14] 2016 No No 12 0 5 Yes Yes D,C,E No Yes
Our work 2020 Yes Yes 25 44 26 Yes Yes D,C,E,A Yes (Blockchain, Blockchain-like) Yes

* D : Data C: Consensus E : Execution A: Application.

Fig. 1. Search and selection strategy, depicting a process model for a single layer.

as decentralization, anonymity protections, public registry,
a proof-of-work mechanism, chains of hashes, and times-
tamping. However, Bit Gold was never implemented, and its
design suffers from the double-spending problem, wherein
users can spend a coin twice in the network. Nick Szabo is
also renowned for a major contribution in the blockchain field.
He proposed (in 1997) the concept of smart contracts, which
enables counterparties to formally codify a cryptographically
enforceable agreement without the need for any third party —
a concept that can be considered a predecessor of Bitcoin’s
scripting mechanism.

Despite the vast advancement in cryptographic-based cur-
rencies, the problem of proposing a decentralized network

resistant to the double-spending problem remained unsolved
until 2008, when Bitcoin was introduced by the anonymous
person or persons, Satoshi Nakamoto, in “Bitcoin: A Peer-
to-Peer Electronic Cash System” [1]. One year later, Bitcoin
network was widely deployed, with the genesis block mined on
or around January 3, 2009. Bitcoin presented a convincing so-
lution for preventing double spending in a global decentralized
system without depending on trust in any third party, using a
mix of techniques developed in earlier projects. Since then,
multiple alternative cryptocurrencies with different features
have been created, such as Ethereum [61] and IOTA [4].

In 2014, motivated by the decentralized automation of
Bitcoin, the blockchain technology was separated from the

TABLE IV
QUALITY CRITERIA GREY LITERATURE

currency, mostly by the media and the industry, in an attempt
to harness the power of Bitcoin’s underlying technology and its
potential for other purposes. One year later, global financial
companies formed R3, a consortium of 42 institutions [62]
with an agenda of exploring and harnessing blockchain and
DLT technology for financial, inter-organizational transactions
with a blockchain-like product called Corda [63]. Around the
same time, the Linux Foundation launched Hyperledger [64] as
an umbrella project of open-source DLT solutions to encourage
the use of blockchain to support global business transactions.

B. Terminology and Background

In the blockchain literature, there is significant overlap
between the terms DLT and blockchain. The situation is made
even worse by the absence of a universal standard defining
a blockchain and its boundaries, which results in conflicting
use of the terminology and different meanings being assigned
to the same terms. The precise definition of multiple notions
presented hereafter may be controversial, but for a better
understanding and categorization of blockchain and similar
systems, we provide here the terminology we have chosen to
adopt throughout this paper.

• Nodes: Nodes are entities, maintained by individual par-
ticipants of the network, that issue and validate transac-
tions in a DLT network.

• Ledger: The term ledger refers to the single storage
endpoint hosted by a node in a blockchain or DLT
network. It represents a local append-only log of ordered
transactions validated by a distributed network.

• DLT: An umbrella term for distributed ledger technolo-
gies, representing technologies operating as replicated,
shared and synchronized ledgers throughout a distributed
network, whereby parties who do not fully trust each
other maintain consensus about shared information. A
DLT, as a data structure, can adopt some of the de-
sign principles of blockchain technology whilst dropping
others and might be governed in a partially or fully
centralized manner. Although blockchain is initially a
distributed ledger, the term DLT is now used frequently to
separately identify technologies which do not embrace the
full Nakamoto vision. To the best of our knowledge, the

DLT term was initially adopted, in the industry, for com-
mercial purposes to differentiate [63] some solutions (e.g.
Corda or Hyperledger Fabric) from traditional blockchain
systems like Bitcoin.

• Blockchain: A distributed system that shares funda-
mental architectural principles laid out by Nakamoto in
Bitcoin’s initial paper. That is, we can define a blockchain
as a replicated database, managed by a consensus mech-
anism, solving the double spending problem, in a peer-
to-peer fashion and shared by non-trusting parties. The
inner database presents special key properties such as
a chain of blocks, data structure, data immutability,
global data shareability, the use of cryptography to se-
cure data and ensure direct ownership, and interaction
through transactions. The core fundamental characteristic
of a blockchain is its fully or mostly decentralized and
censorship-resistant nature. Initially, the term blockchain
(as a single word) did not appear in Bitcoin’s initial paper,
but instead the term ”chain of blocks” was used.

• Blockchain-like: A general term encompassing dis-
tributed ledger systems that are constructed in a similar
manner to the conventional blockchain system (Bitcoin),
while not necessarily conforming to Nakamoto’s vision
(Bitcoin’s white paper [1]).

• State: While state can have different meanings depending
on the context, the use of state within the blockchain and
distributed ledger environment refers to the atomic unit of
data stored in the ledger, where it is prone to change under
the execution of validated transactions. As described by
Gavin Wood in the Yellow Paper [61], a blockchain is a
cryptographically secure, transactional singleton machine
with shared state.

• P2P gossip: DLT networks are built upon P2P networks
that transport all data needed to support the DLT protocol.
In a blockchain network, nodes are equally privileged,
equipotent participants in the application, whereas a
Blockchain-like system is usually a hybrid combination
of a peer-to-peer network and centralized entities where
some nodes are more privileged than others. Blockchain’s
P2P networks are structured [65] or unstructured [1]
networks where nodes randomly connect to other nodes.
Data is exchanged directly over the underlying TCP/IP
network implemented as multiple TCP unicasts between
connected nodes, but at the application level, nodes are
able to communicate with each other directly, via the
virtual overlay connections built upon the underlying
physical network. These virtual overlay networks facil-
itate node discovery and indexing, besides they make the
P2P system independent from the physical topology. In
order to converge on an eventually consistent sequential
log of transactions. Many blockchain and blockchain-like
systems adopt gossip protocol [66][67] whereby nodes
exchange notifications about new data (a transaction or
a block) [68]. At a high level, a node first discovers and
learns about a set of peers (a list of nodes it knows),
then it constantly advertises each new data it has received

and validated, to his peers announcing its availability.
Afterward, the peers who do not have the advertised
data, in their turn, request the missing data avoiding thus
broadcasting data directly to the nodes [68] [69]. The
gossip process continues until all reachable nodes receive
the new data.

• On-chain/off-chain: We consider the terms ‘off-chain’
or ‘off-ledger’ to refer to actions that occur outside the
formal boundaries of the transactional ledger distributed
between the nodes. Conversely, ‘on-chain’ or ‘on-ledger’
refers to actions that occur within the boundaries of the
distributed ledger.

Blockchain and DLT are often mistakenly conflated: a
blockchain is a sub-class of DLTs, but a distributed ledger
does not always comprise a blockchain. Thus, in the rest of
this paper, we use the term DLT as a unifying term covering
blockchains and blockchain-like systems.

Fig. 2. Communication phases in a blockchain P2P network (Bitcoin)

III. DCEA FRAMEWORK: A TAXONOMY-ORIENTED
APPROACH TO CONCEPTUALIZE AND EXPLORE
DISTRIBUTED LEDGER TECHNOLOGIES (DLTS)

We present the DCEA framework, a structured model defin-
ing a layered and diverse stack tailored for the intricate realm
of Distributed Ledger Technologies (DLTs). It’s application
organizes DLTs into 4 fundamental and distinct layers: data,
distributed consensus protocols, execution, and application
layers. Each layer serves a precise and integral function within
the overarching DLT architecture.

Utilizing the DCEA framework results in a nuanced dual-
level classification of Distributed Ledger Technologies (DLTs).
The primary classification is rooted in the varied config-
urations of key designs, while the secondary classification
involves a comprehensive two-dimensional taxonomy, distin-
guishing between blockchain and blockchain-like technolo-
gies. This taxonomy evaluates the impact of different DCEA
settings at 3 levels (refer to Figure 3). The results of the
exhaustive review and taxonomy, outlined in Sections IV,
V, VI, and VII, are applied in Section VIII to scrutinize
and categorize a diverse spectrum of DLTs into the two
overarching categories.

A. Introduction to the DCEA Framework

The DCEA framework encompasses the components of
DLTs along with their key properties, as illustrated in Table
V. The components are logically organized, aligning with the
modular architecture of DLTs. This layered structure enhances
the comprehension of DLTs and establishes a foundational
basis for comparative analyses across various DLT variants.
Below, we present the four layers constituting the DLT stack.

• Data Layer: encompasses the representation, storage, and
flow of data within the distributed network. This layer
deals with the transactions and states recorded in the
ledger, forming the core information infrastructure of
the blockchain. The Data Layer ensures that entries in
the ledger are recorded under consensus, meaning all
participants in the network agree on the validity of
the data. These records can be elements built-in the
underlying DLT protocols (e.g., cryptocurrency or Tokens
or smart contracts states) or data sourced from external
environments (e.g., IoT data). This layer encompasses
both on-chain storage (stored directly on the blockchain)
and off-chain storage (utilizing a distributed database).

• Consensus Layer: Establishes a set of rules through soft-
ware definition to reach consensus between network par-
ticipants, ensuring alignment on a unique ledger (source
of truth). This layer defines governance mechanisms
that govern the validation, addition, and verification of
transactions. The critical role of the Consensus Layer
merits detailed exploration, which is extensively covered
in Subsection VIII-B.

• Execution Layer: Serves as the computational environ-
ment where distributed programs, including smart con-
tracts, are executed. These programs encode specific
logic (e.g., business logic) into programmatic instructions
which are executed to manipulate the states recorded in
the ledger. In essence, the Execution Layer acts as the
engine that interprets and processes these instructions,
facilitating the decentralized execution of logic encoded
in smart contracts. It plays a pivotal role in ensuring
the integrity and automation of transactions within the
distributed ledger, providing a secure and transparent
framework for the execution of programmable business
logic across the network.

• Application Layer: Refers to the topmost layer of the
technology stack, serving as an abstraction layer that
provides protocols and APIs (Application Programming
Interfaces). This layer is designed to enable the develop-
ment and execution of distributed applications, commonly
known as DApps (Distributed Applications). It acts as
a bridge between external entities, such as end-users
or other applications, and the underlying code and data
stored on the blockchain ledger.

Built upon the layered architecture discussed earlier, we
introduce a comprehensive four-layered taxonomy (Figure 5)
designed to categorize DLT systems. This taxonomy serves a
dual purpose:

TABLE V
LAYERS AND COMPONENTS OF DCEA FRAMEWORK

• To classify the various DLT systems presented in aca-
demic and industrial domains.

• To assess the inherent strengths and weaknesses of exist-
ing systems, pinpointing deficiencies within the current
landscape of DLTs.

At each layer within the DCEA framework, DLTs encom-
pass diverse configurations of DCEA properties detailed in
Table V. Through the examination of these property combi-
nations across the four layers, distinct classes of DLTs can
be characterized. For example, distinctions at the data layer
arise between Directed Acyclic Graph (DAG) and chain based
DLTs. Also, the consensus layer facilitates categorizations
such as permissioned and permissionless DLTs, contingent on
the identity model of the consensus mechanism. The execu-
tion layer enables the differentiation between Smart-contract
and script based DLTs. Meanwhile, at the application layer,
classifications emerge, including DApps-oriented DLTs and
Cryptocurrency-oriented DLTs. This comprehensive analysis
results in the classification of DLT systems into two major
categories: blockchain and blockchain-like systems.

B. Distinguishing Between Blockchain and Blockchain-Like
Systems

In scrutinizing DLT systems through the lens of the DCEA
framework and discerning the disparities between the two
overarching taxonomic categories, blockchain and blockchain-
like, we identify shared commonalities alongside distinctive
traits (refer to Table III-A). Taking a broader perspective, we
assert that a system falls under the blockchain-like category,
rather than being a blockchain, if it exhibits at least two
of the following attributes, as depicted in Figure 3. First,

Fig. 3. According to our definition, a system resembling a blockchain can
only possess two of these specified traits.

a noticeable lack of robust decentralization—several DLTs
may opt to compromise decentralization for reasons such as
enhanced scalability, streamlined governance, or suitability
for deployment in contexts where full decentralization is
unnecessary. Second, a blockchain-like system permits data
tampering and provides weak immutability for either states
or transactions. Third, its data structure does not rely on the
chaining of blocks of transactions to store data.

Caption: Table III-A summarizes distinctive settings within
each category, aiding the differentiation between blockchain
and blockchain-like DLTs. Despite not being entirely separate,
these categories often exhibit significant overlap. It is possible
to find a system with blockchain-like features, encompassing
all properties except one or two. Moreover, our distinction
is not contingent on operational settings—whether public or
private, permissioned or permissionless—as the demarcation
between blockchain and blockchain-like is not bound by these
factors. For instance, a project initially designed for public
and permissionless settings (e.g., Ethereum) can seamlessly
transition to private and permissioned settings, and vice versa.
In Table XII, we present a classification of various DLT
technologies as either blockchain-like or blockchain, based on
our established criteria.

In Figure 4, we present a graphical dichotomous key aimed
at facilitating the differentiation between the two categories of
DLTs. In Figure 4, we present a graphical dichotomous key
to facilitate the differentiation between the two categories of
DLTs.

The methodology adopted first deconstructs any DLT
(blockchain or blockchain-like system) project into four layers
that encompass different components. Second, it evaluates the
different components to define the design choices adopted at
the four levels. Third, based on the distinctive settings defined
for the different components at each layer, as presented in
Table IV, we classify a system as either a blockchain or a
blockchain-like system. For instance, Bitcoin is classified as
a Blockchain since it exhibits all the settings (Table IV) used
to define a system as such. Hyperledger Fabric, on the other
hand, is classified as a blockchain-like system since it displays
some distinctive settings adopted for defining a system as
such. Specifically, at the data layer, Hyperledger Fabric does
not adopt a chainless model, and it does not provide strong
immutability. Moreover, at the consensus layer, it adopts a
centralized governance with a leader-based consensus mecha-
nism.

TABLE VI
CONFIGURATIONS OF BOTH BLOCKCHAIN AND BLOCKCHAIN-LIKE SYSTEMS IN THE DCEA FRAMEWORK

Fig. 4. A graphical dichotomous key for distinguishing between blockchain and blockchain-like systems

Following the comprehensive analysis of DLTs across the
four primary layers in sections IV, V, VI, and VIII, we
present and discuss the proposed taxonomy by highlighting
distinguishing properties. Additionally, we offer an in-depth
exploration of the current state of the art at the data, consensus,
execution, and application layers, respectively.

IV. DATA LAYER

In this section, we delineate the fundamental components
and their respective characteristics that form the data layer, as
outlined in Table V. Additionally, we provide an overview of
the current state of the art regarding various data structures
employed by prominent DLT solutions. The section concludes
with an examination of key challenges and trade-offs inherent
in the design of the data layer.

A. Components and properties

The ledger in DLTs essentially functions as a distributed
”source of truth”, with data is replicated and synchronized
across multiple nodes. The macroscopic organization of data
structures differs among DLT technologies, primarily falling
into two main models: the linear chain of blocks and chain-less
models.

1) Data-Structure:

a) : Linear Chain Model
Chain of Blocks In the chain of blocks model, transactions are
bundled into blocks that are chained together in chronological
order, creating an unalterable history of data. Each block
is cryptographically linked to its predecessors, ensuring the
integrity of the entire chain and preventing unauthorized
modifications. A block comprises a header and a transaction
record, as illustrated in Figure 6.The header’s inclusion of
a timestamp and a cryptographic reference to the previous
block empowers all network participants to independently
verify the block’s authenticity and its rightful place in the
chain. This decentralized validation process eliminates the
need for a central authority, fostering trust and transparency.
At the transaction level, data is conveyed and stored in the
ledger, with transactions representing the fundamental data
type. Transactions are organized and hashed into a Merkle
tree at the block level, and the hash root is embedded in the
corresponding block’s header. This architecture guarantees a
cryptographically sealed and tamper-resistant data repository,
providing an immutable record of transactions. The crypto-
graphic links between blocks, enforced by the hash pointers
makes it computationally infeasible to alter any part of the data
without affecting the entire chain, thus safeguarding against
unauthorized modifications. This robust design contributes to

Fig. 5. Layered taxonomy of DLT systems (With references to the corresponding sections and subsection)

the trustworthiness and reliability of the blockchain, fostering
transparency and accountability in data management.

Skipchain Skipchain derives their data structure inspiration
from skip lists [70]. Skip lists are characterized by multiple
linked lists arranged in layers with varying skip distances. This
architectural influence enhances the efficiency of blockchain
operations in a Skipchain by selectively engaging a subset of
nodes in block validation. This hierarchical structure improves
efficiency and scalability in consensus processes, streamlining
the validation of new blocks. In addition to its unique con-
sensus mechanism, a Skipchain employs an organized data
management approach. The skip list-inspired structure allows
for expedited searches and verification, enhancing the overall
performance of the blockchain. This adaptation reduces the

computational burden on individual nodes, contributing to
faster transactions and improved scalability while maintaining
the integrity and security of the distributed ledger.

b) Chainless model: Some DLTs break away from the
conventional chain of blocks, opting instead for non-linear data
structures like DAGs to achieve performance gains.

Direct Acyclic Graph The DAG is essentially a graph
without cycles, progressing in one direction. It serves as a
meticulously woven network of interconnected transactions,
where each transaction (or block of transactions) functions
as an individual node or vertex in the graph. This structure
maintains a chronological growth pattern, resembling the or-
ganic expansion of branches from a continually developing
tree rooted in the initial node. The distinctive characteristic of

Fig. 6. Basic chain of blocks data structure

the DAG lies in its cyclical-free and unidirectional growth,
allowing for automatic transaction confirmation based on
preceding transactions within the network. DAGs are further
categorized into two types based on the nature of their nodes:

• Transaction-based DAGs: Individual transactions are
depicted as nodes within the DAG. Transactions are
linked through directed edges, establishing a clear order
of execution.

• Block-based DAGs: Nodes signify blocks containing
multiple transactions, resembling traditional blockchains.
Transactions are aggregated into blocks before integration
into the DAG.

Decentralized database model decentralized databases dis-
tribute the responsibility of data maintenance across multiple
nodes, allowing various parties, even those with mutual dis-
trust, to collaboratively contribute to and synchronize shared
records. This model leverages novel technologies to enable a
distributed, secure, and transparent framework for managing
data. Data is typically stored in a distributed fashion across
the network of nodes, employing cryptographic techniques to
ensure integrity and security.

c) Hybrid data model: An Hybrid Data Model, integrates
both blockchain and block-less models to govern transactions
and states within the network. This hybridization is imple-
mented to harness the strengths of each model, facilitating
enhanced scalability and swift transaction validation. In this
framework, states are typically stored in external dedicated
key-value databases, while the blocks exclusively contain
transactions impacting the ledger’s states. The use of key-
value databases simplifies direct access to the updated value
of a state, eliminating the need to traverse transaction trees for
calculation. This duality of blockchain and key-value databases
represents a pragmatic approach, combining the security of the
blockchain with the efficiency of direct state access, thereby
optimizing the overall performance of the distributed ledger
system.

Distributed Hash Table A Distributed Hash Table (DHT) is
a decentralized, distributed infrastructure that provides a scal-
able and fault-tolerant method for organizing and retrieving
key-value pairs in a network. In a DHT, the keys and associated

values are distributed across multiple nodes, allowing for
efficient decentralized storage and retrieval of data. Each node
in the network is responsible for a specific range of keys, and
the DHT algorithms ensure that nodes can efficiently locate the
node responsible for a given key. DHTs are commonly used
in peer-to-peer (P2P) networks, distributed file systems, and
other decentralized applications to enable efficient and resilient
data storage and retrieval across a network of interconnected
nodes.

2) State Management: DLTs offer various approaches to
managing data within their systems. While they all share
a distributed ledger for recording transactions, they diverge
in how they store the actual data itself. Some DLTs, like
traditional blockchains, keep data directly on the shared ledger
(on-chain/on-ledger), while others opt for off-chain storage in
separate databases (off-chain/off-ledger).

When examining the management of general states, such as
user balances, in existing DLTs, three prevalent models come
to the forefront:

1) UTXO Model: In the UTXO (Unspent Transaction
Output) model, transactions are constructed as a web
of interconnected links, where each new transaction
(UTXO) (new UTXO) explicitly references the previous
transactions that it draws upon as inputs (inputs). This
structure creates a traceable path of ownership and
spending history and ensures that each UTXO can only
be spent once, preventing fraudulent activities.

2) Account Model: The account model resembles a tra-
ditional bank ledger, maintaining a central record of
individual account balances. Transactions update these
balances directly, offering a familiar and straightforward
approach for managing user-specific data.

3) World-State Model: Represents a design where the cur-
rent state of the ledger is stored and managed as a
single, comprehensive snapshot. This model separates
the current state from the transaction log, allowing for
efficient querying and retrieval of the most recent data.

A complete review of the UTXO model can be found in [71].

3) Data Shareability in DLT Networks: Within a DLT
network, the exchange of transactions among all participating
nodes is central to achieving consensus. However, the concept
of data shareability varies across different DLT systems, often
influenced by privacy considerations. Two predominant visions
of data shareability emerge within this landscape.

Global Shareability: In certain DLT systems, a philosophy
of complete shareability is embraced. This approach, which we
refer to as global shareability, advocates for an unrestricted
exchange of all data among all nodes in the network. In
this model, transparency and accessibility are paramount,
with every participant having access to a comprehensive and
unfiltered view of the shared data. This promotes a decentral-
ized environment where information is universally accessible,
fostering a high degree of transparency and collaboration.

Restricted Shareability: Contrastingly, some DLT systems
adopt a vision of restricted shareability. In this model, the

perimeter of data shareability is delineated, encompassing
specific nodes while excluding others. This restricted approach
is motivated by privacy concerns, allowing for a more selective
dissemination of information. Nodes within this restricted
shareability model have limited access to certain data, en-
suring a controlled flow of information based on predefined
criteria. While this approach may limit universal transparency,
it provides a mechanism to tailor data access to specific needs,
enhancing privacy and security.

4) Data immutability / Atomicity: There is a common belief
is that records in DLT (especially a blockchain) are inher-
ently immutable and impervious to alteration. However, this
assumption requires clarification, as the degree of immutability
varies across different DLT systems based on their design.
Consequently, in some DLTs nodes may retain inconsistent
states or witness the rollback of transactions and states after
confirmation. For data immutability, we differentiate between:

• Strong Immutability: Strong immutability is the property
of a system where data, once created and defined, is
permanently unalterable. No operation, actor, or event
can modify the data after its initial creation. This ensures
absolute, tamper-proof preservation of historical records
and guarantees data integrity through all time.

• Weak Immutability: Weak immutability allows data to be
updated under defined and controlled conditions. Modifi-
cations follow specific rules and governance mechanisms,
ensuring transparency and accountability in the change
process. This balance preserves historical records while
enabling necessary adaptations.

It’s noteworthy that in certain systems characterized by strong
immutability, updates to their states can occur without com-
promising this immutability. This is accomplished through the
use of tree structures, allowing for the persistent storage of old
and new values associated with a specific entry (e.g, Ethereum
state structure 7).

B. State-of-the-Art in Data Layer

This subsection aims to provide a comprehensive overview
of DLT projects that align with the diverse data structures de-
lineated in our framework. Additionally, it entails an evaluation
of the properties associated with these projects.

1) Data-structure: 1.1) Chained DLTs
Many DLTs adopt the foundational linear data chain struc-

ture initially introduced by Bitcoin. Within this broad category,
data is stored in inter-linked blocks; however, various projects
within this domain introduce distinct inner block structures to
tailor the architecture to their specific needs and objectives.

a) Bitcoin: In the Bitcoin ecosystem and its derivatives,
transactions are assembled within the block’s body and are
subsequently linked in a Merkle tree. The Merkle root is a
unique cryptographic hash created by combining the hashes
of all the data blocks in a Merkle tree. Beyond the Merkle
root, the block header encapsulates the hash of the previous
block. Beyond the Merkle root, the block header encapsulates
additional critical information, including the hash of the pre-
vious block. This hash of the previous block is crucial for

maintaining the chronological order and integrity of the entire
blockchain. It creates a cryptographic link between the current
block and the one that preceded it, establishing a continuous
and tamper-resistant chain of blocks. This interconnection of
blocks through their headers ensures the immutability and
trustworthiness of the Bitcoin blockchain. Notably, Bitcoin
relies on the UTXO model’s distributed tracking of spend-
able value within the blockchain, enabling the inference of
wallet balances through UTXO analysis. Nodes often cache
frequently accessed UTXOs in memory for faster retrieval,
improving transaction processing efficiency.. This approach
contributes to the efficiency and scalability of the Bitcoin
blockchain.

b) Ethereum: Ethereum employs a state tree as a metic-
ulously organized database, mirroring the account model to
oversee account balances, smart contract data, and other criti-
cal network states. This tree-like structure relies on a special-
ized data structure known as a Merkle Patricia Tree (MPT),
facilitating efficient retrieval and verification of information
to maintain synchronization across all nodes. This highly
efficient, self-balancing tree structure combines the strengths
of Merkle trees and Patricia tree data structures. Each node in
the MPT represents a key-value pair, storing the name (key)
of a state variable and its corresponding value. Nodes have
16-byte keys and contain either a leaf value (for end nodes)
or 16-byte hashes of child nodes (for intermediate nodes). As
a state variable changes, a new node is added to the tree to
reflect the updated value 7. Recalculation of the root hash
captures the change, ensuring secure and tamper-proof state
tracking.

c) Bitcoin-NG: proposed by Eyal et al. in [72], Bitcoin-
NG uses a special data structure inspired from bitcoin’s chain
of blocks. This structure is consisting of two kind of blocks
key-blocks and Microblocks. The Keyblocks are produced
using proof-of-work and share the same structure as Bitcoin’s
blocks. Their role is to determine the block miner. Between
two key-blocks, the selected block miner creates and signs
multiple Microblocks, each contains a collection of signed
transactions. The miner responsible for creating Microblocks
is chosen based on a predefined algorithm, such as a rotating
leader schedule or Proof of Stake. As in Bitcoin, Bitcoin-NG
blocks form a chain where Microblocks reference previous Mi-
croblocks and Keyblocks, as illustrated in Figure 8. Notably,
Microblocks significantly reduce the overall size of data stored
on the blockchain, improving storage efficiency and network
bandwidth usage.

d) ByzCoin: Taking inspiration from Bitcoin-NG, Byz-
Coin [73] embraces the concept of decoupling in two blocks.
However, rather than adhering to a single chain structure, Byz-
Coin introduces a novel approach by forming two distinct and
parallel chains: Keyblocks and Microblocks. The Keyblocks
serve as anchors or reference points, securing the overall
structure, while the Microblocks contain a more granular level
of transactional data.

1.2) Skipchain

Fig. 7. Structure of Ethereum’s chain of blocks

e) Chainiac: Introduced by Nikitin et al. [74], addresses
challenges related to offline transaction verification. This in-
volves enabling nodes to ascertain whether a transaction has
been committed without requiring a complete copy of the
ledger. The innovative solution proposed by Chainiac involves
introducing traversability forward in time through the use of a
Skipchain, as depicted in Fig. 9. Back-pointers are represented
by cryptographic hashes, while forward-pointers are realized
through collective signatures. By incorporating long-distance
forward links and employing collective signatures, Chainiac
facilitates efficient transaction verification for a client or node
at any point in time.

1-3) Chainless DLT

f) DAG based chains: The concept of utilizing Directed
Acyclic Graphs (DAGs) as the underlying data structure
has garnered significant attention from DLT designers across
various projects. Notable examples include Byteball [75],
DagCoin [76], IOTA [4], Nano [75], Phantom [77], and Hedera
[6]. Some studies have explored the integration of DAGs
instead chain of blocks. For example, the GHOST protocol
[78], A DAG-Based Modification for Bitcoin, aims to reduce
confirmation time and to secure the network [79].

Fig. 8. Bitcoin-NG Blockchain Data Structure. Keyblocks and Microblocks
contain the public key and the signature belonging to the miner.

Fig. 9. Backward and forward links in skipchain

g) IOTA: IOTAcitePopov2017 is a DLT designed to
provide a scalable and fee-less environment for machine-
to-machine transactions. IOTA is among the early adopters
of a DAG data structure known as Tangle. The tangle is a
block-less DAG where transactions are directly interlinked
without the need for traditional blocks. Unlike traditional
blockchain systems, IOTA’s Tangle eliminates the need for
miners and introduces a decentralized validation model, where
each participant contributes to the network’s security by val-
idating two previous transactions for every transaction they
make. Transactions in the Tangle are stored as DAG edges,
each referencing two immediate predecessors and forming a
directed acyclic network with confirmed, unconfirmed, and
potentially conflicting subsets (Fig. 10).

IOTA’s graph begins with a root transaction known as the
Genesis Transaction. This transaction serves as the starting
point, initiating the creation of the Tangle. In the creation
of the Tangle, by design, a single address holds all the
created tokens (IOTA tokens); The Genesis Transaction then
orchestrates the distribution of tokens to various accounts
within the network. This distribution sets the stage for a
decentralized ownership structure as tokens move from the
centralized address to numerous accounts.

h) Hashgraph: [80] deviates from traditional blockchain
technology by employing a unique, chainless architecture to
achieve significantly higher throughput. Instead of relying
on linear chains of blocks, each node within the Hashgraph
network maintains its own DAG. The vertices of this DAG
are referred to as ”events”, which are analogous to blocks
in traditional blockchains. Similar to blocks, events contain
a single or several transactions alongside other critical data.
This data includes:

• Event parent hashes: These are the hashes of two previous
events – one created by the gossip receiver and the other
by the sender.

• A timestamp.
• A signature from the node that created the event.
Figure 11 depicts the structure of an event within the

Hashgraph network.
i) Byteball: Described by Churyumov in [75], Byteball

is a transaction-based Directed Acyclic Graph (DAG) system
that differs from Bitcoin-NG. Instead of utilizing a hybrid
structure of key-blocks and microblocks, Byteball relies solely
on a DAG where each transaction directly references one or
multiple previous transactions. Transactions establish a clear
lineage through direct references to their parent transactions,
ensuring data integrity. The DAG experiences dynamic growth
as new transactions can attach to any existing transaction,
enabling parallel processing and efficient network expansion.
Initially employing proof-of-work for consensus, Byteball
utilizes miners who compete to solve cryptographic puzzles,
similar to Bitcoin. Additionally, Byteball employs a weighting
system, where transactions are assigned weights based on age
and lineage depth within the DAG, prioritizing older and more
deeply connected transactions to promote network stability.

j) Nano: formerly known as RaiBlocks [81], employs
a unique DAG data structure called Blocklattice. In the Nano
network, each account possesses its dedicated chain of blocks,
as illustrated in Figure 12. These individual chains are repli-
cated across all network peers, enabling the simultaneous
growth of multiple single chains. Significantly, only the wallet
owner has the authority to make changes to their specific
chain, allowing for asynchronous updates to each wallet. In
contrast, Dexon [82] integrates a Blocklattice single chain

Fig. 10. IOTA Tangle’s DAG structure. Green blocks represent final validated
transactions; Red blocks represent uncertain validated transactions; Yellow
blocks represent transactions awaiting validation.

Fig. 11. Evolution of the Hashgraph

into a globally-ordered chain without requiring additional
communication. In the work by Sompolinsky et al. [83], [84],
a DAG-based DLT is considered, where the nodes of the DAG
represent blocks rather than individual transactions. Referred
to as BlockDAG, this structure involves blocks referencing
multiple other blocks, with newly added blocks pointing to
recent blocks that are not yet referenced. This innovative
paradigm serves as the foundation for emerging consensus pro-
tocols such as Inclusive [85], SPECTRE [83], and PHANTOM
[84].

2) Decentralized Databases:
a) Corda R3 [63]: In Corda, each node has its own

private, secure RDBMS (Relational Database Management
System) called a ”vault”. The vault efficiently stores time-
stamped records of transactions, contracts, and other relevant
data for that node. Corda’s design differs from traditional
blockchains where all nodes share a single, replicated ledger.
The vault includes tables dedicated to various services, such as
ledger management, transactions (NODE TRANSACTIONS),
states (NODE STATES), participants (NODE IDENTITY),
and additional metadata.

While the metadata associated with a state is stored in the
vault tables, the actual state data itself is stored in a separate
binary format [86]. Attachments, which are files linked to

Fig. 12. Structure of DAG in Blocklattice

states, are stored in a distinct location on the node’s file
system. This separation enhances scalability and performance,
particularly for managing large attachments.

In tandem with its storage approach, Corda adopts a UTXO
model for handling state data. This model dictates that a
transaction can consume existing states and may or may not
produce new states, providing a clear representation of the
state changes within the distributed ledger.

3) Hybrid DLTs:
a) Hathor: is a DLT that combines DAG and tradi-

tional blockchain architectures. Unlike traditional blockchains,
Hathor utilizes a DAG structure for transaction processing, al-
lowing for high scalability and throughput. The chain of blocks
structure ensures security when the number of transactions per
second is small, whereas the DAG prevails when the number
increases significantly.

b) Hyperledger Fabric [87] : Hyperledger Fabric incor-
porates both a chain of blocks for storing validated trans-
actions and a classical key-value database for managing the
system’s states, as depicted in Figure 13. While the ledger
captures transaction metadata and state hashes, the actual state
data—encompassing details like asset ownership and financial
information—is deliberately stored off-chain. This strategic
off-chain storage is designed to optimize efficiency and up-
hold privacy considerations. Hyperledger Fabric employs three
distinct stores:

• Ledger: Stores transaction metadata and state hashes.
• Peer State Database: Manages state data associated with

transactions validated by the peer.
• Private Data Storage: Houses private state data accessible

only to authorized nodes.
Within the Fabric chain, the block structure resembles that

of a traditional blockchain, yet it incorporates an additional
segment: block metadata. This supplementary section includes
a the certificate, public key, timestamp and signature of the
block writer. In contrast to certain other blockchain structures,
the Fabric block header is straightforward, and transactions
within the block body are ordered without Merklization.

c) EOS [88]: EOSIO employs a multi-layered approach
to data storage, seamlessly integrating the strengths of on-
chain, off-chain, and RAM storage (Fig. 14). This layered
architecture ensures efficient data management, catering to

Fig. 13. Structure of Hyperledger fabric’s chain of blocks (Source: Hyper-
ledger official documentation)

Fig. 14. EOS database structure and its interactions with smart contracts

diverse needs while maintaining security and performance.
On-chain storage forms the bedrock of the system, acting
as an immutable ledger for transactions and key state data.
Replicated across the network, this data remains permanently
accessible and tamper-proof. Within smart contracts, multi-
index tables provide structured storage, allowing developers
to organize and efficiently retrieve specific data. For data
that requires scalability and privacy, off-chain storage comes
into play. EOSIO offers various options to meet these needs,
including the specialized Chainbase database for fast access
and management of crucial data like user accounts, token
balances, and smart contract states. Other options like Mon-
goDB, SQLite, and RocksDB cater to specific data types
and access requirements. To further optimize performance,
RAM storage serves as a temporary caching layer. Frequently
accessed data is stored in the memory of nodes, significantly
reducing retrieval times and enhancing user experience. How-
ever, RAM resources are limited and require purchase or lease,
encouraging efficient data management.

d) BigchainDB: BigchainDB’s architectur [89] revolves
around two key databases: the ”Backlog,” a staging area for
pending transactions, and the ”Chain of Blocks,” a repository
for validated transactions, ensuring efficient processing and
secure record-keeping. It bridges the gap between NoSQL
databases and blockchains, offering a hybrid approach that
blends the flexibility of MongoDB with the immutability and
security of blockchain technology. BigchainDB stores all its
data in Json documents. These documents are then organized
into three main categories:

• Transactions: Represent actions like creating assets, trans-
ferring ownership, or voting. Each transaction includes
details like sender, receiver, asset information, and times-
tamp.

• Blocks: Combine multiple transactions and additional
metadata to form a chain of data. This chain ensures data
integrity and immutability.

• Votes: Nodes use votes to confirm the validity of trans-
actions and blocks, maintaining consensus within the
network.
e) Ripple: : [90] utilizes the XRP Ledger (XRPL), a

hybrid of a database and a chain of blocks, offering unique ad-
vantages for its global payment network. The XRPL employs a
multi-layered data storage architecture, combining centralized

and decentralized databases for optimal efficiency. Primary
data, decentralized and managed by NuDB or Cassandra,
provides redundancy. Secondary data, using PostgreSQL, can
be centralized or distributed. Chainbase, for user accounts and
smart contracts, operates centrally on dedicated servers. Off-
chain databases like MongoDB, SQLite, and RocksDB are
flexible, optimizing for specific data types. The XRPL features
a Ledger Object Model (LOM) for structured data storage,
efficient data retrieval with unique identifiers (LODIDs), state
pruning for storage optimization, and a chain of blocks
ensuring an immutable record of transactions. Distributed
consensus via the Ripple Consensus Protocol (RLCP) and
robust security features, including cryptographic hashing and
digital signatures, enhance the authenticity and integrity of
XRPL data.

4) Data shareability: Many DLTs designed for global
cryptocurrency platforms inherently embrace a model of
global shareability for transactions. For instance, Bitcoin and
Ethereum operate in a relay mode, where nodes propagate
transactions throughout the entire network without restric-
tions. Hashgraph, another DLT, employs a different approach
where senders deliver transactions to a select set of nodes
responsible for incorporating them into their DAG and sharing
them through Gossiping. In addition to these, various other
blockchain and decentralized ledger projects contribute to
the landscape of data shareability. The Interledger Protocol
(ILP)[91] facilitates interoperability, enabling different ledgers
to share data and value seamlessly between network peers.
Polkadot’s heterogeneous multi-chain framework[92] allows
connected blockchains to share data through its relay chain,
promoting interoperability while controlling data access. Cos-
mos, aiming for an ”Internet of Blockchains,” enables different
blockchains to selectively share data through the Cosmos Hub,
emphasizing interoperability.

Furthermore, IOTA’s Tangle structure fosters global share-
ability, with all network peers having access to efficiently
interlinked transactions. Filecoin’s decentralized storage net-
work enables global data shareability, allowing peers to access
shared data stored across the network. Nervos Network’s two-
layer architecture supports global shareability of state and
assets, with all peers having access to the shared data on
the Nervos network. Dfinity’s decentralized cloud platform en-
ables global data shareability by providing secure and scalable
computing resources, accessible to network peers.

In contrast, DLTs tailored for business applications, such as
Corda and Hyperledger Fabric, prioritize restricted shareability
of transactions to address privacy concerns. Corda adopts a
node-centric approach, where each node maintains a distinct
database containing only relevant data, limiting the visibility
of the ledger to individual peers. Similarly, Hyperledger Fab-
ric introduces the concept of channels [93] to restrict data
shareability. Each transaction occurs on a private subnetwork
(channel), accessible only to authenticated and authorized
parties, resulting in a distinct ledger for each channel. Other
projects like Quorum, built on Ethereum, ensure privacy by
facilitating private transactions among network participants

through constellations[94] or Tessera [95]. Ripple, with its
XRP Ledger (XRPL), employs a hybrid model that combines
elements of both global and restricted data shareability. The
XRP Ledger serves as a decentralized global payment network,
where transactions are recorded in a chain of blocks. This
chain ensures immutability and transparency of transactions,
contributing to global shareability.

5) Data immutability: The pinnacle of strong immutability
is exemplified in Bitcoin, where robust cryptographic hashing
and chained blocks forge an unalterable record, rendering
it ideal for applications requiring unwavering security and
transparency. However, this rigidity may be less suitable for
projects seeking adaptability and evolution. Other protocols,
such as Ethereum or Avalanche, prioritize strong immutability,
ensuring that once data is written to the ledger, it remains
unalterable or erasable.

Business-oriented DLTs like Hyperledger Fabric illustrate
the possibilities of weak immutability. By leveraging tree
structures and state updates, they permit data modifications
under specific conditions while preserving historical values,
offering greater flexibility for projects to adapt to changing
needs without compromising overall ledger integrity.

Projects like Multichain provide customizable data shar-
ing with varying degrees of immutability, while Hyperledger
Sawtooth enables the implementation of different consensus
mechanisms and diverse levels of immutability.

Tezos introduces a unique feature known as the ”rollback-
enabled model,” offering weak immutability. This model al-
lows for the reversal of specific on-chain transactions in excep-
tional circumstances, such as critical bugs or vulnerabilities.

C. Data Layer: Discussion

The design choice of a data structure and its properties is
complex, involving the assessment of numerous challenges and
tradeoffs, as described below:

1) Tradeoff: Data Integrity (Block Size) versus Transac-
tion Throughput (Performance): The sequential nature of
the chain of blocks ensures a high level of security and
data integrity. However, it limits the number of transactions
accepted by the network due to the block size (in megabytes or
gas limit). This limitation penalizes system throughput. For in-
stance, Bitcoin introduced a block size limit (1 MB) to prevent
DOS attacks caused by huge blocks, but this decision hampers
network performance (4 transactions per second). Increasing
the block size cannot be an effective solution, as it risks
breaking the network’s decentralization, making full nodes
more expensive to operate, increasing orphan block rates, and
delaying propagation speed. To address this dilemma, Bitcoin
adopted the Segregated Witness (SegWit) technique [96] [97],
which separates signature data from Bitcoin transactions and
allows its pruning from the ledger, safely increasing the block
size limit to 2-4 MB. Additionally, to enhance throughput
without increasing orphan blocks, the Bitcoin network reduced
block propagation time by incorporating rapid relay networks
[98]-[99]-[100]. In Ethereum, miners set the gas limit for
each block. The gas limit is a parameter that defines the

maximum amount of gas units that can be consumed in a
block. Gas is the computational unit used to measure the
computational work performed by the Ethereum network, and
it is separate from the cryptocurrency ether. That limit helps
prevent malicious users from creating transactions that require
excessive computational resources, potentially disrupting the
network. In contrast to the chain of blocks, the parallel nature
of DAGs enables the processing of transactions in parallel,
contributing to higher throughput. However, a DAG structure
comes with its own challenges. A reduction in the volume
of transactions may expose it to attacks (e.g., parasite attack
[101]). Therefore, DAG-based DLTs often resort to centralized
mechanisms (e.g., coordinators in IOTA) to mitigate this risk.

2) The Challenge of Fast-Growing Ledger Size: Address-
ing the issue of fast-growing ledger sizes is a significant
concern across all DLTs. Various solutions have been devised
to handle this challenge at the data level. For example, projects
like Bitcoin employ straightforward methods like ledger prun-
ing. In this approach, nodes download blocks, validate them,
and then discard irrelevant data to conserve disk space. On
the other hand, more complex solutions, such as sharding
techniques, are utilized by projects like Zilliqa [102] and
Ethereum 2.0. Sharding involves running multiple parallel
subsets of nodes, known as shards, where each shard maintains
its sub-ledger. This enables parallel transaction processing and
distributes data storage among multiple nodes.

Additionally, there’s an active development of off-chain
processing techniques to alleviate the network’s load, whether
in terms of storage or computation. Examples include Bitcoin’s
Lightning Network [103] and Raiden [104]. In the realm
of business-oriented implementations, cloud providers offer
Blockchain as a Service (BAAS) solutions, such as IBM
BAAS [105] and Azure BAAS [106]. These solutions involve
deploying a ready-to-use DLT solution on the cloud, providing
the necessary storage space and network bandwidth. For more
in-depth information on current BAAS solutions, readers are
encouraged to refer to [107].

3) The transparent aspect of the blockchain versus privacy
of shared data: The transparency of the DLTs often raises
concerns regarding data privacy, particularly in DLTs with
global shareability. While most public blockchains employ
pseudo-anonymization to introduce an initial layer of privacy,
the persistent risk of deanonymization, as demonstrated by
[108] [109], remains. This risk is heightened when users
neglect to employ distinct single-use addresses for each op-
eration, a practice supported by hierarchical deterministic
wallets [110]. To enhance anonymity and facilitate confiden-
tial transactions in the blockchain sphere, solutions such as
Monero [111] and Zcash [112] have been proposed. Zcash
introduced zkSNARKs [113], a zero-knowledge proof sys-
tem, while Monero utilizes ring signatures [111] to conceal
transaction senders and recipients. An additional strategy to
bolster the anonymity of existing public blockchains (e.g.,
Bitcoin or Ethereum) involves mixing schemes like CoinJoin
[114], Coinshuffle [115], MimbleWimble [116], and Grin
[117]. These solutions employ transaction shuffling mecha-

nisms to safeguard anonymity. Additionally, initiatives like
Zether [118], WaterCarver [119], and Aztec [120] aim to
leverage zkSNARKs, introducing an enclave of privacy to
public Ethereum for enabling private transactions. It’s worth
mentionning that entities such as StarkNet, which currently
lack native support for the Ethereum Virtual Machine (EVM),
are actively investigating transpilers to overcome the program-
ming language gap. The future is in favour of zkEVMs, as they
compete for supremacy not only within the realm of zk-rollups
but also against their optimistic counterparts.

V. CONSENSUS LAYER

DLTs have sparked a renewed interest in the development
of innovative distributed consensus protocols. In fact, the lit-
erature has witnessed the proposal of numerous consensus al-
gorithms tailored for DLTs, each presenting distinct properties
and functionalities. This section introduces the properties and
features incorporated into the DCEA framework, essential for
the study and differentiation of these protocols. Additionally,
the second subsection provides an overview of the current
state of the art in this domain. Section VIII delves into the
presentation and discussion of the results derived from a
comparative analysis of the examined protocols.

A. Components and Properties

1) Basic Properties: The concepts of safety and liveness
properties are fundamental to understanding and evaluating
consensus algorithms in distributed systems. These properties
were originally introduced by Leslie Lamport in 1977 in
his seminal work ”Proving the Correctness of Multiprocess
Programs” [121]. Since then, they have become essential tools
for analyzing and designing consensus protocols in various
distributed computing scenarios.

a) Safety: In the context of DLT networks, safety denotes
the assurance that correct nodes will not simultaneously val-
idate conflicting outputs or make conflicting decisions, such
as chain forks. The safety property plays a crucial role in
ensuring availability, ensuring that transactions submitted by
honest users are efficiently integrated into the ledger [122].
Additionally, safety encompasses preventing undesirable phe-
nomena like reorganizations (reorgs), where previously con-
firmed transaction history undergoes revisions, often due to
factors like network forks or changes in consensus rules.

b) Liveness: a consensus protocol ensures liveness in a
DLT if it guarantees eventual progress, agreement even in the
presence of faults or delays.

c) Finality: we define the finality as the affirmation and
guarantee that once a transaction is recorded on the ledger, it
cannot be altered or reversed, guaranteeing data integrity and
providing a strong foundation for trust in the system. Finality
can be divided into two categories:

• Probabilistic finality, where the certainty of a transaction
being irreversible increases with time after its inclusion
in the ledger. This means that while the transaction may
theoretically be reversed, the probability of such an event

occurring diminishes significantly as more blocks are
added to the chain

• Absolute finality guarantees that a transaction is irre-
versible once it has been validated by a majority of honest
nodes in the network.

2) Network Models: In the literature of distributed systems
and DLT consensus protocols, we adhere to the message pass-
ing model where nodes communicate by exchanging messages
over the network, operating with different assumptions of net-
work synchrony. In this survey, we adopt the taxonomy defined
by [123], which categorizes network synchrony assumptions.

• Synchronous: Assumes a known upper bound on mes-
sage delay, ensuring messages are consistently delivered
within a specified time after being sent.

• Partially-synchronous: This assumption is based on a
Global Stabilization Time (GST), indicating that mes-
sages sent will be received by their recipients within
a predetermined time frame. Before reaching the GST,
messages may encounter unpredictable delays.

• Asynchronous: Messages sent by parties are eventually
delivered, with arbitrary delays and no assumed bound
on the delivery time.

3) Failure Models: Different failure models have been
considered in the literature; we list here two major types.

• Fail-stop failure (Also known as benign or crash
faults): Nodes go offline because of a hardware or soft-
ware crash. Fail-stop failures can be detected relatively
easily, as the node simply becomes unreachable.

• Byzantine faults: This category of faults was introduced
and characterized by Leslie Lamport in the Byzantine
Generals Problem [124] to represent nodes behaving
arbitrarily due to software bugs or a malicious compro-
mise. In a Byzantine fault, a node behaves arbitrarily,
potentially due to software bugs, security breaches, or
malicious intent, allowing the node to send conflicting
messages to different nodes, forge false information, and
collude with other Byzantine nodes to mislead the system.

Therefore, we consider a protocol as fault-tolerant if it can
gracefully continue operating without interruption in the pres-
ence of failing nodes.

4) Adversary Models: Distributed systems, including
blockchain networks, operate in environments where malicious
actors may attempt to disrupt their operation or exploit vulner-
abilities for their own benefit. To design secure and resilient
systems, it is crucial to understand different adversary models
and how they can impact the network.

• Threshold Adversary Model (Hirt and Maurer) [125]:
This model, commonly used in traditional distributed
computing literature, assumes that the Byzantine adver-
sary can corrupt up to any f nodes among a fixed
set of n nodes. This model typically assumes a closed
membership where permission is required to join the
network. The consensus protocol should ensure consensus
in the presence of Byzantine nodes as long as their
numbers is below a specific threshold.

• Computational Threshold Adversary: A model introduced
by Bitcoin (and applicable to other decentralized sys-
tems), where the adversary’s control over the network is
bounded by computational power not by the number of
nodes they can control. This model typically assumes, the
membership is open to multiple parties, and the bounding
computation involves a brute force calculation.

• Stake Threshold Adversary [126]: In this model, the
adversary’s control is bound by the control over a specific
resource: the system’s native token or currency. The Stake
Threshold Adversary is the one who hoards enough of
these shares (tokens) to gain a significant say in the
system’s operation.

5) Adversary Modes: Consensus protocols consider various
types of adversaries based on their capabilities and the time
required to compromise a node.

• Static adversary: Represents a Byzantine entity with the
ability to corrupt a predetermined number of nodes in
advance, exerting complete control over them. However,
the static adversary exhibits limited adaptability, as it
cannot modify the selection of nodes it has corrupted after
the initial attack. Furthermore, the adversary achieves in-
stantaneous control over the compromised nodes, without
any delay or gradual process.

• Adaptive adversary: Characterizes a Byzantine entity
that possesses the ability to dynamically control nodes
within the network, making adjustments based on chang-
ing circumstances. This adversary can flexibly change the
nodes under its control, enhancing its overall influence
over time.

• Mildly adaptive adversary: Describes a Byzantine entity
capable of an corrupting nodes based on past messages.It
can observe and learn from past messages exchanged
within the system. This allows it to tailor its attacks based
on the acquired information. Importantly, this adversary
lacks the ability to alter messages that have already been
sent. While the adversary can corrupt entire groups of
nodes, this action comes with a time penalty. Corrupting
a group takes longer than the group’s normal operating
phase.

• Strongly adaptive adversary: Represents a Byzantine
entity that possesses the capability to gain knowledge
of all messages sent by honest parties. This adversary
leverages this information to make decisions, determining
whether to corrupt a party by altering its message or de-
laying message delivery. With a high level of adaptability,
the strongly adaptive adversary strategically utilizes its
comprehensive knowledge to compromise the system.

6) Identity Model: Distributed ledger consensus protocols
adopt different approaches to managing nodes’ membership,
generally falling into two contrasting categories:

• Permissionless: This model embraces an open member-
ship system, enabling any node to freely join the network
and participate in the validation of new entries.

• Permissioned: In contrast, the permissioned model re-

stricts membership, allowing only a predefined set of
approved members to validate new entries.

In the context of Distributed Ledger Technology (DLT), the
identity model is intricately tied to the network’s openness,
which may manifest as private, public, or a consortium. A
comprehensive exploration of these identity types can be found
in [127] and [128].

7) Governance Model: The governance model pertains to
the decision-making framework embraced by a DLT network
for determining protocol rules and their updates and upgrades.
Given that system governance is inherently a social concept,
various governance models can be identified:

• Anarchic: Protocol upgrade proposals undergo approval
by every participant in the network. Each participant
has the autonomy to accept or reject a given proposal,
potentially leading to network splits.

• Democratic: Participants engage in voting on new rules
and protocol upgrade proposals. Ultimately, all partici-
pants are obligated to follow the decision of the majority,
even those who opposed it.

• Oligarchic: New rules and protocol upgrades are sug-
gested and endorsed by a select group of participants.

Considering the shift of most DLTs in handling governance
and related matters ”on-chain” or ”off-chain”, we also recog-
nize the distinction between:

• Built-in (On-chain governance): The decision-making
process is defined as part of the underlying consensus
protocol within the network.

• External governance (Off-chain governance): The
decision-making process relies on procedures
independently performed outside the DLT network.

8) Transactions Ordering: Maintaining the chronological
order of transactions is crucial for preventing fraud and
inconsistencies in both linear and non-linear DLTs, including
DAGs. To address this requirement, diverse approaches have
been developed within consensus protocols to ensure correct
transaction ordering. While transaction ordering is typically
integrated into the consensus mechanism for efficiency, spe-
cific scenarios may necessitate decoupling it from transaction
execution and validation. This allows for greater flexibility
and optimization based on specific application needs. Two key
approaches for decoupling ordering include:

• Optimistic ordering: Transactions are speculatively exe-
cuted and finalized only after their order is confirmed,
allowing for faster processing but requiring additional
validation steps.

• Off-ledger ordering: Transactions are ordered outside the
DLT before being submitted for validation and execution,
providing increased scalability but adding complexity to
the system.

9) Conflict Resolution Model: In certain DLT networks, the
coexistence of temporary conflicting ledger versions, known
as forks, may arise due to factors such as network latency
or parallel block validation. To converge towards a single

source of truth, networks and consensus mechanisms imple-
ment various rules, with the ”longest chain rule” from the
Bitcoin protocol being one of the most prominent. In case
of conflicting orders, the PoW-based networks converge to a
single order following the longest chain — the chain with the
largest accumulated Proof of Work discarding the others. This
rule is adopted by various protocols, each potentially utilizing
a different cumulative parameter (witness votes, endorsements,
etc.). Table XI illustrates different rules employed by various
DLTs to resolve conflicting orders and mitigate discrepancies.
In Proof of Stake (PoS) blockchains, the authoritative chain
may be the one with the highest support from validators,
chosen based on their stake in the network. The chain with
the highest level of validator support is considered the valid
chain.

B. Consensus Layer: State of the Art

In this subsection, we introduce various consensus mecha-
nisms and their properties. While it is beyond the scope of this
paper to provide an exhaustive taxonomy of existing protocols
(see fig. 15), we categorize the reviewed protocols into six
groups. This classification forms the basis for categorizing
DLTs.

1) BFT Consensus Family (PBFT-like): This family en-
compasses classical consensus mechanisms derived from tra-
ditional distributed computing literature and their recent vari-
ations. The BFT family is distinguished by its characteristic
of conducting all-to-all voting rounds [129]. Nodes within the
network possess known identities, and the participant count is
limited. Given the multitude of protocols within this family,
our paper’s review primarily concentrates on the most widely
employed algorithms in the context of DLT, namely PBFT,
Raft, IBFT, DBFT, POA (AURA, Clique), HoneyBadgerBFT,
and HotStuff.

a) Practical Byzantine Fault Tolerance (PBFT): The
PBFT algorithm, introduced by Castro and Liskov [130],
stands out as a well-established consensus mechanism often
synonymous with BFT consensus. Designed for practical,
asynchronous environments with a Byzantine minority of f
out of a total of 3f+1 nodes, PBFT relies on a leader-
based approach. In each view (leader election term), a leader
is elected to append log entries (blocks in the case of a
blockchain).

PBFT ensures asynchronous safety by employing a three-
phase protocol: pre-prepare, prepare, and commit. The first two
phases (pre-prepare and prepare) facilitate ordering requests

Fig. 15. Our taxonomy for consensus protocols

sent within views, even when the leader is faulty, while
the last phase ensures that committed requests are totally
ordered across views. However, PBFT exhibits a weak level of
liveness, aiming to prevent faulty nodes from forcing frequent
view changes and consistently promoting a faulty node to the
primary role.

While PBFT enables high throughput and low latency, it
does have certain drawbacks, including the costliness of re-
coveries in case of faulty leaders and performance degradation
with an increasing number of nodes. As a result, PBFT is
considered suitable primarily for a small-to-medium group of
known participating nodes.

b) RAFT [131]: is a log-replication consensus algorithm
that uses a leader-based approach. A single leader is elected,
chosen through randomized timer timeouts, to append new
entries to the log (append-only) and replicate it across the
other nodes in the network. When the leader becomes faulty or
slow, at most one of the nodes with the most up-to-date log is
chosen as the new leader. Similar to PBFT, all nodes in RAFT
must be known and interconnected to exchange messages in
epochs.

RAFT guarantees network safety by ensuring that every
log is correctly replicated and commands are executed in the
same order across all nodes. Additionally, only one leader is
ever elected at a time, preventing conflicting updates. Notably,
attempts have been made to extend RAFT’s tolerance to
Byzantine faults, as seen in works by [132]and [133].

c) Istanbul BFT (IBFT) [134]: is a Byzantine Fault Tol-
erant (BFT) state machine replication-based consensus algo-
rithm. IBFT inherits from the original PBFT by using a three-
phase consensus protocol, where before each round, nodes will
elect a leader (called Proposer) who will be responsible for
proposing new blocks in the network along with the PRE-
PREPARE message. In each stage, validators broadcast the
state message and wait for 2f+1 state messages (PREPARE,
COMMIT) to commit the current state (insert the block to the
chain). IBFT can tolerate at most f faulty nodes in a network
with 3f+1 nodes.

Three-Phase Consensus in IBFT:

• Pre-prepare: The Proposer broadcasts a PRE-PREPARE
message containing the proposed block to other nodes.

• Prepare: Upon receiving the PRE-PREPARE message,
validators verify the block and then broadcast a PRE-
PARE message if they agree.

• Commit: Once a validator receives 2f+1 PREPARE mes-
sages for the same block, it broadcasts a COMMIT
message and adds the block to its chain.

While IBFT demonstrates scalability to a large number of
peers, it comes with a trade-off as it demands higher commu-
nication overhead compared to other consensus algorithms.

Proof of Authority (PoA)
d) Proof of authority PoA [135]: is a Byzantine Fault

Tolerance (BFT) leader-based consensus mechanism designed
for permissioned blockchain deployments with at least n/2+1
honest nodes, where n is the total number of nodes.

PoA relies on a set of trusted and identifiable nodes called
authorities, responsible for creating new blocks and securing
the blockchain. PoA protocols operate through a series of
steps, each with an authority elected as a validation leader
using a rotating process. PoA is a reputation-based consensus
protocol where the authority’s reputation is at stake instead of
financial or computational power.

PoA has two major implementations: Aura [136] and Clique
[137]. These implementations differ in their process:

• Aura : In the Block Proposal phase, the current leader
takes the initiative to propose a new block. Following
this, in the Acceptance phase, a subsequent round unfolds
where other authorities within the network participate
in voting to determine the acceptance of the proposed
block. This two-phase approach ensures a systematic and
distributed mechanism for reaching consensus on the
inclusion of new blocks in the blockchain.

• Clique: In Clique, the current leader proposes a new
block, and block acceptance is immediate as other au-
thorities directly append the proposed block to their
chains. This streamlined approach eliminates a separate
acceptance phase, enhancing efficiency in the consensus
process.

Unlike PBFT, PoA requires fewer message exchanges, re-
sulting in better performance [21]: Aura offers lower transac-
tion acceptance latency and more predictable block issuance
with steady time intervals. In contrast, Clique achieves faster
block creation by eliminating a separate block acceptance
round from its consensus process. However, Deangelis et
al. [135] argue that PoA algorithms might not be the most
suitable choice for permissioned blockchains deployed over
the internet. They advocate for PBFT as a potentially better
alternative for permissioned settings.

e) Democratic BFT (DBFT): [138] is a deterministic and
partially synchronous consensus algorithm that can tolerate
up to f < n/3 Byzantine nodes, where n is the total number
of nodes. Unlike practical Byzantine Fault Tolerance (PBFT)
protocols that rely on a single, correct leader to finalize the
consensus process, DBFT is a leaderless protocol.

DBFT offers several key features:
• Multiple Proposers: Instead of relying on a single leader,

DBFT allows multiple nodes to propose sets of trans-
actions for inclusion in a block, enriching the pool
of potential options and potentially accelerating block
creation.

• Disjoint Sets: Proposers in DBFT can propose disjoint
sets of transactions, meaning they don’t necessarily need
to agree on the exact contents of a block. This allows for
flexibility and can potentially lead to higher throughput.

• Asynchronous Rounds: Nodes in DBFT can complete
asynchronous rounds, meaning they don’t need to wait
for all other nodes before proceeding. This can further
improve performance, especially in large networks.

• Democratic Decision-Making: Each node plays a similar
role in the consensus process, contributing to a more

”democratic” decision-making mechanism compared to
leader-based protocols.

This combination of features allows DBFT to achieve high
throughput and scalability, making it suitable for large-scale
blockchain deployments. However, DBFT is comparatively
complex among BFT protocols, potentially posing implemen-
tation challenges. While it exhibits promising performance,
ongoing research focuses on formally verifying its security
properties.

f) HoneyBadgerBFT or HBBFT [139]: is a Byzantine
fault-tolerant consensus algorithm designed for fully asyn-
chronous networks with an honest majority (n > 3f). Unlike
traditional BFT, it eliminates the need for a special leader node
to propose transactions; instead, every node assumes the role
of a proposer. In each epoch, participating nodes exchange
a batch of encrypted transactions and collectively agree on
them using a randomized agreement protocol. HBBFT relies
on threshold encryption, where transactions are encrypted with
a shared public key and can only be decrypted when the
elected consensus committee collaborates. This ensures that
adversaries cannot determine which transactions are proposed
by specific nodes until an agreement is reached. Additionally,
HBBFT incorporates optimizations to enhance system perfor-
mance, including communication-optimal reliable broadcast
[140], binary consensus as proposed by [141], and batching
[140]. It is particularly suitable for networks with a small
number of known (permissioned) validator nodes. However,
it’s essential to note that HBBFT, like any consensus al-
gorithm, has its drawbacks. One potential drawback is the
computational overhead associated with the use of threshold
encryption, which may impact the algorithm’s overall perfor-
mance, especially in resource-constrained environments. Addi-
tionally, the complexity of the algorithm may pose challenges
in terms of implementation and maintenance. Despite these
considerations, HBBFT remains a viable choice, particularly
for networks with a small number of known (permissioned)
validator nodes.

g) HotStuff [142]: is a leader-based Byzantine fault-
tolerant replication protocol designed for partially synchronous
networks, offering both linearity (linear change view) and
responsiveness. It re-examines the original BFT designs and
aims to significantly reduce the authenticator complexity of
PBFT. In cases of a correct leader or view-change, the com-
plexity is brought down from O(n2) and O(n3) to O(n), where
n is the number of nodes. Unlike PBFT, HotStuff adopts a
three-round process, rotating the leader every three rounds
after a single attempt to commit a command. The leader
replacement (view-change) operation is integrated with the
normal process, eliminating a separate view change process
and reducing overall complexity. HotStuff streamlines PBFT
authentication complexity by introducing a new proposer in
the first phase carrying only a single commit-certificate, and in
the second phase, replicas can reject a proposition conflicting
with their highest-level certificate without requiring a leader
proof. Additionally, it shifts PBFT’s communication model
from a mesh to a star topology, relying on the leader for

communication between nodes, and utilizes threshold digital
signature schemes to further reduce authenticator complexity.
Notably, HotStuff ensures optimistic responsiveness, with a
leader requiring only n-f (where f is the number of faulty
nodes) votes from other nodes to guarantee progress. It main-
tains simplicity and modularity by decoupling safety (voting
and commit rules) from liveness, guaranteed by the pace-
maker mechanism after the global stabilization time (GST).
Furthermore, HotStuff enhances BFT scalability by linearizing
the algorithm’s authenticator complexity, making it suitable
for wide networks. However, the introduction of three phases
in HotStuff, compared to the two phases in PBFT, induces
additional latency, limiting the throughput to a single commit
per three phases. For a comprehensive exploration of other
Byzantine consensus algorithms with extensive analysis, refer
to [143].

2) Nakamoto consensus family: The Nakamoto consensus
family comprises protocols that utilize a chain of block data
structures and employ the longest chain fork choice rule
(or variants like GHOST [79]) to ensure network safety,
all while incorporating economic incentives as a motivating
factor. Originally designed to facilitate secure global currency
transfers, these protocols offer a simpler alternative to PBFT
while tolerating significant corruption (up to n/2 nodes). No-
tably, they operate on a permissionless basis, allowing nodes
to freely join or leave the network without requiring prior
authentication. Here, we explore some of the most prominent
protocols within this category: PoW, memory-bound PoW, and
BitcoinNG.

a) proof-of-work (or PoW): PoW is a consensus mech-
anism where a leader, commonly known as a miner, is
chosen probabilistically based on the computational power
contributed. Upon solving a cryptographic puzzle, the miner
constructs and submits a block, accompanied by a valid proof-
of-work nonce, to the network. Verification by other peers
involves computing the hash of the block header and ensuring
it meets the condition of being smaller than the current
target value. Valid blocks are added to the chain with the
largest cumulative difficulty. In PoW, each peer effectively
casts a vote on transaction validity using its hashing power.
The protocol relies on partial hash collisions to thwart Sybil
attacks[144], preventing the system from being tainted by
multiple misbehaving nodes.

A noteworthy aspect of PoW is its resilience to potential
forks or reorganizations in the blockchain. In the event of com-
peting blocks being added simultaneously by different miners,
the network may experience a temporary fork. However, PoW
relies on the principle that the longest chain is considered
the valid one. Nodes in the network continuously work on
extending the chain, and the longest chain, representing the
majority of computational power, ultimately becomes the
accepted version. This mechanism ensures a coherent and
agreed-upon transaction history. Additionally, PoW introduces
economic measures and incentives, such as transaction fees
and mining rewards, to actively discourage denial-of-service
attacks and protect the network against spam, contributing to

the overall robustness of the protocol.
b) Memory bound PoW: Originally conceived as an

egalitarian process accessible to all, mining in traditional
PoW faced concerns over centralization due to the widespread
adoption of application-specific integrated circuits (ASICs).
These specialized devices provided a significant advantage
over conventional hardware, leading to the concentration of
mining power among a few entities and the dominance of
ASIC manufacturers.

To address this issue, various ASIC-resistant solutions
were introduced. Dwork et al. [145] [146] [147] proposed a
memory-bound proof-of-work that relies on random access
to slow memory rather than computational hashing power.
This design makes ASIC mining less efficient, as ASICs
cannot accommodate the substantial memory requirements.
Several PoW implementations, such as Scrypt [148], Prime-
coin [149], Equihash [150], and CryptoNight [151], have
adopted memory-bound mining processes.

For example, Ethereum 1.0 employed a PoW protocol called
Ethash [152], intentionally designed to be ASIC-resistant
through memory-hardness. Miners on the Ethereum network
are required to compute a sizable in-memory Directed Acyclic
Graph (DAG), which stood at 4 GB as of December 23, 2020
[153], to mine new blocks. Ethereum is further planning to
enhance its Ethash algorithm by transitioning to ProgPoW
(programmatic proof-of-work), aiming to improve resilience
against ASIC mining before transitioning to the proof-of-stake
[154] consensus protocol. This strategic approach seeks to
maintain a fair and decentralized mining ecosystem within the
Ethereum network.

c) Bitcoin-NG [72]: Bitcoin-NG was proposed to scale
PoW-based Nakamoto protocols by decoupling transaction
verification from the leader (miner) election process. Similar
to Bitcoin, Bitcoin-NG operates in epochs, where each epoch
features a single leader chosen via proof-of-work. Once a
leader is identified, they are responsible for unilaterally seri-
alizing transactions via Microblocks in the succeeding epoch,
respecting predefined limits on rate and block size, until a new
leader is chosen. The decoupling in Bitcoin-NG reduces delays
caused by periodic leader elections and scales Bitcoin in terms
of transaction throughput and propagation latency. However,
Bitcoin-NG does not ensure strong consistency, as short forks
may occur during the leader-switching process.

3) Proof of stake and its variants: Proof-of-Stake (PoS)
emerged as an alternative to the resource-intensive Proof of
Work (PoW) and was initially proposed in PPCoin [155].
Instead of engaging in a competitive hash-calculation race,
participants aspiring to become validators and forge new
blocks in a PoS system must lock a specific amount of coins
into the network as a financial stake. The likelihood of a
node being selected as the next validator is then determined
by the size of their stake. Various implementations of PoS
have been introduced, each bringing unique features to address
specific challenges. Notable representatives include Ethereum
PoS, which combines PoW and PoS, Delegated Proof of Stake
(DPoS) as seen in EOS, Liquid Proof of Stake (LPoS) allowing

users to ”lease” their coins to validators, and Ouroboros
and its variants. Snow White is another example within the
PoS landscape. The evolution of PoS and its diverse variants
reflects ongoing efforts to refine and optimize blockchain
consensus mechanisms.

a) Ouroboros: was introduced by Aggelos Kiayias et al
[156] in 2017 as a provably secure proof of stake protocol.
The protocol operates in epochs, with each epoch divided into
slots during which blocks are produced by a randomly chosen
slot leader. Within each epoch, a committee of stakeholders
employs a secure multiparty implementation of a coin-flipping
protocol to generate the required randomness for electing a
random list or committee of block producers for the slots in
the current epoch. From this list, slot leaders are then elected
using a random lottery algorithm called Follow the Satoshi
(FTS). Given that Ouroboros is a PoS system, the probability
of selecting a block producer is proportional to their stake.
While Ouroboros was presented as the first provably secure
proof-of-stake in the synchronous setting, it is susceptible
to desynchronization attacks. This vulnerability arises as slot
leaders in Ouroboros require precise synchrony to utilize
their allocated slots accurately, potentially leading to network
stalling or hindering liveness.

b) Ouroboros Praos [157]: extends the Ouroboros pro-
tocol to accommodate semi-synchronous networks, address-
ing desynchronization attacks and providing security against
fully-adaptive corruption. In contrast to Ouroboros, Praos
incorporates a special verifiable random function (VRF) that
enables the randomly selected slot leader to anticipate the
slots they will lead in advance. Unlike Ouroboros, where
stakeholders learn about the slot leader once they publish a
block, Praos stakeholders privately verify the corresponding
VRF to determine the slot leader. The protocol is underpinned
by formal analysis and delivers a robust Proof-of-Stake (PoS)
implementation with a security level equivalent to Proof of
Work (PoW).

c) Ouroboros Genesis [158]: represents a variant of
the Ouroboros Praos protocol designed to address the syn-
chronization challenge for new nodes joining Proof-of-Stake
(PoS) systems. In contrast to Praos, which maintains moving
checkpoints, Genesis introduces a distinct chain selection rule,
employing the so-called maxvalid procedure [158]. This
innovation enables new nodes to safely participate in the
protocol without requiring external information beyond the
genesis block. As a result, new validators can verify the true
longest chain with only knowledge of the genesis block. The
security of Ouroboros Genesis has been formally proven in
[158] against a fully adaptive adversary controlling less than
half of the total stake in a partially synchronous network.

d) Ouroboros Chronos [159]: extends the Ouroboros
Genesis protocol, introducing a significant innovation by elim-
inating the necessity for a global clock to maintain network
synchronization. This design removes the dependency on an
external service providing timestamps, such as NTP [160].
Ouroboros Chronos achieves this by introducing a novel
synchronization mechanism that allows nodes to synchronize

their local clocks based solely on knowledge of the genesis
block and the assumption that their local clocks, initially
desynchronized, advance at approximately the same speed.

e) Snow White: was introduced by Daian et al. [161]
as a PoS protocol providing end-to-end and formal proofs of
security in asynchronous and permission-less settings. This
blockchain-style protocol emphasizes the ability of users to
freely enter and exit the network, incorporating a modified
version of the sleepy consensus protocol introduced by [162].
Similar to Ouroboros, Snow White operates in epochs. In each
epoch, a leader is randomly and publicly elected from a com-
mittee of stakeholders to append a block to the blockchain. To
address security concerns related to committee reconfiguration
and random block-proposer selection, particularly adaptive
chosen key and randomness-biasing, Snow White introduces a
novel “two-lookback” mechanism. In each epoch, a new con-
sensus committee is determined in advance (multiple blocks
before) than the randomness seed, making seed prediction
challenging for malicious nodes. The previously generated
randomness seeds of the previous blocks serve as a source of
randomness entropy to seed the new random oracle for electing
a slot’s leader. Additionally, akin to PoW, Snow White’s nodes
always choose the longest chain in the presence of multiple
chains.

f) Delegated Proof of Stake (DPoS) [88]: was originally
conceptualized by Daniel Larimer and implemented in the
Bitshares blockchain [163]. Serving as a variant of the PoS
consensus, DPoS relies on a group of delegates, commonly
referred to as witnesses, who are elected by token holders
(stakeholders) to generate and validate blocks on behalf of
other network participants. DPoS networks typically feature
an odd number of elected witnesses, ranging from 21 to
101, who take turns forming and signing new blocks for
approval through a voting system. However, the specific range
of witnesses can vary depending on the chosen DPoS imple-
mentation and network configuration. Some networks might
employ a lower number of witnesses, such as 11 or 17, for
improved performance or efficiency. Conversely, others might
utilize a higher number, exceeding 101, to accommodate larger
network sizes or enhance decentralization.

The specifics of the voting system in DPoS can vary
between implementations, but generally, each witness presents
a single proposal when soliciting votes from other witnesses.
Similar to PoS, a voter’s weight is determined by their stake
in the network. Moreover, witnesses in DPoS cannot sign
arbitrary blocks or produce a block outside their scheduled
time slot. Refusal by witnesses to produce blocks results in
swift expulsion, with replacement by other elected witnesses.

While DPoS offers enhanced scalability compared to PoS or
PoW, it faces criticism for the significant risk of centralization
arising from the concentration of power among a limited
number of actors (delegates).

4) Hybrid protocols : Hybrid consensus protocols, draw-
ing strength from established mechanisms like PoW and
PoS, combine elements of different approaches to overcome
individual limitations and achieve better performance. This

hybrid approach offers the potential for enhanced scalability,
improved security, and flexibility to adapt to changing network
conditions. However, increased complexity, potential conflicts,
and finding the right balance between mechanisms remain
challenges to be addressed.

a) Byzcoin: was introduced by Kokoris-Kogias et al.
[164] as a solution to enhance Bitcoin’s consistency and per-
formance by leveraging the advantages of Practical Byzantine
Fault Tolerance (PBFT) and employing collective signing. In
contrast to Bitcoin, Byzcoin forms a BFT consensus group
through the collaboration of Proof of Work (PoW) miners.
The protocol incorporates a proof-of-membership mechanism
based on PoW to establish the consensus group using a
fixed-size sliding share window. Membership shares are dis-
tributed to successful miners for mining a valid block, and
the cumulative shares represent their voting power in the
consensus process. As miners mine new blocks, the share
window advances, and miners without valid shares exit the
consensus group.

Byzcoin employs a collective signing protocol named scal-
able collective signing (CoSi) [165] to aggregate thousands
of signatures, reducing the PBFT communication complexity
from O(n2) to O(n). This scalability enables BFT protocols
to accommodate large consensus groups. Moreover, ByzCoin
ensures safety and liveness under Byzantine faults, with near-
optimal tolerance allowing for up to f faulty group members
among 3f + 1 participants. To minimize transaction processing
latency, ByzCoin adopts the decoupling of transaction verifica-
tion from block mining, a concept introduced by Bitcoin-NG.

b) Solana [166] [167]: Solana actually utilizes a hybrid
consensus mechanism that combines both Proof of History
(PoH) and Proof of Stake (PoS). This is one of the unique
aspects of Solana’s architecture, allowing it to achieve high
scalability and transaction throughput. Proof of History (PoH)
operates on the principles of Verifiable Delay Function (VDF)
and Cryptographic Hash Functions to establish a reliable and
verifiable timeline of events on the Solana blockchain. The
VDF serves as a time-sequencing mechanism, designed to
be computationally expensive to solve but easy to verify.
Validators independently execute VDFs, generating unique
outputs that act as proofs of the time spent solving the
function. These outputs are then hashed and linked together
to form a continuous chain of timestamps.

The PoH process involves the execution of VDFs by val-
idators, generating unique outputs that serve as proofs of time.
These outputs are hashed and linked in a chain, creating
an immutable and tamper-resistant history of timestamps.
Validators share their hash chains with the network, and other
validators can easily verify the chain by checking the validity
of each VDF output and ensuring the cryptographic integrity
of the chain.

Consensus is built based on these verified timestamps,
allowing validators to agree on the order of transactions
and establish the current state of the blockchain. PoH intro-
duces additional features to enhance its functionality, such
as Sealevel, a parallel execution environment that enables

multiple validators to work on different parts of the VDF
chain simultaneously, thereby improving processing speed and
scalability. Tick Verification is another feature that ensures the
accuracy of timestamps by allowing validators to periodically
compare their internal clocks and make adjustments if neces-
sary. Solana’s Proof of Stake (PoS) and Proof of History (PoH)
work in tandem, each playing a distinct role in the blockchain’s
consensus mechanism. Their contributions can be outlined as
follows:

• PoH: Primarily responsible for ordering transactions and
creating a verifiable timeline of events. This allows
validators to quickly and efficiently reach consensus on
the state of the network without needing to rely on
computationally expensive calculations like in Proof of
Work (PoW).

• PoS: Primarily responsible for securing the network by
incentivizing validators to act honestly. Validators stake
their SOL tokens to participate in the consensus process
and earn rewards. This economic incentive helps to
prevent malicious actors from attempting to disrupt the
network.

This unique approach allows Solana to achieve high scalability
and transaction throughput.

c) Algorand [168]-[169]: is a PoS algorithm that em-
ploys secret self-selection to randomly choose a leader and
validators committee through cryptographic Sortition. The
committee and leader selection are secured by privately com-
puting the verifiable random function (VRF) using users’
private keys and a seed generated in the previous block,
without any communication among users. The selection pro-
cess favors validators with the highest token balance (Algos)
in their account, serving as a protection mechanism against
Sybil attacks. As a result, the selected parties only discover
their selection through the lottery when they propagate their
winning tickets and their validation decision for the block.
This renders it impractical for a malicious actor to corrupt the
committee, influence their decision, or launch a DDoS attack
against the members.

However, the committee’s random selection process does
not prevent the election of two-thirds malicious delegates.
Once selected, the committee achieves consensus on the new
block using a Byzantine agreement protocol called BA*, a
variant of PBFT. BA* allows the participating members to
reach consensus on a new block with low latency and without
the possibility of forks (forks may occur with negligible
probability). BA* guarantees consensus as long as an honest
majority of n > 2f/3 exists (assuming synchronous communi-
cation) and utilizes threshold signatures for efficiency and fault
tolerance. This allows the protocol to handle large numbers of
users with low latency and minimal risk of forks.

d) Thunderella [170]: is a novel protocol built upon Pass
and Shi’s Sleepy and Snow White protocols, introducing a per-
missionless chain for failure recovery. Thunderella integrates
two blockchains: a BFT chain representing the ”fast path” and
an underlying chain, considered a slow ”fall-back” path, which
can be any standard blockchain like Bitcoin or Ethereum. The

fast path facilitates optimistic instant confirmation of transac-
tions, while the synchronous slow chain ensures consistency
and liveness.

The fast path is centralized, with a designated central
authority, the Accelerator, serving as a leader responsible for
transaction linearization. Concurrently, a validating committee
comprising stakeholders is randomly elected using various
approaches, such as utilizing all stakeholders as the committee
(similar to Snow White or Algorand) or employing recent
miners. The fast path confirms new transactions as long as
the accelerator and 3/4 of the committee are both online
and behaving honestly; otherwise, the chain halts, awaiting
recovery.

Periodically, Thunderella posts messages (referred to as
alive messages) containing the hash and notarization of a
checkpoint block to the underlying chain. In the event of a
halt in the fast path due to a faulty accelerator or a dishonest
committee, Thunderella nodes transition to the slow chain for
recovery.

e) Casper Friendly Finality Gadget or CFFG [171]:
is a protocol that Ethereum plans to utilize as a transitional
method for transitioning from PoW to PoS (CASPER). Casper
FFG represents a chain-based hybrid incorporating elements
of both PoS and PoW. Blocks are mined using PoW, while
PoS validators regularly verify the 100th block (known as the
checkpoint) created by miners. In this setup, PoS validators do
not confirm blocks or add transactions but ensure transaction
finality.

To become active validators, participants lock Ethers
(Ethereum’s cryptocurrency) in Casper’s smart contract run-
ning on the PoW chain. The verification and validation of
new blocks are ensured by block validators selected based on
their stake, with the voting power of each validator equivalent
to the amount of their stake. Additionally, Byzantine behavior
is prohibited through stake slashing.

f) Tendermint [172]: is a fault-tolerant protocol inspired
by the PBFT SMR algorithm [173] and the DLS algorithm
[123], designed for partially synchronous networks in both
permissioned and permissionless settings. In a permissionless
setting, it utilizes PoS as the underlying security mechanism.

Tendermint operates as a leader-based BFT protocol pro-
ceeding in rounds similar to PBFT’s rounds. In each round, a
new leader responsible for proposing a new block is elected
through deterministic round-robin selection from a set of
validators who have locked financial stakes. The frequency of a
validator being chosen as a leader is proportional to their share
of the total stake. If a validator misbehaves during their turn,
they can be punished by having a portion of their deposited
stake slashed. After a set duration, the stakes are unlocked and
returned to the validator.

For block finality, Tendermint requires a supermajority (a
quorum of over 2/3) of all validators to validate the block.
Tendermint can tolerate up to 1/3 Byzantine validators, but if
more validators disagree or become unresponsive, the network
chooses to halt instead of proceeding with potentially incor-
rect transactions. Therefore, Tendermint prioritizes consistency

over availability.
g) LibraBFT [174]: is a variant of the HotStuff consen-

sus protocol, specifically utilizing chained HotStuff, and intro-
ducing several enhancements and improvements. In LibraBFT,
the elected leader proposes a block (a set of transactions) to
extend the longest chain of requests it knows. Nodes vote for
the proposed block, unless it conflicts with a longer chain they
already know. In such cases, they send their votes to the next
leader to help it learn the longest chain.

In contrast to HotStuff, LibraBFT employs a different
approach for leader election by randomizing the process using
a VRF scheme. It utilizes aggregate signatures, eliminating
the need for a complex threshold key setup, to preserve the
identity of validators signing quorum certificates. Additionally,
LibraBFT specifies a clear implementation of the Pacemaker
mechanism introduced by HotStuff to ensure the advancement
of rounds. The pacemaker of each validator keeps track of
votes and time, triggering a leader election when a timeout
occurs due to a faulty leader, lack of votes, or after a leader
successfully proposes a block.

LibraBFT guarantees safety when at least 2f+1 nodes are
honest and provides liveness as long as there exists a global
stabilization time (GST). These properties, coupled with rapid
consensus, make it suitable for permissioned blockchains, such
as the Libra blockchain.

5) DAG-based Protocols:
a) IOTA [4]: operates on a unique hybrid consensus

mechanism, mixing Proof-of-Work (PoW) with a custom Tan-
gle structure. Transactions first undergo a lightweight PoW
puzzle demanding computational effort to prevent spam and
ensure network integrity, as transactions within the network
are fee-less. Additionally, the new transaction should randomly
approve two previous valid transactions, referred to as tips, by
extending them and thereby increasing their initial weights.

In IOTA, the tip selection process involves choosing two
previous valid transactions (tips) to reference when adding a
new transaction to the Tangle. This is performed through a
proof-of-work mechanism by the end-user or device. While
the protocol does not strictly dictate the tip selection process,
users often employ the recommended Markov Chain Monte
Carlo (MCMC) weighted random walk. This process is biased
toward transactions with higher weights, contributing to the
prioritization of transactions with more confirmations in the
Tangle.

During the network’s initial stages, a central node called
the Coordinator aids in achieving consensus by emitting
milestones—special transactions that solidify the Tangle and
serve as validation reference points. This ensures consensus
in small networks with a sparse Tangle. However, the IOTA
project plans to replace the centralized Coordinators with a
new voting system called “Shimmer” [175] as part of the
Coordicide project [176].

b) Avalanche Protocol: Avalanche stands out as a lead-
erless Byzantine fault tolerance protocol that operates on a
metastable mechanism through network subsampling. This
process allows nodes to achieve consensus without relying

on a designated leader, eliminating potential vulnerabilities
associated with centralized control.

• Random Sampling: Each node repeatedly samples a small
random subset of the network, significantly reducing
communication overhead and preventing any single node
from dominating the consensus process.

• Query Rounds: Sampled nodes participate in multiple
rounds of communication, exchanging information and
collecting responses. This iterative approach allows for
the emergence of a consensus decision even when faced
with conflicting information or Byzantine behavior.

• Threshold Adoption: Upon reaching a predetermined
threshold based on the majority of responses, nodes adopt
the agreed-upon decision. This ensures that the network
converges towards a consistent state even in the presence
of faulty or malicious nodes.

Avalanche organizes transactions in a DAG. Each new
transaction extends one or more transactions. When faced with
conflicting transactions, Avalanche utilizes the DAG structure,
relying on a transaction’s progeny (all children transactions).
Corrected nodes then vote positively on valid transactions
based on the entire ancestry’s validity.

Avalanche ensures strong probabilistic safety, even when
faced with f ≤ n/3 Byzantine nodes. This is achieved
through random sampling, minimizing the impact of individual
Byzantine nodes. Nodes utilize probabilistic verification with
weighted random samples for increased security, and trans-
actions necessitate multiple confirmations from independent
nodes to enhance fraud detection.

Additionally, Avalanche employs a financial mechanism, the
AVA token, to safeguard the network against sybil attacks, en-
suring open membership and enabling economic governance.

c) Hashgraph [80]: operates as an asynchronous Byzan-
tine fault-tolerant protocol, employing a DAG as its underlying
data structure to store events, which encompass transactions
and associated details. The protocol utilizes a combination of
a voting algorithm and a gossip protocol to achieve consensus.

In the Hashgraph protocol, nodes engage in random gossip-
ing, sharing their knowledge of known events with other nodes.
This can involve either events originating from the gossiping
node itself or those received from other nodes. This continuous
gossiping process facilitates the widespread dissemination of
transactions.

Each event within Hashgraph comprises two critical ele-
ments: a timestamp and two hashes.

• The timestamp records the precise time the event was
created, providing a chronological order to the events
within the DAG.

• The two hashes reference two prior events: one from
the gossip receiver and another generated by the sender.
These references establish a clear lineage within the DAG
and allow nodes to verify the validity of transactions.

Additionally, the gossiping node signs the shared event infor-
mation, creating a verifiable audit trail and preventing mali-
cious modifications. Consequently, each node in the network

possesses a comprehensive record of the transaction history,
along with details about nodes that previously received this
information.

To ensure consensus on the order and validity of transac-
tions, nodes participate in a virtual voting process. IN this
phase, no votes are cast or exchanged. Instead, each node
leverages its understanding of the DAG (constructed through
gossip history) and the timestamps of events to calculate
what other nodes should vote for. A transaction is considered
valid and finalized only if it receives virtual validation from
at least 2/3 of the nodes in the network. This threshold
ensures a high degree of confidence in the consensus decision,
even in the presence of malicious actors or network fail-
ures. Hashgraph operates under a closed membership model,
implying that the total number of nodes in the network is
known and fixed. This feature simplifies the virtual voting
process by eliminating uncertainties about the voting quorum.
Furthermore, it enables efficient operation without the need for
synchronized clocks or global knowledge, making the protocol
suitable for geographically dispersed networks. By leveraging
virtual voting and gossip-based information dissemination,
Hashgraph achieves rapid consensus on the order and validity
of transactions. However, Hashgraph faces limitations with a
closed membership model, reliance on patented technology,
and potential transparency issues. Scalability challenges and
vulnerability risks from its gossip protocol reliance further
contribute to considerations for widespread adoption.

6) Federated BFT: Ripple [90] was the first the first im-
plementation of a Federated Byzantine Agreement System
(FBAS). The Federated Byzantine Agreement (FBA) approach
redefines Byzantine Fault Tolerance (BFT) settings, introduc-
ing an open membership service based on a trust model.
Unlike traditional BFT protocols, FBA protocols, exemplified
by the Unique Node List (UNL) in Ripple and the quorum
slice in Stellar, allow nodes to interact with a limited group
of trusted peers, eliminating the need for a global unanimous
agreement among network participants.

Ripple’s consensus algorithm, the Ripple Protocol Consen-
sus Algorithm (RPCA), functions in rounds where validators
from a server’s Unique Node List (UNL) strive for a superma-
jority consensus, typically set at least 80%. In each round, a
designated server proposes a candidate set of transactions, and
validators on its UNL individually vote on the proposal. The
iterative process continues until a supermajority is achieved,
indicating widespread agreement among validators. If con-
sensus is not reached, the server identifies and blocks less-
supported transactions, ensuring the reliability and security
of the network. However, if only less than 20% of nodes in
the network agree, a temporary network halt may occur. The
network’s safety and liveness depend on the proper server
configuration and the intersection of correct nodes’ UNLs.
While Ripple suggests a minimum overlap requirement of
20% of the UNL, RPCA guarantees safety and liveness under
specific conditions, including a minimum overlap requirement
of 40% [177].

Stellar Consensus Protocol (SCP)[178] is based on Ripple

protocol. It provides a first provably safe consensus, while
assuming network transitivity and strong concreteness [179].
Unlike Ripple’s fixed Unique Node List (UNL) and super-
majority voting, SCP utilizes flexible quorum slices, allowing
nodes to define their own sets of trusted validators, enabling
efficient and adaptable consensus. This, coupled with federated
voting and a provably safe design, ensures network stability
and Byzantine fault tolerance (up to 33% Byzantine nodes).
Furthermore, SCP promotes decentralization through open
membership, empowering anyone to participate in the network.

VI. EXECUTION LAYER

In this section, We will unpack the execution layer, exam-
ining its essential building blocks and their properties, before
introducing the now-ubiquitous execution component driving
state-of-the-art technologies.

A. Components and properties

DLT systems offer two primary avenues for translating
agreements into code: smart contracts, which provide extensive
flexibility for crafting custom logic, and built-in scripts, which
offer a more structured and protocol-defined approach to rule
execution.

1) Execution environment:
a) Smart Contract Model: In this paradigm, agreements

between participants are encoded as self-executing programs
that operate on a predefined set of states. Typically imple-
mented in a dedicated language or using existing programming
languages like Java or C++, these programs, known as smart
contracts, are executed within a specialized environment such
as a virtual machine or compiler. The execution involves
processing the clauses specified in the triggering transaction,
producing an output (Fig. 16), and often updating states. While
smart contracts can facilitate native asset manipulation (e.g.,
tokens or cryptocurrency), their versatility extends beyond
this function. They can be utilized to implement a wide
range of logic and automate complex workflows, enabling
applications beyond simple asset transfers. Despite the term
”self-executing,” smart contracts require external triggering
transactions to initiate their execution. While smart contracts
enforce agreed-upon collaboration logic, they do not possess
legal contract status.

Fig. 16. An overview of the smart contract machine

b) Scripting Model: While smart contracts offer exten-
sive programming flexibility, scripting model guides users
within a predefined framework of rules and functions, ensur-
ing adherence to specific usage patterns and protocol-level
constraints. This model leverages a predefined and limited
set of rules established by the DLT protocol itself, restricting
the possible scenarios for implementation. By restricting the
scope of permissible logic, the scripting model reduces the
potential attack surface and minimizes security vulnerabilities
that complex smart contracts might introduce. The predefined
rules eliminate the need for developing and deploying custom
smart contracts, streamlining the process and reducing the
overall complexity of the DLT system. Typically found in
DLTs emphasizing the secure manipulation of built-in assets
(e,g. Bitcoin), the scripting model focuses on providing a
framework for executing predefined rules rather than support-
ing universal program execution.

2) Turing Completeness: In a general sense, an environ-
ment or programming language is deemed Turing-complete if
it is computationally equivalent to a Turing machine [180].
This means that a Turing-complete smart contract language or
environment can execute any possible calculation within finite
resources. Some DLTs support a Turing-complete execution
environment, enabling users the flexibility to define intricate
smart contracts. Conversely, certain DLTs employ Non-Turing
complete execution environments, characterized by inherent
limitations, such as the inability to have iteration structures
with arbitrarily high upper bounds.

3) Determinism: Determinism is a crucial characteristic of
the execution environment in DLT systems. Given that dis-
tributed programs, such as smart contracts, are executed across
multiple nodes, deterministic behavior is imperative to produce
consistent and identical outputs, avoiding discrepancies within
the network.

To guarantee determinism within DLT systems, various
approaches are employed:

• Disabling non-deterministic features: Some DLTs opt
for a conservative approach by simply disabling non-
deterministic operations altogether. This ensures complete
predictability but restricts the range of functionalities that
can be implemented.

• Sandboxing and controlled environments: Certain DLTs
employ sandboxes or other controlled environments for
executing programs involving non-deterministic features.
This allows for some flexibility while maintaining isola-
tion and preventing unintended consequences.

• Deterministic alternatives: Developers strive to design
deterministic alternatives for non-deterministic operations
whenever possible. For instance, cryptographic hash func-
tions can be used to generate deterministic pseudo-
random numbers.

4) Runtime Openness: In the majority of DLTs, the exe-
cution environment or runtime is intentionally designed as an
isolated component with no connections to external networks,
such as the Internet. This isolation ensures security and
immutability of the ledger, but it also limits the capabilities

of DLT applications. However, there are scenarios where the
need to access information from outside the DLT arises,
such as weather forecasts, stock prices, or exchange rates. To
accommodate this requirement, various design choices have
been introduced, leading to three distinct approaches:

• Isolated: Prohibiting interactions between the smart con-
tract execution environment and external environments.

• Oracle-based: Allowing interactions with external envi-
ronments through members of the network known as
oracles. Oracles can be third parties or decentralized data
feed services providing external data to the network.

• Open: Enabling the execution layer to connect directly to
external environments.

5) Interoperability: Currently, DLT networks are inten-
tionally siloed and isolated from each other. Interoperability,
the ability to exchange data, assets, and transactions across
different DLTs, emerges as a critical need to unlock the
true power of this transformative technology. Given its sig-
nificance, various solutions have been proposed to facilitate
interoperability among different existing DLTs, falling into the
following approaches:

• Sidechain [181]: A blockchain operating in parallel with
another chain (main chain) allowing the transfer of data
(cryptocurrency) from the main chain to itself. Sidechains
typically operate in either a one-way pegged or two-way
pegged mode, with the former facilitating data movement
to and from the main blockchain using locking mecha-
nisms, and the latter allowing data movement only toward
the sidechain.

• Multichain [182]: A network of interconnected
blockchains designed to facilitate seamless cross-
chain communication and interaction. It features a
central ”major ledger” that governs and synchronizes
transactions across various sub-ledgers, each representing
a specific blockchain. This architecture enables users
to securely swap assets, tokenize real-world objects,
and build decentralized applications that function across
diverse blockchain ecosystems.

• Interoperability protocols: function as bridges between
distinct DLTs, enabling seamless communication and
exchange of data or assets. They often leverage smart
contracts and other technical mechanisms to establish
compatibility and facilitate cross-chain interactions.

• Interoperable DLT: New DLTs are being designed with
interoperability as a core principle. These DLTs incor-
porate features and protocols specifically intended to
facilitate seamless interaction with other DLT platforms.

B. Execution layer: state of the art
In this section, we present a comprehensive overview of

the most prevalent execution environments implemented in
both industry and academic literature, along with a discussion
of their distinctive properties. Notably, our focus extends to
the Ethereum Virtual Machine (EVM), given its widespread
adoption across numerous existing DLTs. In a broader clas-
sification, current DLT-based smart contract platforms can be

categorized into two primary groups: those compatible with
the EVM-compatible and those not compatible with EVM.

1) Execution environments:
a) Ethereum Virtual Machine (EVM): Smart contracts

in Ethereum are written in high-level languages [183] such
as Solidity, LLL, Viper, or Bamboo. These programs are
compiled into low-level bytecode using an Ethereum compiler,
and the resulting bytecode is stored in a dedicated account on
the blockchain, effectively providing it with an address.

The bytecode resides in the ledger (Fig. 17) and is assigned
an address for interaction. Interactions with a smart contract
are facilitated through transactions, which carry inputs and
specify the function to be called. The associated bytecode
for the invoked function is simultaneously executed on the
Ethereum Virtual Machines (EVMs) of all network nodes,
processing the transaction’s payload.

Upon successful termination of the bytecode execution, the
smart contract’s states are updated on the blockchain’s state
tree, capturing the outcomes of the executed code. This process
ensures that all network nodes maintain a consistent view of
the smart contract’s state and its interaction history.

Operating as a stack-based virtual machine, the EVM
efficiently processes bytecode and manages state updates.
The stack, with a maximum size of 1024 entries, employs
a 256-bit register architecture, enabling simultaneous access
and manipulation of the most recent 16 items. The stack’s
dynamic nature facilitates the execution of complex opera-
tions within smart contracts. Complementing this stack, the
EVM incorporates volatile memory, organized as a word-
addressed byte array. Each byte is uniquely identified by
its memory address, providing a flexible data structure for
contract execution. In contrast, the EVM features persistent
storage represented as a word-addressable word array. This
storage, comprising 2256 slots, each holding 32 bytes, operates
as a non-volatile key-value mapping. Unlike volatile memory,
the contents of storage persist across transactions, forming an
essential component of the Ethereum blockchain’s state.

Furthermore, the EVM operates as a sandboxed runtime,
creating an isolated environment for smart contracts execution.
Each smart contract running within the EVM lacks access

Fig. 17. The stack-based architecture of the EVM

to the network, file system, or other processes running on
the host computer. As a security-oriented virtual machine
designed to execute potentially unsafe code, the EVM imple-
ments strict isolation measures. To counter Denial-of-Service
(DoS) attacks, the EVM incorporates the gas system, where
every computation within a program must be prepaid in a
dedicated unit called gas, as per the protocol’s definition. If
the provided gas amount fails to cover the execution cost, the
transaction is unsuccessful. However, it’s important to note
that the gas mechanism, while mitigating DoS attacks, can still
be vulnerable if settings are not appropriately configured, as
demonstrated by [184] [185]. Assuming adequate memory and
gas, the EVM can be considered a Turing-complete machine,
allowing the execution of a wide range of calculations.

b) Bitcoin Scripting: Bitcoin employs a stack-based
scripting engine. This engine operates on a stack-based ar-
chitecture, utilizing a Forth-like language to define scripts
that control how funds are transferred within the network. A
Bitcoin script is a sequence of instructions, known as opcodes,
that are loaded into a stack and executed sequentially (Fig. 18).
The script follows a push-pop stack approach, executing from
left to right. A script is deemed valid if the top stack item is
true (non-zero) upon completion of its execution.

Bitcoin utilizes two key scripts for handling transactions:

• ScriptPubKey: This script functions as a locking script
attached to the output of a transaction. It specifies the
conditions that must be fulfilled for a recipient to redeem
the corresponding funds. For instance, it might require
a specific signature or a combination of signatures from
multiple parties.

• ScriptSig: This script acts as the unlocking script. It
serves as a proof that the recipient fulfills the conditions
set by the ScriptPubKey, essentially unlocking the funds
for transfer.

Bitcoin scripting deliberately lacks Turing completeness.
Additionally, the execution time is constrained by the script’s
length, capped at 10 kilobytes after the instruction pointer
[186]. This limitation serves to mitigate denial-of-service
attacks on nodes responsible for block validation. The lan-
guage used in Bitcoin scripting is acknowledged as complex

Fig. 18. Bitcoin loads and executes the locking and unlocking scripts onto
the stack. If the supplied public key matches the public-key hash and the
supplied signature matches the provided public key, the execution is correct
(True).

and limited for smart contract development. To address this,
various projects have emerged, including Ivy [187], Simplic-
ity [188], and BitML [189]. These projects offer high-level
languages with enhanced features that compile into Bitcoin
scripts. Furthermore, BALZaC [190] and Miniscript provide
alternatives—a high-level language based on formal models
and a structured approach to writing (a subset of) Bitcoin
Scripts, respectively. Notably, Rootstock (RSK) [191] was
proposed as an EVM-compatible two-way pegged sidechain
with Ethereum, using a merge-mining process involving both
Rootstock and Bitcoin. RSK’s virtual machine, the Rootstock
Virtual Machine (RVM), is based on the EVM. This means that
smart contracts written for Ethereum are generally compatible
with Rootstock with minimal modifications. This compatibility
allows developers to build smart contracts with the security of
the Bitcoin blockchain.

c) Stellar: Unlike Ethereum and other platforms that rely
on virtual machines and dedicated smart contract languages,
Stellar [178] takes a distinct approach to smart contracts.
Instead of executing general-purpose code, Stellar Smart Con-
tracts (SSCs) are constructed from a series of interconnected
transactions subject to specific constraints. Participants engag-
ing with SSCs do not directly interact with on-chain code but
instead agree to the conditions specified within transactions.
These transactions are constructed using a predefined set of 13
operations, each representing an individual command that can
modify the Stellar ledger. Furthermore, various constraints can
be applied to transactions, enhancing their functionality. Stellar
supports built-in constraints such as Multisignature, Batching,
Atomicity, Sequence, Time bounds, among others [192]. SSCs
are not Turing complete and developers can write SSCs in
multiple programming languages (such as Python, C, Ruby,
Scala, C++) using the Stellar SDK [193]. [193].

d) NXT and Ardor: NXT prioritizes security with pre-
defined smart contract templates, known as smart transactions
[194] . These templates minimize code vulnerabilities, making
NXT ideal for secure transactions like asset transfers and
multi-signature accounts.

Ardor, as NXT’s successor, adopts the Java Virtual Machine
(JVM) for smart contracts, enabling Turing-complete code
execution. This unlocks a broader range of computational
capabilities, supporting more complex smart contracts. Ardor
further introduces Lightweight Contracts, allowing developers
to automate tasks without the full computational cost of
Turing-complete contracts. These Java classes are executed ex-
ecuted by a subset of nodes selected to run the ContractRunner
addon which facilitates the execution of smart contracts on the
Ardor blockchain. Together, NXT and Ardor exemplify varied
smart contract approaches, catering to different blockchain use
cases.

e) NEO Virtual Machine (NeoVM): NEO introduces the
lightweight NeoVM (NEO Virtual Machine) [195], a virtual
stack-based machine designed for processing smart contracts.
NeoVM is designed to be language-agnostic, meaning that it
supports multiple programming languages. Languages such
as C, Java, Python can be used to write smart contracts

and NEO’s compiler (NeoCompiler) translates the resulting
source code (with limitations [196]) into a unified bytecode.
This enables cross-platform programming. Notably, NeoVM
provides an InteropService that facilitates communication be-
tween the virtual machine and the underlying blockchain
infrastructure. This service allows smart contracts to interact
with the blockchain, access data, and perform various op-
erations. Designed to be Turing-complete, NeoVM adopts a
gas concept similar to Ethereum’s, contributing to predictable
resource management during contract execution.

f) EOS virtual machine: The EOS Virtual Machine
(EVM) primarily uses the WebAssembly language for smart
contracts. WebAssembly is a portable binary format designed
to provide a high-performance, secure, and platform-agnostic
environment for executing code. Thus, smart contracts are
typically written in languages like C++ or Rust and then
compiled into WebAssembly bytecode for deployment on the
EOSIO blockchain. The compiled WebAssembly bytecode is
deployed onto the EOSIO blockchain. EOS utilizes a resource
model where users need to stake tokens to obtain resources
(CPU and NET) to execute their smart contracts. EOS employs
a unique resource model where users need to stake tokens to
access resources like CPU and NET for executing their smart
contracts. The staked tokens act as a form of rent, ensuring
fair access to resources.

g) Cardano CCL: The Cardano blockchain consists of
two essential layers: the Cardano Settlement Layer (CSL)
and the Cardano Computational Layer (CCL). The focus on
the Cardano Computational Layer (CCL) lies in its role as
a platform for decentralized applications (DApps) and smart
contracts. Operating above the Settlement Layer, the CCL
enables developers to create diverse applications, such as
decentralized finance (DeFi) and identity verification solutions.
The CCL uses Plutus [197], which is inspired from Hashkall,
as a new smart contract language. Similarly, to the EVM, CCL
utilizes a cost accounting model to prevent DoS attacks. Any
changes resulting from the execution of the smart contract are
reflected in the global Cardano ledger. The Cardano Settle-
ment Layer (CSL) is responsible for maintaining this ledger,
tracking the state changes brought about by the execution of
smart contracts.

h) Zilliqa virtual machine: Zilliqa [102] introduces a
smart contract engine called Zilliqa Virtual Machine (ZVM).
The ZVM adopts a sharding architecture that allows for
parallel execution of smart contracts across different shards.
This parallelization significantly increases transaction through-
put and network scalability compared to sequential execution
models The ZVM primarily uses Scilla[198] as its smart
contract language. Scilla stands out as an intermediate-level
programming language designed specifically for crafting safe
smart contracts with formal verification. Its intermediate nature
positions it as a dual-purpose tool: first, as a compilation
target for high-level languages like Solidity, and second, as
an autonomous programming framework in its own right.

Scilla is designed to facilitate the formal verification of
smart contract programs, ensuring correctness and eliminating

known vulnerabilities at the language level. Once compiled to
Scilla, the program is interpreted using an interpreter (Scilla-
runner), which takes the Scilla code, the current contract’s
state, and the message triggering the execution as inputs,
mutating the smart contract states accordingly. Although Scilla
helps write more secure and easily verifiable smart contracts,
it lacks expressiveness as it is non-Turing-complete. Zilliqa
adopts a gas protocol based on the computation complexity,
storage usage, and network congestion involved in processing
a smart contract.

i) Java Virtual Machine: Hyperledger Fabric takes a
distinctive approach by leveraging the Java Virtual Machine
(JVM) and nodeJs [199] runtime as smart contract environ-
ments. Consequently, smart contracts, referred to as Chain-
codes, can be written in Java, JavaScript, TypeScript, and, Go
or any other language compatible with the supported runtimes.
Fabric Chaincodes are executed within Docker containers
to ensure execution isolation from the peer, providing an
additional layer of security. Similarly, Corda R3 opts for the
JVM as its smart contract execution environment, without
containerization, and utilizes Kotlin and Java as the primary
languages for smart contracts.

j) Stratis CLR: Stratis leverages the Microsoft .NET
framework, and specifically, the Common Language Runtime
(CLR) as an execution environment for its smart contracts.
Developers write smart contracts in languages supported by the
.NET framework, such as C or F and The smart contract code
is compiled into Intermediate Language (IL) code [200]. IL is
a low-level, platform-independent representation of the smart
contract logic. This design choice allows Stratis to support
CIL, enabling the use of theoretically any language that can
be translated into CIL for writing smart contracts. Stratis also
employs the ”gas” mechanism for paid execution, similar to
Ethereum’s gas model, to manage resource consumption and
prevent denial-of-service attacks.

k) NEM: NEM is a Java-based blockchain platform
and and features a native P2P cryptocurrency (XEM). It
encompasses both private and public blockchains, offering key
value-added features such as ease of deployment, extensive
customization, high performance, and robust security. NEM
provides additional features such as the creation of custom
digital assets (mosaics), identity verification through names-
paces, and document timestamping using apostille.

l) MOVE for Libra: Move is a bytecode language de-
signed for direct execution in Move’s Virtual Machine (VM).
Its distinctive feature is the ability to define custom resource
types with semantics inspired by linear logic, reminiscent of
Rust. In Move, a resource can only be moved between program
storage locations and cannot be copied or implicitly discarded,
similar to Rust’s ownership system. This uniqueness aligns
with Rust, where values can only be assigned to one name
at a time, making them inaccessible under the previous name
after reassignment.

Move’s transaction script introduces flexibility by sup-
porting both one-off and reusable behaviors. Smart contract
functions can be executed multiple times, providing a broader

range of capabilities compared to Ethereum, which is limited
to invoking a single smart contract method for reusable behav-
iors. Moreover, Move’s executable format is a typed bytecode
that is higher-level than assembly yet lower-level than a
source language. The bytecode undergoes on-chain checks
for resource, type, and memory safety by a bytecode verifier
before being executed directly by a bytecode interpreter. This
approach allows Move to offer safety guarantees typically
associated with a source language without adding the source
compiler to the trusted computing base or incurring the cost
of compilation on the critical path for transaction execution.
While Move was originally designed for the abandoned Libra’s
blockchain, Move is still actively used in the Diem project 1

m) Solana Runtime: Departing from conventional vir-
tual machine reliance, Solana adopts an operating system-
inspired model, enabling direct program execution on valida-
tors’ machines and eliminating the interpretational overhead
associated with VMs, resulting in unparalleled speed and
efficiency. This architecture relies on Rust-powered programs
compiled into bytecode, state-holding accounts, signed trans-
actions, and decentralized validators. The execution process
involves transaction submission, validation, account lookup,
direct program execution, and consensus. Solana’s optimized
mechanism, featuring parallel processing through Sealevel,
predictable fees, and upgradeable programs, underscores its
commitment to performance, scalability, and user-friendly
interactions, positioning it as a highly efficient and innovative
blockchain platform.

2) Interoperability: The lack of communication between
isolated DLTs has posed a notable obstacle to the advancement
of the blockchain ecosystem. As a result, several suggestions
have surfaced to overcome this challenge. In the following
section, we underscore key strategies implemented at the
execution layer to address this issue.

a) Sidechains: Various sidechains have been proposed
in the DLT ecosystem. Rootstock [191] serves as a sidechain
of Bitcoin, featuring an integrated Ethereum virtual machine
known as RVM. The Rootstock chain is connected to the
Bitcoin (BTC) blockchain through a two-way peg mechanism.
This innovative approach facilitates seamless transfers between
Bitcoin (BTC) and SBTC (Rootstock’s native currency). This
connection is established by utilizing Bitcoin scripts, allow-
ing for interoperability between the two blockchains. In this
process, users can send their BTC to the Rootstock chain,
locking it up in a special smart contract. In return, they
receive an equivalent amount of SBTC (Rootstock Bitcoin)
on the Rootstock chain. Similarly, Counterparty [201] utilizes
a sidechain architecture built on top of the Bitcoin blockchain.
To facilitate asset movement onto the Counterparty sidechain,
users ”lock” their Bitcoin by sending them to a designated
address, effectively making them unavailable on the main
chain. Drivechain [202] proposes a mechanism for transfer-
ring BTC between the Bitcoin blockchain and sidechains.
In contrast to most DLTs where the sidechain is a separate

1https://www.diem.com/en-us/

project, Cardano introduces Cardano KMZ as an integral part
of its ecosystem. Cardano KMZ is a protocol facilitating the
movement of assets from its two-layer CSL to the CCL (Car-
dano Computation Layer) or other blockchains supporting the
Cardano KMZ protocol. Another noteworthy sidechain project
is Plasma [203], which aims to create hierarchical trees of
sidechains (or child blockchains) using smart contracts on the
root chain (Ethereum). Plasma enhances Ethereum’s scalability
by shifting transactions to sidechains operated by individuals
or a group of validators rather than the entire underlying
network. Currently, Plasma is actively developed and utilized
by projects such as OmiseGo [204], focusing on building a
peer-to-peer decentralized exchange, and Loom [205], pro-
viding tools for constructing high-performance DApps while
operating on the Ethereum network.

b) Interoperability Protocols: Interledger (ITL) [91]-
[206] is a standardized protocol developed by the World Wide
Web Consortium for facilitating payments across different
ledgers. It consists of a network of untrusted connectors that
link various ledgers and employ escrow transactions (condi-
tional locks of funds) to facilitate transfers between accounts
on different ledgers. Additionally, Atomic swap [207] allows
the trading of digital assets across unrelated blockchains.
Atomic swaps use Hashed Time-Lock Contracts (HTLC)
[103] to coordinate operations, such as trading digital assets,
on different chains. These operations are triggered by the
revelation of a specific hash preimage. Alternatively, the Hy-
perledger project proposes the Hyperledger Labs Blockchain
Integration Framework [208], a communication model en-
abling permissioned blockchain ecosystems to exchange on-
chain data independently of the platform (e.g., Hyperledger
Fabric, Quorum) without the need for intermediaries. The
BTCRelay [98] project serves as a bridge between Bitcoin
and Ethereum, implementing a BTCRelay smart contract on
Ethereum that acts as a Bitcoin SPV (Simplified Payment
Verification) node. It stores Bitcoin block headers provided by
external parties known as Relayers, allowing other Ethereum
contracts to verify transactions on the Bitcoin network.

c) Multi-chains: Polkadot [92] constitutes a network of
interconnected chains, featuring a central connector called
the Relay chain and multiple linked ledgers known as
Parachains. The Relay chain finalizes transactions, facilitates
cross-chain transactions [209], and shares states. To link the
Relay chain with other networks like Ethereum or Bitcoin,
Polkadot introduces bridge Parachains [210], enabling two-
way compatibility. Similarly, COSMOS [211] is composed
of ”Zones,” which are blockchain networks interconnected
through a central hub known as the Cosmos Hub Network.
Each Zone operates by maintaining its own state through
validators that secure the blockchain and contribute to the con-
sensus algorithm. Validators in a Zone operate independently
with their own validator set. Meanwhile, intercommunication
between Zones is facilitated by the Inter-Blockchain Commu-
nication (IBC) protocol [212], enabling the secure transfer of
assets and information between Zones. Each Zone manages its
state using a state machine, and the network as a whole ben-

efits from the interoperability provided by the IBC protocol,
allowing for a seamless exchange of value across different
Zones in the Cosmos ecosystem. A key distinction between
Polkadot and Cosmos lies in child chain sovereignty. Cosmos
zones are independent chains built using the Cosmos SDK
without sharing the same underlying environment. In contrast,
in Polkadot, Parachains are dependent on and bound by the
root chain’s governance model, technical design choices, and
limitations.

d) Interoperable chains: Gravity Hub is a blockchain
designed with the capability to communicate with other
blockchains like Waves[213] or Ethereum. Gravity Hub nodes
can, for instance, fetch block headers from the Ethereum
network and transmit them to the Waves Platform, providing
proof of a specific transaction on Ethereum. Another DLT
showcasing built-in interoperability is Wanchain [214]. Wan-
chain is a blockchain platform focused on enabling inter-
operability between different blockchains. Initially centered
on Ethereum, it now extends its cross-chain capabilities to
include Bitcoin, EOS, and projects like AION. Wanchain facil-
itates the seamless transfer of assets across these blockchains,
contributing to the development of a decentralized financial
infrastructure. Wanchain proposes to interconnect different
blockchains through a decentralized bridge infrastructure uti-
lizing secure multi-party computation (sMPC) and threshold
key sharing. This approach ensures the security and privacy
of cross-chain transactions by distributing key functions and
enhancing overall blockchain interoperability. [215] presents
further details on interoperability solutions, including other
projects like AIO, Blocknet, ARK or others.

3) Determinism: The Achilles’ heel of many DLTs lies
in their vulnerability to non-determinism, where seemingly
identical transactions can produce inconsistent results due to
factors like execution order or environmental variables. This
undermines data integrity and consensus, jeopardizing the very
foundation of trust and reliability in DLTs. To tackle this
challenge, three main approaches have emerged (table VI-B3):

• Determinism by design: This strategy eliminates non-
determinism at the core, exemplified by Ethereum’s
Ethereum Virtual Machine (EVM). By excluding non-
deterministic operations like floating-point arithmetic and
external randomness sources, the EVM ensures consistent
transaction execution across nodes. Solidity, the primary
programming language for Ethereum smart contracts,
also enforces determinism by design. However, recogniz-
ing the importance of randomness, the RANDAO [216]
project proposes a decentralized autonomous organization
(DAO) for registering random data on the Ethereum
blockchain.

• Deterministic environments: Recognizing the need for
occasional randomness, some projects embrace existing
runtime environments like Java Virtual Machine (JVM)
or Google’s V8 engine, but modify them to enforce
determinism. Examples include: Multichain [182], [217],
and Stratis [200].

• Determinism by endorsement: Introduced by Hyperledger

Fabric, this novel approach leverages the network’s en-
dorsement process to achieve consensus on determinism
itself. Each transaction undergoes simulation and execu-
tion by designated ”endorsement” nodes. If any node
produces a divergent result, the transaction is deemed
invalid and rejected, preventing inconsistent outcomes
from entering the ledger. Chaincode, the native smart
contract language for Hyperledger Fabric, is specifically
designed to facilitate deterministic execution under this
model.

C. Environment Openness

In many DLTs, oracles play a pivotal role in acquiring data
from external sources. Essentially, an oracle serves as a smart
contract maintained by an operator, facilitating interaction
with the external world. Various data feeds are deployed
for smart contract systems like Ethereum, including Town
Crier [218], Oraclize.it [219], Band Protocol (BAND), Tellor
(TRB), API3 (API3), DIA (DIA), Witnet (WIT), and Uma
(UMA). Oraclize.it [219] relies on the reputation of the
service provider, while Town Crier incorporates the concept
of enclave hardware root of trust [220]. Alternatively, oracles
like Gnosis [221] and Augur [222] utilize prediction markets
[223]. For MakerDAO [224], a decentralized lending platform
on the Ethereum blockchain, ensuring both reliable price data
and decentralization for its assets is a priority. To achieve
this, MakerDAO adopts a multi-tiered oracle system. At its
core is the Medianizer [225], which aggregates data from
14 independent price feeds, thereby ensuring accurate pric-
ing for Ethereum. This approach aligns with the principle
employed by ChainLink [14], another decentralized oracle
solution that gathers data from diverse sources, contributing
to a robust and decentralized data acquisition mechanism
within the blockchain ecosystem. In contrast to most DLTs,
Fabric’s Chaincode can interact with external sources like
online APIs [226]. However, if different endorsers receive
divergent answers from the API, the endorsement policy fails,
preventing the transaction from occurring. Other DLTs, such
as Aeternity [227], integrate an oracle into the blockchain
consensus mechanism [228], eliminating the need for a third
party.

D. Execution Layer: Discussion

Despite the promising benefits of smart contracts, past im-
plementations have unveiled critical security and performance
pitfalls. Several recent studies have reported security issues in
smart contracts [229], [230], [231], [232], [233], [234], [235],
including:

a) Immutability vs. Smart Contract Security: Due to the
immutable nature of most DLTs, patching and correcting de-
tected bugs and security vulnerabilities is challenging, leading
to potential fund losses, as demonstrated by the Ethereum
DAO project [236]. To address this issue, various automated
tools like SolidityCheck [237], Securify [238], and ChainSecu-
rity [239] have been proposed to assist in writing secure code
and analyzing bytecodes on different platforms. Additionally,

ÆGIS [240] is a dynamic analysis tool designed to protect
smart contracts from exploitation during runtime.

b) Insecure Languages for Writing Safe Smart Contracts:
The inherent risks in certain languages used for writing smart
contracts have led to the proposal of new security-oriented
languages, such as Flint [241] and SOLIDITYX [242]. More-
over, in [243], dependent types from the IDRIS language [244]
are employed to write provable smart contracts for Ethereum.
Several projects are actively adopting formal verification,
involving mathematical proofs to demonstrate that a given
contract satisfies specific safety properties. For example, Scilla
is designed to be amenable to formal verification, Tezos uses
the Coq Proof Assistant for facilitating formal verification
of smart contracts, and KEVM [245] introduces a complete
semantics of the Ethereum virtual machine.

c) Untrusted Execution Environment: To enhance the
security of the execution environment, particularly in private
blockchain platforms where execution outcomes are suscep-
tible to tampering, some DLT platforms, such as Sawtooth
Lake or Fabric [246], execute smart contracts in Trusted
Execution Environments (TEEs), such as Intel Software Guard
Extensions (SGX). Although the setup of TEEs is complex,
they play a crucial role in improving the privacy and security
of data. TEEs securely store sensitive data, such as encryption
keys, without leakage and provide evidence of the correct
execution of the contract.

d) Smart Contracts Upgradability: An ongoing concern
in the blockchain space is the upgradability of smart contracts.
Due to the immutability of smart contracts on blockchains,
upgrading them poses a challenge. Current recommendations
advise adopting an upgradable design pattern, as outlined in
[247] and [248], which involves deploying contracts alongside
another dispatcher contract. Some platforms, such as Kadena
[249], propose solutions for implementing upgradable smart
contracts.

e) Lack of Interoperability: Despite considerable efforts
to foster interoperability across chains, challenges persist,
and accomplishments remain incomplete. This situation is
attributed to two main factors. Firstly, existing interoperabil-
ity projects are predominantly Ethereum-centric, necessitat-
ing more robust endeavors to facilitate interoperability with
other DLTs. Secondly, the absence of a universal and unified
standard hinders interoperability across different DLTs. It is
noteworthy that ongoing standardization initiatives, like those
by the Enterprise Ethereum Alliance and the GS1 initiative
[250], aim to address this standardization gap.

f) Privacy: Many smart contract environments lack pri-
vacy, exposing contract states. Addressing this concern, Hawk
[251] was proposed as a framework for constructing privacy-
preserving smart contracts using cryptographic primitives like
zero-knowledge proofs. Additionally, Ekiden [252] introduced
a solution based on executing smart contracts in a trusted
execution environment. Enigma [253] facilitates private smart
contracts through the use of distributed hash-tables (DHT)
and multi-party computations (MPC). Notably, the implemen-
tation of zero-knowledge proof techniques to enable private

TABLE VII
APPROACHES TO ADDRESSING NON-DETERMINISM IN DLTS WITH EXAMPLES

Approach Blockchain Projects (Examples)
Determinism by
Design

Ethereum (EVM, Solidity), Hyperledger Besu, Qtum, Tezos, Constellation Network, Elrond, Chainlink, Zcash,
Narcissus Protocol, Diem, Cardano, Solana, Avalanche, NEAR Protocol, Cosmos

Deterministic
Environments

Multichain, Corda, Stratis, Hyperledger Fabric (Chaincode), DFINITY, Hedera Hashgraph, EOSIO, Rchain,
Hyperledger Burrow, Tezos Interledger Protocol (TIP), Polkadot, ICON, Neo3, Fabric 2.0, Hashgraph Consensus
Service

Determinism by
Endorsement

Hyperledger Fabric (endorsement nodes), Ripple, Stellar, Libra, EOS, Algorand, VMware Blockchain, R3 Corda
(Consensus service), Quorum, Hyperledger Indy, POA Network, Byzantine Fault Tolerance (BFT) projects
(Tendermint, Hyperledger Sawtooth), Ripple Consensus Protocol (RCP)

transactions or smart contracts has gained attention. However,
their adoption comes at a significant cost [254] and introduces
latency. Moreover, several privacy-preserving solutions may
require a trusted party, potentially compromising the decen-
tralized nature of smart contracts.

g) Layer 2 (L2) Scaling Solutions: Rollups are scaling
solutions that use the underlying blockchain layer (L1) to store
transaction data, while the actual transaction processing and
computation occur on the rollup itself. Rollups periodically
post specific data on L1 (e.g., Ethereum), such as state roots
or compressed transaction data, enabling anyone to verify the
validity of the rollup state and transition to a new state. This
data availability on the main chain allows anyone to transition
the rollup into a new state and prove the validity of the
transition through validity or fraud-proof issuance. Here’s a
breakdown of the key components of the rollup process:

1) Off-chain Execution:
• Prover(s): Verify transaction validity and generate

cryptographic proofs.
• Verifier(s): Check the proofs on the mainnet, en-

suring the validity of the batch without needing to
process individual transactions.

2) Data Availability:
• Validity Rollups: Only proofs are submitted, requir-

ing trust in the prover(s).
• Fraud Proofs: Transaction data is also stored on-

chain, enabling anyone to challenge fraudulent
transactions.

• Optimistic Rollups: Assume all transactions are
valid unless challenged, offering faster finality but
relying on fraud detection mechanisms.

3) State Commitment:
• Rollups maintain a compressed state snapshot on

the mainnet, representing the current state of the
off-chain ledger.

• State updates: Merkle trees or other efficient meth-
ods track changes in the off-chain state.

• Withdrawal: Users can withdraw their assets from
the rollup back to the mainnet.

4) Security:
• Fraud proofs: Anyone can challenge invalid trans-

actions in fraud-proof rollups.
• Validity proofs: Verifier contracts on the mainnet

ensure the validity of proofs in validity rollups.

Rollups generally fall into two categories: Optimistic
Rollups (e.g., Optimism, Arbitrum) and ZK-Rollups (e.g.,
dYdX, Loopring, ZK Sync) [255]. ZK-Rollups offer signifi-
cant scalability advantages over Optimistic Rollups due to their
data compression capabilities. For example, while Optimism
posts data after every transaction, dYdX only posts data
reflecting account balances, resulting in a 1/5th L1 footprint
and an estimated 10x higher throughput. This translates to
lower fees for ZK-Rollups. However, ZK-Rollups may have
higher computational costs during proof generation and may
have limitations in smart contract functionality compared to
Optimistic Rollups.

h) Modular Blockchains, A New Design Paradigm for
Enhanced Scalability and Security: Many blockchain net-
works encounter challenges related to transaction volume,
high fees, and optimization. A recent approach to achieve
high scalability with robust security involves breaking down
the blockchain into multiple components that can be scaled
independently. In a traditional monolithic blockchain, the
base consensus layer handles data availability, settlement, and
execution. However, settlement and execution are typically
coupled, limiting the system’s overall capacity by design.
In contrast, the modular blockchain paradigm separates the
responsibilities, with the base consensus layer focusing solely
on data availability, making transaction data available without
executing it (see Figure 19). This design alleviates the burden
on the base consensus layer, allowing it to concentrate on
ensuring data availability. While technologies like Ethereum
scaling rollups and Avalanche subnets incorporate modular
components, many public blockchains remain designed as
monolithic entities. Modularity has become a prominent trend
in the blockchain ecosystem, with the concept introduced by
the Celestia project2. In a modular architecture, one of the
network components (execution, consensus, or data availabil-
ity) is decoupled (see Figure 19), enabling projects to deploy
their blockchains without the complexities of establishing
a new consensus network. Several projects have embraced
modularity:

• Celestia: The first modular blockchain focusing on Con-
sensus and Data Availability. It allows easy creation of
individual blockchains, enabling developers to concen-
trate on DApp development.

• Celestiums: Integrates Celestia and Ethereum, serving

2https://www.projectcelestia.com/

Fig. 19. Modular versus monolithic blockchains

as an Ethereum Layer 2 chain utilizing Celestia for
data availability and Ethereum for settlement and dispute
resolution.

• MEL (Fuel Labs): Prioritizes building the fastest modular
execution layer (Modular Execution Level or MEL) on
Celestia. MEL is designed as a fraud-provable com-
puting system for modular blockchains, and Fuel v1
was launched as the first optimistic roll-up for scaling
Ethereum.

The modular design offers several advantages over mono-
lithic design:

• Scalability and Speed: Multi-level distribution allows
modular blockchains to implement scalability mecha-
nisms, significantly increasing throughput without com-
promising decentralization and security.

• Flexibility: Modularity reduces the cost of deploy-
ing smart contracts and facilitates experimentation
with different technologies and environments. Notably,
SwaySwap, a decentralized exchange similar to Uniswap,
operates efficiently at the modular level.

VII. APPLICATION LAYER

In this section, we present a concise introduction to the
components and attributes outlined by our DCEA framework
at the application layer. Furthermore, we provide an overview
of the current state-of-the-art within this context.

A. components and properties

a) Integrability: DLTs go beyond mere data storage
and transaction processing to offer real value by seamlessly
integrating with existing technologies and systems. This focus
on integrability is crucial for user experience and adoption.
We propose integrability as a qualitative property, allowing
the establishment of a ”Level of Integrability” to assess if a
DLT can easily integrate with Web, mobile, and other existing
systems without requiring major overhauls?. This scale ranges
from “High” to “Low” providing insights into the integrability
of a DLT ecosystem:

• High: Indicates strong integrability with other technolo-
gies, particularly web and programming technologies.

• Low: Suggests a lack of official integrability tools or
limited availability with restricted capabilities in the DLT
ecosystem.

• Medium: Represents an intermediate level between the
two extremes.
b) DApp Orientation and DLT’s Purpose: Decentralized

Applications, or DApps, represent a groundbreaking type of
software that breaks away from the centralized model of tradi-
tional applications. Operating autonomously on decentralized
networks, primarily blockchains, they bring resilience, trans-
parency, and user empowerment to the forefront. In contrast to
regular apps relying on centralized servers, DApps spread their
architecture across multiple nodes, preventing any single entity
from having control or the ability to censor. However, not all
applications utilizing blockchain technology qualify as true
DApps. Simply storing data or relying on timestamps while
keeping core logic outside the blockchain doesn’t suffice. A
genuine DApp leverages the full potential of a DLT by running
core functions such as business logic and state transitions
directly on the chain. Recognizing the important role DApps
play in shaping the future of technology, some DLTs priori-
tize their development by becoming ”DApp-oriented.” These
specialized networks go beyond simply providing blockchain
infrastructure and actively cater to the needs of DApp creators.

c) Wallets and Identity Management: Wallets play a
crucial role in the application layer, serving as a central
component for managing users’ cryptographic identities. In
the majority of DLTs, identities and ownership are established
through public/private key pairs, making wallets a primary
entry point to the network. Wallets are in charge of handling
all the complex cryptographic tasks linked to creating or
managing a user’s cryptographic credentials, as well as signing
transactions. They essentially act as a secure gateway, ensuring
the safety and confidentiality of digital assets by managing
cryptographic keys and authentication.

B. Application Layer: State of the Art

Considering the varied methodologies embraced by DLTs at
the application layer, we present a summary of the application
layer in several widely recognized DLTs.

a) Integrability: DLTs typically bring about a layer of
integration that acts as a bridge between external entities
and their data and execution layer. Notable DLTs such as
Ethereum [65], NEO [195], and EOS [256] offer a rich toolset
for integration. Ethereum provides a robust JSON-RPC API
with strong support for JavaScript. In fact, Web3.js [257],
a JavaScript library, facilitates interaction with Ethereum-
compatible nodes over JSON-RPC. For smooth integration
into legacy systems, the Camel-web3j connector [258] The
Camel-web3j connector is used to integrate Apache Camel
with the web3j library for interacting with Ethereum. Infura
[259] offers remote Ethereum nodes that developers and
users can access through APIs to interact with the Ethereum
blockchain. Metamask [260], a popular cryptocurrency wallet,

utilizes Infura’s nodes by default to connect to the Ethereum
network. This eliminates the need for users to run their own
node, simplifying wallet functionality. Similarly, EOS offers
an extensive set of tools and features, simplifying integration
with external systems. EOS provides various APIs, such as
EOSIO RPC API, with implementations in different languages
like EosJs [261], Py Eos [262], Scala Eos wrapper [263], and
Eos Java [261]. These tools empower developers to interact
with EOS across various programming platforms. Business-
to-business (B2B) focused DLTs like Hyperledger Fabric [19]
or the Corda platform [217] address integrability challenges
by providing robust integration SDKs. For instance, Fabric
offers a Fabric SDK that simplifies the development and
integration of NodeJs and Java [199] applications within the
Hyperledger Fabric blockchain framework. In contrast, other
systems like Bitcoin, Litecoin, Dogecoin, or similar, offer lim-
ited integrability, as they were not designed to communicate
with other systems. Bitcoin offers basic RPC features, and
multiple unofficial implementations exist in various languages
(e.g., BitcoinJ[264], pybtc[265]), but lacks the comprehensive
integrability features found in more business-oriented DLTs.

It is noteworthy that RPC can be a potential vulnerability
vector susceptible to exploitation for launching Denial-of-
Service attacks, particularly when there are RPC security
issues [266] or inadequate server configurations. Unprotected
JSON-RPC endpoints pose a security risk, as attackers may ex-
ploit them to transfer cryptocurrencies to accounts controlled
by the attackers or to acquire admin privileges over a node.

b) DApp orientation and DLT’s purpose: Bitcoin and
its counterparts, like Zcash, Litecoin, and others, lead the
charge in a digital cash revolution. These projects share a
common bold goal: to challenge traditional finance and free
value from the tight control of centralized authorities making
them Cryptocurrency-oriented. Other DLTs aim to provide
additional functionalities beyond cryptocurrency transactions.
For instance, storage-oriented DLTs like Sia Network 3, Storj
4, FileCoin 5, and Ipfs manage data storage in addition to a
cryptocurrency. Similarly, service-oriented DLTs offer specific
services that consume the inherent token, such as ”Steemit”
6for a social network or Namecoin for decentralized DNS.
On the contrary, several DLTs are DApp-oriented, enabling
developers to create diverse applications. Examples include
Ethereum, EOS, Stellar, TRON, among others, which pro-
vide a more flexible development environment for building
decentralized applications (DApps) with built-in tokens. For
a comprehensive overview of the current blockchain DApps
landscape, refer to the study by Wu et al. [267].

b-1) Decentralized Finance (DeFi): DeFi applications lever-
age smart contracts to facilitate a range of functionalities
such as margin trading, derivatives, stablecoins, and lend-
ing/borrowing. By incorporating smart contract capabilities
and utilizing data oracles like Band Protocol, DeFi plat-

3https://sia.tech/
4https://www.storj.io/
5https://filecoin.io/
6https://steem.com/

forms achieve fully permissionless, enduring, and scalable
operations. A notable example is Aave 7, an open-source,
non-custodial liquidity protocol that enables users to earn
interest on deposits and borrow assets. Additionally, Uniswap,
a decentralized exchange, allows users to trade cryptocurren-
cies directly with each other without the need for a central
intermediary. MakerDAO, a decentralized stablecoin platform,
uses smart contracts to maintain the value of its stablecoin,
DAI, pegged to the US dollar. Compound, another lend-
ing/borrowing platform, allows users to earn interest on their
crypto holdings and borrow assets against their collateral.

b-2) NFTs and Asset Tokenization: Tokenization [268]
[269] involves the digital representation of real-world assets
as tokens traded on a blockchain platform and managed by
smart contracts. The tokenization enables to capitalize on tra-
ditional blockchain advantages such as indisputable ownership,
transparency, trustless transactions, and an openly accessible
ledger of records. Non-Fungible Tokens (NFTs), a notable
application of tokenization, have garnered significant attention
in the blockchain realm. They represent unique and indivisible
digital assets on a blockchain, with each NFT being distinct
and often associated with digital art, collectibles, virtual real
estate, or other unique digital items.

b-3) Prediction Markets: Leveraging smart contracts and
data oracles, prediction markets on blockchain platforms en-
able the incorporation of real-world, open-internet data. This
includes information on market movements, weather condi-
tions, sports results, and more. The use of smart contracts
and oracles enhances the transparency and reliability of these
prediction markets. Developers and end-users can create niche
betting or prediction platforms, where the outcome of events is
automatically determined and payouts are executed based on
predefined rules encoded in smart contracts. This eliminates
the need for centralized authorities in overseeing and settling
predictions, offering a decentralized and trustless environment
for participants.

c) Wallets and Identity Management: Bitcoin, as the
original cryptocurrency, utilizes a simple private key sys-
tem for user access and management, with wallets, whether
software, hardware, or paper, ensuring secure storage and
transfer capabilities. Ethereum’s wallets act as gateways to its
ecosystem, managing Ether (ETH) and ERC-20 tokens (or oth-
ers), connecting to DApps, and enabling transaction signing.
Notable options like MetaMask, MyEtherWallet, and Ledger
hardware wallets enhance user interaction within the Ethereum
network. Ethereum has introduced Account abstraction (AA).
By decoupling transaction signing from the traditional private
key model, AA introduces a layer of programmability and
flexibility that opens up exciting possibilities for wallets. AA
enhances wallet security by reducing direct user management
of private keys, implementing advanced recovery mechanisms
like multi-signature schemes, and allowing programmable per-
missions for added security against unauthorized transactions.
Solana, emphasizing speed, offers wallets such as Phantom and

7https://aave.com/

Solflare, prioritizing rapid transaction processing, integration
with dApps, and support for staking and managing Solana
Programmatic NFTs (pNFTs). Hyperledger Fabric, designed
for enterprise use, focuses on permissioned networks with
access control, integrating wallets with identity management
systems based on PKI to ensure authorized access and secure
transactions.

C. Application Layer: Discussion

The concept of decentralized applications (DApps) takes
full advantage of the unique characteristics of DLTs but
also inherits some of their limitations. According to a recent
report [270], DApp projects in 2019 faced ongoing challenges,
including poor user attraction and retention due to complex
user experiences or the perceived uselessness of their services.
As a result, a significant number (estimated at 1300) of DApps
were abandoned in 2019 [270]. Successful DApps, such as
CryptoKitties (an online game built on Ethereum) or EIDOS
(an EOS token), highlighted a critical limitation of public
DLTs, namely, scalability. The popularity of these DApps
led to unprecedented congestion on their underlying chains,
causing thousands of unvalidated transactions. To address this,
developers are increasingly exploring the use of L2, rapid
sidechains like Lightning, Raiden, or Loom Network, which
offer faster transaction processing compared to the main chains
(e.g., Ethereum).

VIII. EVALUATION AND DISCUSSION

In this section, we undertake a comparative analysis and
evaluation of DLTs. The analysis is conducted at two levels;
First, we compare and evaluate, at a high level, the chosen
DLTs based on the properties outlined by our framework; Sec-
ond, we compare and evaluate multiple consensus protocols
against the criteria introduced in the section V.

A. A Comparative evaluation of Blockchain and blockchain-
like system based on DCEA framework

Tables XI and XII provide a comprehensive overview of
a diverse and substantial selection of Distributed Ledger
Technologies (DLTs) from both industry implementations and
recent research contributions. The comparative analysis en-
compasses four key dimensions: the composition of the four-
component DCEA framework, operational scope, level of
decentralization, and the higher taxon classification. In this
subsection, our attention is directed towards a detailed exam-
ination of governance and conflict resolution methodologies,
with a concurrent evaluation of decentralization. These proper-
ties assume an important role in determining the categorization
of a system as a blockchain or not.

1) Decentralization: Decentralization is a fundamental el-
ement in the design of DLT. Our assessment delves beyond
the surface, scrutinizing the topology of nodes, the cost
and distribution of running full nodes, and the mechanisms
governing decision-making. A truly decentralized DLT resists
the control of any singular entity, whether physical or logical.
This multi-layered analysis dissects the network’s backbone,

ensuring power is distributed rather than concentrated across
nodes and participants. A DLT is deemed decentralized if it
avoids physical or logical control by a singular entity, with
consideration given to the aforementioned factors. The 44
DLTs, as listed in Table XI, underwent assessment on a three-
step scale:

• centralized : in this model, a single entity or a small group
of entities control all aspects of the system. They possess
full decision-making power, maintain the ledger, and
dictate the rules and processes for transaction validation
and consensus.

• semi-decentralized : This model introduces some el-
ements of decentralization but still retains significant
control in the hands of specific entities.

• fully decentralized : This model aims to distribute power
and control among all participants in the network, elim-
inating the need for a central authority. Decisions are
made collectively through consensus mechanisms, and no
single entity has exclusive control over the system.

The pursuit of enhanced performance and scalability in DLT
projects often compels developers to grapple with the fun-
damental tension between decentralization and centralization.
Our comparative analysis reveals striking examples of this
compromise, where projects like Ripple, Stellar, and Libra
integrate centralized elements to optimize network efficiency,
albeit at the expense of absolute decentralization. In Ripple’s
case, a pre-defined ”starter list” of trusted nodes, chosen
by the founding team, serves as the initial validator set.
While users can theoretically update this list, concerns about
divergent pathways and compromised security (as noted by
Armknecht [177]) deter most users from doing so. This static
list effectively cedes operational and decisional power to the
starter nodes, creating a de facto centralized system heavily
influenced by the Ripple company, which also holds a sig-
nificant stake in the network’s token (XRP). This centralized
control raises concerns about potential censorship, manipula-
tion, and vulnerability to single points of failure. Similarly,
Stellar’s network exhibits dependence on two core validators
managed by the Stellar Foundation. [271] highlights that
deleting these nodes could trigger a network-wide collapse,
further accentuating the centralized nature of its governance
and operational structure. These examples illustrate the com-
plexities and trade-offs inherent in the decentralization vs.
performance dilemma for DLT projects. While centralized
elements can offer undeniable benefits in terms of speed and
stability, they simultaneously introduce weaknesses in trust,
security, and resilience. The long-term viability and societal
impact of these projects hinge on finding innovative solutions
that bridge this gap and pave the way for scalable, yet truly
decentralized, DLT frameworks. Conversely, most Proof-of-
Stake (PoS)-based DLTs exhibit decentralization. Nonetheless,
PoS faces criticism for potentially favoring entities with a
larger token stake, leading to centralized validation in instances
of unfair token distribution. [272] demonstrates the significant
impact of the ratio between block reward and total network

stake on the decentralization of PoS networks. IOTA serves as
an example of a semi-decentralized DLT, utilizing Coordinator
(COO) nodes run by the IOTA foundation to safeguard the
network from 34% attacks. Transactions cannot be confirmed
unless approved by the Coordinator through milestones. Del-
egated Proof-of-Stake (DPoS)-based DLTs face criticism for
susceptibility to validation centralization due to the potential
collusion of elected validators.

The case of EOS exemplifies this tension. Despite its
claim to democratic governance through staking-based voting,
concerns persist regarding centralization tendencies within its
ecosystem. Studies have uncovered correlations in votes for
different candidates, suggesting potential collusion among a
limited group of influential actors [273]. Additionally, the
extreme concentration of EOS tokens, with the top 100 holders
possessing over 75.13% of the total supply [274], raises
worries about the undue influence they may wield in validator
selection and network governance. These findings align with
broader concerns expressed by researchers such as Micali,
who caution against poorly designed incentive mechanisms
exacerbating centralization within blockchains. Kwon et al.
echo these sentiments, emphasizing the inherent challenges in
achieving robust decentralization in permissionless blockchain
systems [275].

2) Governance: In our assessment, we prioritized the
examination of the decentralized governance structures im-
plemented in the chosen Distributed Ledger Technologies
(DLTs). Diverse decision-making approaches are employed
across different projects to modify DLT protocol parameters
and upgrade network rules, reflecting varied political forms
of governance. Networks such as Bitcoin and Ethereum adopt
an anarchic governance model. In these systems, a anybody
can initiate an improvement proposal to address issues or
to change protocol settings (e.g., increasing block size). The
proposal undergoes public discussion, and upon garnering
sufficient favorable peer review, it is implemented into the
project’s codebase. Depending on the technical enhancements,
deploying it might need either a soft fork or a hard fork.
A soft fork is compatible with the existing system and
doesn’t require all network nodes to accept it, whereas a hard
fork requires nodes to update their software. For instance,
Bitcoin’s SegWit upgrade was a soft fork, and Ethereum’s
shift from Proof-of-Work to Proof-of-Stake was a hard fork.
The risk with a hard fork is that it may lead to a split in
the network, as upgraded nodes disconnect and reject nodes
with a different protocol version that didn’t undergo the hard
fork. Bitcoin employs on-chain governance through Version
Bits voting [276] for Soft-fork implementations, measuring
miner support. Projects like Qtum aim to avoid significant
disruptions, such as hard forks, for minor changes like block
size and gas parameters. They achieve this by including built-
in features that allow participants to collectively decide on
system adjustments through dedicated smart contracts, as seen
in the Decentralized Governance Protocol. Similarly, Tezos
utilizes the Tezos governance protocol, enabling the network
to decide on protocol upgrades. In enterprise-grade DLTs

such as Hyperledger Fabric designed primarily for private
or consortium contexts networks governance is managed by
a predefined governing body. For example, a technical or
administrative committee makes decisions, halts the network
[277], and implements upgrades.

3) Conflict Resolution: An intriguing aspect within the
selected DLTs lies in their methodologies for transaction order-
ing and conflict resolution. In systems employing Nakamoto
consensus protocols, miners autonomously arrange transac-
tions in blocks, validate them, and include them in the chain of
blocks. In the event of conflicting chains, nodes shift toward
the longest chain. DPoS protocols also follow the longest
chain rule when a block fails to receive the majority (2/3
+1) of votes from block producers. Nevertheless, a recent
study [304] questions the safety of applying the ”longest-
chain PoS” rule to PoS protocols. Conversely, Nano’s DAG
relys on balance-weighted voting such that the network reaches
consensus through individual node decisions and voting power.

Certain networks, such as Hyperledger Fabric, utilize a
specialized ordering service and dedicated mechanisms. The
Ordering Service sequences transactions into blocks, ensuring
a specific processing order and contributing to conflict preven-
tion in the ledger. Hyperledger Fabric, employs Multi-version
Concurrency Control (MVCC) to allow parallel transactions
without conflicts. Each ledger key maintains a version history,
preventing data inconsistencies. Additionally, an Endorsement
Policy mandates validations from specific peers before sub-
mitting transactions, preventing invalid or conflicting entries.
Similarly, Corda employs the notary service [305] to order
transactions and detect conflicts utilizing multiple consensus
mechanisms like RAFT, PBFT, or custom implementations.
[305]. Once the notary service validates a transaction and
adds it to the ledger, it becomes final and binding for all par-
ticipating nodes. This provides certainty and immutability to
the transaction data. Transaction ordering in IOTA is partially
ensured by senders and weights. Senders choose two previous
confirmed transactions (called ”tips”) to attach their new
transaction to, creating a DAG structure. While some suggest
the tips selection can be random from confirmed transactions,
the IOTA Foundation recommends using a Markov Chain
Monte Carlo (MCMC) weighted random walk. This method
prioritizes attaching to heavier branches, which helps them
grow faster and become the dominant valid tangle. Hashgraph
aims to ensure ”ordering fairness” [6] through its gossip-about-
gossip protocol. This concept ensures that transactions on a
blockchain or distributed ledger are processed and committed
in the same order that they were received by the network
nodes. Recognizing the significance of correct and fair or-
dering, Asayag et al. proposed Helix [306] which leverages
an ”in-protocol randomness” mechanism to elect validators
from a larger pool and determine which messages should be
included in a block. This randomness helps prevent manip-
ulation and ensures fair ordering of transactions. Moreover,
Kelkar et al. introduced Aequitas [307] which uses a lottery-
based approach to select validators and assign transaction slots
within a block. This lottery is designed to be provably fair and

TABLE VIII
APPLICATIONS OF BLOCKCHAIN AND BLOCKCHAIN-LIKE SYSTEMS

C
ry

pt
oc

ur
re

nc
y

an
d

pa
ym

en
t

D
ig

ita
l

id
en

tit
y

Io
T

H
ea

lth
ca

re

L
og

is
tic

s

Sm
ar

t
ci

ty

Te
le

co
m

Sm
ar

t
gr

id

A
I

Pr
ed

ic
tio

n
m

ar
ke

ts

Se
cu

ri
ty

E
-g

ov
er

nm
en

t

B
an

ki
ng

Fi
na

nc
e

B
an

ki
ng

G
am

es
an

d
E

-
sp

or
ts

Blockchain [1] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] - - - - [292]
Blockchain-like [293] [294] [295] [296] [297] [284] [298] [299] [300] - - [301] [297] [302] [303] -

tamper-proof.
4) Application Scenarios for Blockchain and Blockchain-

like Systems: In recent years, the utilization of DLTs prolifer-
ated across diverse domains. The examples presented in Tables
VIII and I highlight numerous sector-specific applications.
While there may be some overlap in their application do-
mains, it is clear that these technologies address distinct busi-
ness scenarios with unique requirements. Broadly speaking,
blockchain systems are well-suited for global decentralized
C2C models, emphasizing high user autonomy. In contrast,
blockchain-like platforms find greater utility in B2B use-
cases within a single organization or consortium, especially in
corporate settings where controlled governance and restricted
data access are crucial. For instance, a consortium of financial
actors may opt for a blockchain-like system to limit the
sharing of financial transaction details to relevant parties.
Conversely, blockchain systems excel in egalitarian networks,
providing considerable freedom to end-users, such as enhanced
transparency, decentralized control, and heightened security. A
prime example is the utilization of cryptocurrencies like Bit-
coin and Ethereum. In these blockchain networks, participants
benefit from a more equitable distribution of authority and
access, fostering a trustless environment where transactions
are verifiable and immutable.

B. A comparative analysis of consensus protocols

For a better comparison of DLTs, it is pertinent to compare
and contrast the consensus mechanisms separately as they
have a direct influence on other aspects and properties of the
DLTs (e.g. centralization, membership, scalability). To achieve
a thorough comparison, we adopt the metrics defined in section
V, and we consider the evaluative scale presented in Table IX.
Table X and Figure 20, summarize the result of our analysis
and evaluation.

An analysis of the results reveals important observations
about the strengths and limitations of the analyzed proto-
cols. Nakamoto consensus protocols face criticism for their
performance limitations and susceptibility to centralization

TABLE IX
THE EVALUATIVE SCALE USED TO COMPARE THE CONSENSUS PROTOCOLS

Liveness Strong Weak
Safety Strong Weak
Transaction throughput Very high (>1000 tps) High([1000,100 tps]) Low(<100 tps)
Finality Absolute Probabilistic
Network Model Synchronous Partially synchronous Asynchronous
Adversarial mode Strongly adaptive Middly adaptive Adaptive Non adaptive

Identity model Permissioned Permissionless

[308]. Bitcoin’s proof-of-work, a well-known representative, is
notorious for its energy consumption and significant latencies
[309]. Pass and Shi [310] show that, in order for Nakamoto
consensus protocols to maintain security, the block interval
must be set as a constant factor larger than the network’s
maximum delay. Consequently, the inherent design of these
protocols imposes a limit on the potential network’s through-
put, resulting in a scalability bottleneck.

Despite these limitations, Nakamoto consensus protocols
exhibit interesting properties. They demonstrate resilience
against significant Byzantine minorities (n > f/2) with anony-
mous open membership. Moreover, they do not necessitate
extensive message exchange between nodes to reach an agree-
ment, allowing them to scale efficiently to a large number
of participants. These characteristics make them widely em-
ployed in global cryptocurrency networks and well-suited for
public permissioned networks, where implementing economic
incentives is feasible as a safeguard mechanism to ensure
liveness and network security.

PoS is praised as a better alternative to Nakamoto protocols,
as it is energy-efficient and allows unlimited open membership
with equivalent fault tolerance (n > f/2+1). However, it is
vulnerable to numerous security threats such as Short and
Long-range attacks [311] and the nothing-at-stake attack.
These issues are mitigated by some PoS protocols, such as
Ouroboros, which employs only one designated leader in each
round. Moreover, PoS protocols face the weak subjectivity
issue, where a node joining the network for the first time or
after a long absence has to rely on other nodes to synchronize
the correct ledger. This dependence undermines the trustless
nature of blockchains entirely.

Algorand is a PoS protocol designed to scale independently
of the network’s size [312]. It achieves this scalability by
utilizing the verifiable random function (VRF) to randomly
select private delegates in a representative way without the
need for coordination between nodes. However, similar to
other PoS protocols, Algorand is secure only against a 1/3
adversary bound. Additionally, it results in an inherently
slower block production rate compared to protocols with
probabilistic finality, such as Snow White or Ouroboros, due
to the requirement of multiple rounds.

On the other hand, BFT protocols are efficient and well-
suited for small or midsize permissioned networks. However,
they involve extensive communication exchanges between
nodes and demand accurate knowledge of membership. Take
PBFT, for example, which incurs quadratic communication

TABLE X
A COMPARISON OF CONSENSUS PROTOCOLS

Network Model Adversarial model Adversary mode Fault
tolerance

Identity Model Safety Liveness Finality transaction
throughput

Type*

PBFT Asynchronous Threshold Adversary NA f<n/3 Permissioned Strong Weak Absolute Very high Blockchain-like
RAFT Asynchronous Crash-failure NA f<n/2 Permissioned Strong Weak Absolute Very high Blockchain-like
RIPPLE Asynchronous Threshold Adversary Adaptive f<n/5 Permissionless Strong Weak Absolute High Blockchain-like
STELLAR Asynchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very High Blockchain-like
HONEYBADGER Asynchronous Threshold Adversary Non adaptive f<n/3 Permissioned Strong Strong Absolute Very high Blockchain-like
POW Partially-synchronous Threshold Adversary Strongly adaptive f<n/2 Permissionless Weak Strong Probabilistic Low Blockchain
BITCOIN-NG Partially-synchronous Threshold Adversary Strongly adaptive f<n/2 Permissionless Weak Strong Probabilistic Very high Blockchain
BYZCOIN Partially-synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain
GHOST Partially-synchronous Threshold Adversary Non adaptive f<n/2 Permissionless Weak Strong Probabilistic High Blockchain
CASPER FFG Asynchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain
CASPER TFG Asynchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Absolute High Blockchain
DPoS (EOS) Partially-synchronous Stake Adversary Non adaptive f<n/3 Permissionless Weak Strong Absolute High Blockchain-like
OUROBOROS synchronous Stake Threshold Adversary Middly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain
OUROBOROS
PRAOS

Partially-synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless weak Strong Probabilistic High Blockchain

OUROBOROS
GENESIS

Partially-synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain

OUROBOROS
CHRONOS

Partially synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless weak strong Probabilistic High Blockchain

TENDERMINT Partially synchronous Stake Threshold Adversary Non adaptive f<n/3 Permissioned Strong Weak Absolute High Blockchain-like
ALGORAND Partially synchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Strong Weak Absolute High Blockchain
THUNDERELLA Synchronous Stake Threshold Adversary Middly adaptive f<n/3 Permissionless Strong Weak Absolute (Fast Path) Very high Blockchain-like
HOTSTUFF Partially-synchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain-like
LIBRABFT Partially synchronous Threshold Adversary Adaptive f<n/3 Permissionless Strong Weak Absolute Very high Blockchain-like
SPECTRE Partially synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic High Blockchain-like
IOTA Partially synchronous Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic High Blockchain-like
HASHGRAPH Asynchronous Threshold Adversary Non adaptive f<n/3 Permissioned Strong Weak Probabilistic Very high Blockchain-like
SNOW WHITE Asynchronous Stake Threshold Adversary Strongly adaptive f<n/3 Permissionless Weak Strong Probabilistic High Blockchain
AVALANCHE Partially synchronous Stake Threshold Adversary Non adaptive f<n/3 Permissionless Strong Weak Probabilistic Very high Blockchain

f : is the faulty nodes or actors and n: is the total number of nodes that are coming to consensus.
* We present the DLT type according to the analysis performed and summarized in table VII.

overhead, making it challenging to scale in terms of the num-
ber of participants. Additionally, these protocols are vulnerable
to Sybil attacks, rendering them unsuitable for public DLTs but
well-suited for private DLTs.

Despite these limitations, some protocols aim to leverage
the advantages of PBFT to construct highly performant open
consensus protocols for public blockchains while mitigating its
inherent drawbacks. Tendermint [313], for example, combines
BFT and DPoS. It prevents Sybil attacks and offers open
membership based on proof of stake.
Safety and liveness are crucial properties for DLTs. Figure 20
provides an expressive overview of the safety and liveness of
the analyzed consensus mechanisms. We observe that PoW-
based protocols sacrifice safety (forking can happen) for
strong liveness. These protocols provide probabilistic safety
as the network converges toward a canonical chain using the
probabilistic Nakamoto’s longest chain fork choice rule (or
a similar rule) coupled with economic incentives. Similarly,
many PoS-based protocols favor safety over liveness. For
instance, Algorand and Casper FFG ensure safety and liveness
if dishonest participants control less than 1/3 of the deposited
stake. Ouroboros is proven to achieve safety and liveness
in synchronous settings, under the assumption of an honest
majority of all stake in the system, even if a significant portion
of participants is offline [158]. Algorand achieves safety with
a “weak synchrony” assumption, whereas to achieve liveness,
Algorand assumes strong synchrony. Other protocols such as
BFT protocol and its variants [124], [314], PBFT implemen-
tations and FBA favor fault tolerance and termination over
safety. This means that in case of accidental fork, the network
halts waiting for recovery (restoration of the consensus). In the
Stellar Federated Byzantine Agreement, nodes choose their
quorum slice (set of trusted nodes) according to their trust

Fig. 20. Visual comparison of consensus protocols in terms of safety, liveness
and finality

relationship. Thus, the safety and security of the protocol
is highly dependent on the structure of the quorum slices.
However, [271] shows that the Stellar system is significantly
centralized and proved that FBA is not better than PBFT in
terms of safety and liveness.

Another important aspect to consider when analyzing con-
sensus protocols is finality. Protocols such as Snow white
[161], Ouroboros [315], Casper FFG [171], and PoW achieve
probabilistic finality. DLTs adopting these probabilistic pro-
tocols define rules to avoid the risk of double spending by
urging users to wait for a given delay –usually expressed
number of blocks— before considering the transaction as
final. For instance, in Bitcoin, it is widely advised to wait
at least for 6 confirmation blocks (around 60 minutes) before
accepting the validated payment. The reason behind, is that

TABLE XI
COMPARATIVE ANALYSIS TABLE FOR SELECTED DLTS

LEGEND :
CoB: Chain of blocks, SCoB: Sharded Chain of blocks, DDB: Distributed database, HDS: Hybrid data structure
G: Global, S: Strong, R: Restricted, W: Weak, Cy: Cryptocurrency, DA: DApps, Ol: Oligarchic, De: Democratic, An: Anarchic, Di: Dictatorship
Bl: Built-in, Ex: External, Ns: Not specified, Nsp: Not supported, Nf: No forks, Lc: Longest chain, Hb: Heaviest branch, Hc: Heaviest chain,
Op: Open, Is: Isolated, OB: Oracle-based, Dc: Deterministic, NDc: Non-Deterministic, H: High, M: Medium, L: Low, Ge: General.
Bo: Business-oriented, Po: Payment-oriented, So: Service-oriented, DSo: Decentralized storage-oriented, IoT: IoT-oriented, Io: Interoperability-oriented

Based on the project repository on https://github.com/dedis/cothority/tree/master/byzcoin
Elastos sidechains can theoretically use any consensus mechanism
Filecoin incentivizes miners with greater storage capacity
Different software implementations of the Filecoin protocol should be able to work together seamlessly.
https://qubic.iota.org
Based on the implementation available on https://github.com/dedis/student 18 byzcoin
Unlike the main chain, known as the Relay Chain, which has a standardized structure, parachains can be customized with a wide range of data models and representations.
Parachains Runtime logic provides isolation between parachains. If one chain experiences an issue or vulnerability, it doesn’t automatically affect the others.
In Nano, a single network-wide DAG is shared by all participants and a balance-weighted voting system is used to handle conflicting transactions.

https://github.com/dedis/cothority/tree/master/byzcoin
https://qubic.iota.org
https://github.com/dedis/student_18_byzcoin

after 6 confirmation the probability of reverting the transaction
decreases to 0.02428% [[1] page 8] assuming that an adversary
controls less than 10% of the overall hash-power which is
very unlikely. In contrast, multiple consensus mechanisms
such as PBFT-based protocol (e.g Tendermint), Ripple, Stellar,
DPoS-based protocols, some PoS protocols (e.g. Algorand),
Thunderella’s fast path and others achieve absolute finality if
the validating majority is honest. Moreover, DLTs networks
adopt measures to secure finality. For instance, EOS, a DPoS
DLT, utilizes the concept of Last irreversible block (LIB) to
improve finality and honest nodes wait for 330 confirmation
blocks (less than 2 seconds) before considering a transaction
irreversible.

When considering scalability, a crucial property for DLTs,
the situation is continually improving. Recently proposed
protocols like Avalanche [316] (3400 Transactions Per Second
or tps) and Algorand [312] (around 1000 tps) outperform
classical blockchain consensus protocols like PoW [317]
(about 4 tps), while providing a comparable level of security
and better finality. Permissioned protocols such as PBFT can
achieve much higher throughput, for example, 15, 000 tps if
the number of validating peers is under 16 [139]. However,
the throughput falls to under 5000 tps when the number of
validating peers is 64 [139]. HoneyBadgerBFT attains roughly
equal performance of between 10, 000 and 15, 000 tps [139], a
performance that comes with higher latency (around 6 minutes
in a network of 104 nodes [139]). On the other hand, Tender-
mint can process thousands of transactions per second with
very low latency (one-second block latency). However, similar
to other PBFT-like protocols, the scalability of Tendermint in
large-scale networks is questionable, as demonstrated in [318]
with only a maximum of 64 nodes.

C. Zero-Knowledge Rollups and zkEVM: A Comparative
Overview

The Zero-knowledge Virtual Machine (zkVM) is a emerg-
ing technology currently in the early stages of development,
designed to enhance rollup capabilities through the utilization
of zero-knowledge proofs. At its core, zkVM introduces in-
novative features, including the execution of smart contracts
within the rollup in a manner that prioritizes both security
and privacy. Unlike traditional transaction verification meth-
ods, zkVM goes beyond individual transactions and validates
the entire computation within smart contracts. This approach
significantly reduces the volume of on-chain data, contributing
to improved efficiency.

One of the primary technical aspects of zkVM lies in its
ability to execute smart contracts securely and privately. By
leveraging advanced cryptographic techniques associated with
zero-knowledge proofs, zkVM can conceal sensitive details
of smart contract execution, including transaction amounts
and asset types. This heightened level of privacy protection
aligns with the growing demand for secure and confidential
transaction processing on blockchain networks.

The potential technical advantages of zkVM are noteworthy:

• Increased Scalability: zkVM’s offloading of smart con-
tract execution to the rollup has the potential to signifi-
cantly amplify transaction throughput, addressing scala-
bility concerns associated with traditional on-chain exe-
cution.

• Enhanced Privacy Mechanisms: Leveraging zero-
knowledge proofs, zkVM ensures robust privacy
guarantees for smart contract execution, mitigating
concerns related to data exposure.

• Facilitation of Complex Use Cases: zkVM’s ability to
validate entire computations within smart contracts opens
doors to new use cases that require not only heightened
privacy but also on-chain verification of intricate and
computationally intensive processes.

However, it is important to underscore the challenges asso-
ciated with zkVM’s early developmental phase:

• Technical Complexity: Implementing and verifying
zkVM proofs necessitates the application of advanced
cryptographic techniques, introducing a level of technical
complexity that requires careful consideration.

• Limited Ecosystem: The current support for zkVM is
constrained, with ongoing efforts in the development
of necessary tools and applications. The ecosystem is
evolving, and broader adoption is contingent on continued
maturation.

As zkVM progresses through its developmental stages,
these technical considerations will likely shape its trajec-
tory, determining its viability and potential impact within
the broader blockchain landscape. In table XIII we pro-
vide a comprehensive comparison of some well-known zk
protocols within the Ethereum ecosystem, highlighting their
distinctive features, applications, and trade-offs. zkSync and
zkPorter both utilize zk-SNARKs, emphasizing scalability
and privacy, with efficient proof generation and strong pri-
vacy guarantees. However, they exhibit limitations in smart
contract functionality when compared to Optimism. Hermez
and zkTube, employing PLONK, share similar focuses on
scalability and privacy, boasting fast verification and versatile
proof systems. Nevertheless, akin to zkSync and zkPorter,
they present constraints in smart contract functionality com-
pared to Optimism. StarkWare, relying on STARK, prioritizes
scalability and security, delivering highly secure proofs and
fast verification processes. However, it places less emphasis
on privacy compared to zk-SNARKs. zk-rollups on Arbitrum
leverage various zk-SNARKs and PLONK implementations
to address scalability and privacy concerns, capitalizing on
existing Arbitrum infrastructure. Despite the flexibility, users
face the challenge of navigating through multiple implemen-
tations, introducing complexity in selecting the most suitable
one. Aztec Protocol, utilizing zk-SNARKs, stands out for its
focus on privacy-preserving DeFi, ensuring strong privacy for
financial transactions. Nevertheless, its smart contract func-
tionality is somewhat limited for non-DeFi applications. Each
protocol exhibits a unique set of advantages and disadvantages,
catering to specific use cases and user priorities within the

TABLE XII
A COMPARISON OF SELECTED DLTS

DLT Scope Decentralization Level Taxon
Æternity Public Decentralized Blockchain
Algorand Public Decentralized Blockchain
Ardor Public Decentralized Blockchain
Bigchaindb 2.0 Private Semi-centralized Blockchain-like
Bitcoin Public Decentralized Blockchain
BitShares Public Decentralized Blockchain
Byzcoin Public Decentralized Blockchain
Cardano Public Decentralized Blockchain
Corda (R3) Private or consortium Semi-Decentralized Blockchain-like
Cosmos Cosmos hub is public, zones can be public or private Decentralized Blockchain
Decred Public Decentralized Blockchain
Elrond Public Decentralized Blockchain
EOS Public Semi-Decentralized Blockchain-like
Ethereum 1.0 and 2.0 Public Decentralized Blockchain
Ethereum Enterprise Private or consortium Decentralized Blockchain
Exonum Enterprise Public or private Semi-Decentralized Blockchain-like
Elastos Public Decentralized Blockchain
Filecoin Public Decentralized Blockchain
Hashgraph Public Centralized Blockchain-like
Hyperledger fabric Private or consortium Semi-Decentralized Blockchain-like
IOTA Public Semi-Decentralized Blockchain-like
Lisk Public Decentralized Blockchain
Multichain Private or consortium Semi-Decentralized Blockchain
NEO Public or private Semi-Decentralized Blockchain
Omniledger Public Decentralized Blockchain
Parity substrate Private or consortium Semi-Decentralized Blockchain
Polkadot (Relay chain) Public Decentralized Blockchain
Quorum Private Semi-Decentralized Blockchain
Qtum Public Decentralized Blockchain
Ripple Public Centralized Blockchain-like
Rootstock Public Decentralized Blockchain
Steem Public Decentralized Blockchain
Stellar Public Centralized Blockchain-like
Sia Public Decentralized Blockchain
Stratis Main chain is public, seidechains are private Main chain is decentralized, the BAAS is centralized Blockchain-like
Nano Public Semi-decentralized Blockchain-like
Tezos Public Decentralized Blockchain
Wanchain Public Decentralized Blockchain
Waves Public, private or permissioned Decentralized Blockchain
Zilliqa Public Decentralized Blockchain
Libra (Facebook) Public Centralized Blockchain-like
Artis Public Decentralized Blockchain
VeChain Public Semi-Decentralized Blockchain
Red Belly Public Semi-Decentralized Blockchain

Ethereum ecosystem.

D. DApps Attractiveness: A Comparative Overview

In evaluating the appeal of specific blockchain network
solutions for DApp builders, the Total Value Locked (TVL)
metric serves as a crucial benchmark within the cryptocur-
rency sector. TVL quantifies the total U.S. dollar value of
digital assets locked or staked through decentralized finance
(DeFi) platforms or decentralized applications (DApps). Fig-
ure 21 illustrates that Ethereum stands as the predominant
network for DApp development, controlling more than half
of the total value locked across blockchains. Unsurprisingly,
alternative Layer-1 (L1) chains, particularly those compat-
ible with Ethereum Virtual Machine (EVM), have proven
attractive to developers. The top five contenders—Arbitrum,
Optimism, Base, Polygon, and Era— collectively controlling
about 10% of the TVL. This phenomenon can be attributed

to the appeal of EVM-compatible L1 chains like Polygon
and Avalanche, which leverage their compatibility to entice
Ethereum users seeking improved transaction speeds, reduced
fees, and potentially higher returns. This establishes a mutually
beneficial relationship between the L1 chain and its user base.
Conversely, non-EVM projects such as Solana, Cardano, and
Bitcoin exhibit lower TVL percentages, with Solana at 2%,
Cardano at 1%, and Bitcoin at less than 1%. The divergence
in TVL may be explained by the ease of DApp development on
EVM-compatible platforms compared to their non-compatible
counterparts.

IX. LESSONS LEARNED AND TUTORIALS FOR DESIGNING
NEW DLT SOLUTIONS

While preparing this survey, we found multiple challenges
that directly impact the performance of DLT. Here, we sum-
marize the most crucial challenges across the four layers.

TABLE XIII
COMPARISON OF ZK PROTOCOLS IN THE ETHEREUM ECOSYSTEM

Protocol ZK Protocol Used Focus Advantages Disadvantages
zkSync zk-SNARKs Scalability, privacy Highly efficient proofs, strong privacy guarantees Limited smart contract functionality compared to Optimism
Hermez PLONK Scalability, privacy Fast verification, versatile proof system Limited smart contract functionality compared to Optimism

StarkWare STARK Scalability, security Highly secure proofs, fast verification Less focus on privacy compared to zk-SNARKs
zkPorter zk-SNARKs Scalability, privacy Efficient proof generation, strong privacy guarantees Less mature than other protocols
zkTube PLONK Scalability, privacy Fast verification, versatile proof system Limited smart contract functionality compared to Optimism

zk-rollups on Arbitrum Various zk-SNARKs and PLONK implementations Scalability, privacy Leverages existing Arbitrum infrastructure Multiple implementations, complexity in choosing the right one
Aztec Protocol zk-SNARKs Privacy-preserving DeFi Strong privacy for financial transactions Limited smart contract functionality for non-DeFi applications

Fig. 21. TVL in the most prominent DApp-oriented blockchains (data source:
DeFiLama)

a) Managing Blockchain Size: When exploring different
blockchain projects, a common problem that surfaces is what
we call ”blockchain bloat”. Blockchain bloat is a phenomenon
where the size of a blockchain becomes excessively large, pos-
ing various challenges. It results from factors like large block
sizes, increased transaction volume, data redundancy, and the
immutability of blockchain data. This condition has significant
consequences, including increased storage requirements, scala-
bility limitations, and concerns about decentralization. Several
solutions are being explored to address blockchain bloat, such
as state pruning, sidechains, sharding, and Layer-2 solutions.
Tackling this challenge is crucial for ensuring the sustainability
and scalability of blockchain technology in the long run.

Ensuring the security of smart contracts presents a sig-
nificant challenge in the DLT domain, especially in public
blockchains with associated financial risks. Several strategies
have been recommended to enhance smart contract security,
encompassing the implementation of code analyzers, the adop-
tion of secure smart contract libraries like OpenZeppelin [319],
formal verification techniques, and the establishment of coding
best practices. Due to the lack of a clear upgrading process
for vulnerable smart contracts in the majority of DLTs, design-
ers often focus on providing secure architectural and design
approaches, upgradability patterns, and detailed best practice
guidelines. These measures aim to assist developers in writing
secure smart contracts, avoiding well-known vulnerabilities,
and steering clear of security pitfalls. Furthermore, for risk
mitigation, formal verification proves to be an efficient means
of addressing security concerns and ensuring better smart
contracting. Interestingly, bug bounty programs have proven
to be an effective and cost-efficient way to enhance smart
contract security.

b) Upgrading Consensus Mechanisms: There is a
plethora of consensus protocols in the literature, with contin-

uous research efforts aimed at producing new ones. However,
when designing a new DLT, one should be aware of the
upgradability pitfall. For various reasons, such as the emer-
gence of a high-performing protocol or a new improvement, a
project may need to shift or upgrade its underlying consensus
protocol. In public blockchains, the protocol upgrade can come
with its risks. For instance, Ethereum’s plan to shift from PoW
to PoS will have financial implications for its current miners,
which may lead to opposition and a potential network split.
Thus, it is crucial to choose the most suitable mechanism at the
beginning of the project. Moreover, the decision to switch from
one protocol to another must be fault-tolerant and should be
secured through built-in mechanisms (e.g., Ethereum difficulty
bomb [320]).

c) Accessible applications: The complexity of the actual
end user experience is a common observation among most
DLTs. This is explained by the fact that the inherent design
does not consider to provide a good user experience but rather
focuses on the internal machinery. To remedy that, the current
solutions (e.g. wallets plugins) are not only non-intuitive for a
new user but they are also challenging to use and maintain. A
DLT designer should consider providing gateways, APIs and
SDKs, and other enabling solutions that will allow developers
to design more user friendly DApps and allow a seamless
interaction between both product and end-user. An accessible
blockchain design should enable average users to interact with
the hosted DApps without prior knowledge or the need to
synchronize the whole ledger, in order to lower the entry level
of blockchain use.

X. BLOCKCHAIN CHALLENGES AND FUTURE
RESEARCH DIRECTIONS

DLTs (blockchain and blockchain-like), despite their im-
mense potential, face significant challenges that need to be
addressed for their wider adoption and mainstream success.
Here, we present a non-exhaustive list of the key challenges:

a) Limited Scalability: This problem is primarily due to
the challenge of finding a perfect balance among decentraliza-
tion, security, and scalability. A well-known paradigm, called
the scalability trilemma [321], posits that it is impossible to
build a system with all the aforementioned characteristics.
However, multiple approaches to scaling distributed protocols
are presented, such as off-chain processing, sharding (divid-
ing a whole blockchain into multiple shards), and overhead
reduction (Segwit, MAST, etc.). Nevertheless, these solutions
themselves raise new challenges and security concerns. For
example, the work in [322] highlights the remaining challenges

of sharding mechanisms, such as intra-consensus safety, cross-
shared communication, and more. It is worth noting that
although the theoretical propositions are not fully sharded, the
blockchain is still operational.

b) Formal Verification: Recent costly bugs in smart con-
tracts have highlighted the critical role of formal verification
in ensuring the correctness and security of these programs.
While significant research has explored formal verification
techniques for smart contracts, achieving promising results
[323]-[324], existing approaches exhibit limitations in han-
dling complex contracts. Current methods often struggle with
contracts featuring intricate control flow, extensive state tran-
sitions, or interactions with external oracles, hindering their
practical applicability in real-world scenarios. Additionally,
the computational resources required for verifying complex
contracts can be substantial, further limiting their scalability.

c) Data immutability and integrity in DLTs: In private
or consortium DLTs with permissioned access, ensuring a
high level of data immutability is challenging compared to
the assurance provided by public blockchains. This difficulty
raises concerns about the suitability of DLTs in such environ-
ments where immutability is a crucial aspect. While there are
some partial solutions like Exonum (which anchors data on
the Bitcoin blockchain) or Kadena, the issue is far from being
fully resolved.

d) Data availability problem: The efforts of scaling
blockchain face significant challenge: guaranteeing data avail-
ability. In simpler terms, all nodes on the network, not just
the block producers, need to be confident that the data in each
new block is complete and hasn’t been tampered with. Tradi-
tionally, verifying this meant downloading the entire block,
which is inefficient and impractical for large blockchains.
To address this hurdle, most scaling projects utilize data
availability proofs. These mechanisms allow nodes to confirm,
with near certainty, that all block data is present, even if they
only download a tiny fraction of the block itself.

e) Decentralized governance mechanisms: Implement-
ing effective decentralized governance poses a multifaceted
challenge due to the absence of a central authority. Decen-
tralized Autonomous Organizations (DAOs) initially appeared
promising for transparent and decentralized management, but
practical implementations revealed crucial limitations. One
significant drawback is the lack of robust mechanisms for
establishing user reputations within the system, affecting trust
assessment and governance quality. Additionally, the anony-
mous nature of DAOs renders them vulnerable to Sibyl attacks,
allowing malicious actors to manipulate voting processes and
undermine governance integrity. The regulatory landscape
surrounding DAOs remains unclear in many jurisdictions, cre-
ating uncertainty and hindering widespread adoption. Looking
ahead, exploring alternative governance models beyond token-
based voting, implementing decentralized dispute resolution
mechanisms, and assessing the broader societal and economic
implications of decentralized governance practices are essen-
tial considerations for overcoming these challenges.

f) Quantum resistance: Many cryptographic algorithms
used by different DLTs are not quantum-resistant. For instance,
the use of Schnorr or ECDSA (used by Bitcoin and Ethereum
and others) for signing transactions is under threat. Aware of
this problem, a few researchers have attempted to advance
efficient solutions. Notably, [325] reported the experimental
realization of a quantum-safe blockchain. However, as research
remains limited, more effort should be placed on the adoption
of alternative cryptographic signature schemes (e.g. XMSS,
hash ladder signatures, and SPHINCS) to replace the classi-
cal schemes and build a secure, resilient post-quantum DLT
protocol.

g) Smart Contracts for IoT: Despite the proposition of a
few projects dedicated to IoT (e.g. IOTA, Vechain [326]), there
is no platform providing a smart contracts environment tailored
to the special IoT requirements (e.g. lightweight execution
runtime.). Most solutions propose hybrid DLTs where the IoT
objects rely on external resources to run smart contracts.

h) Useful Proof-of-work: Proof-of-work (PoW) is one of
the secure consensus mechanisms, but it is severely criticized
for being wasteful. [327] and [328] proposed to build new
useful Proof-of-Work protocols solving useful calculation.

i) Sustainable Liquidity pools: One of the biggest prob-
lems that DeFi protocols face is the difficulty of sustainably
attracting long-lasting liquidity. Most of these protocols dis-
tribute an important proportion of their native tokens into the
liquidity mining incentives. This usually attracts investors and
accelerate the growth of DeFi projects quickly. However, the
vast majority of liquidity is unloyal and moves to new projects
that offer better financial incentives which creates a huge
selling pressure for the native token and thus drops its value.
To mitigate this financial risk new DeFI projects, considered as
being part of the next generation DeFi (DeFi 2.0), try to attract
long-lasting liquidity without depending on the never-ending
cycle of subsidising the users with liquidity mining rewards.
To reach that goal more effort should be placed to design new
protocols creating sustainable liquidity through a decentralized
market-making and enabling a quick bootstrapping phase and
attracting initial capital to a new chain or L2.

j) Upgrading Runtimes Without Forks: While hard fork-
ing is a prevalent approach for upgrading public blockchains,
it proves to be inefficient and error-prone in large-scale net-
works. The challenges stem from the considerable offline and
online coordination needed to prevent network splits. Emerg-
ing solutions, such as those seen in projects like Polkadot,
are investigating alternative methods. One promising avenue
involves leveraging portable technologies like Wasm on-chain,
allowing nodes to autonomously adopt upgraded logic at a
predefined block height, eliminating the need for external
intervention.

k) Low-Latency Byzantine Agreement Protocols Using
RDMA: Remote Direct Memory Access (RDMA) is a tech-
nology that enables networked computers to exchange data
in shared memory to improve throughput and performance.
The shared memory model has been widely researched for
key/value stores, databases and distributed file systems. How-

ever, the leverage of RDMA for consensus mechanisms espe-
cially for BFT has been neglected. Further research is needed
to integrate blockchain with the shared memory and RDMA
technologies and to propose BFT protocols for low-latency
and RDMA-enabled consensus algorithms.

l) Emerging Trends in Zero-Knowledge Proof (ZKP) Pro-
tocols: Zero-Knowledge Proof (ZKP) protocols have evolved
significantly in recent years, playing a vital role in enhancing
privacy and security across various domains.

Non-Interactive Zero-Knowledge Proofs (NIZKPs) [329]:
Traditionally, ZKPs involve interaction between the prover and
verifier. However, there is a growing interest in Non-Interactive
Zero-Knowledge Proofs (NIZKPs), where the prover can
generate a proof that can be verified without interaction.
Recent research has focused on constructing NIZKPs based
on various cryptographic assumptions, including the use of
bilinear pairings, hash functions, and algebraic structures.
NIZKPs are not only theoretically intriguing but also practical
for decentralized systems where participants may not be online
simultaneously.

Lattice-Based Zero-Knowledge Proofs: Lattice-based cryp-
tography, considered a post-quantum alternative, is being ex-
plored in the context of ZKPs for its resistance to quantum
attacks. The challenge lies in designing efficient lattice-based
ZKPs without sacrificing performance. Ongoing research aims
to strike a balance between security and practicality in
these constructions. Integration with Homomorphic Encryp-
tion: Combining ZKPs with homomorphic encryption allows
computations to be performed on encrypted data without de-
cryption, providing an additional layer of privacy and security.
Research in this area explores ways to integrate ZKPs with
homomorphic encryption schemes, enabling secure and private
computations on encrypted data while proving the validity of
the computations. This integration has potential applications
in secure multi-party computation and privacy-preserving data
analytics. Succinct Arguments of Knowledge: Efficiency re-
mains a key concern in ZKP protocols, and succinct arguments
of knowledge aim to reduce the size of proofs and improve
verification speed without compromising security. Techniques
like zk-SNARKs (Zero-Knowledge Succinct Non-Interactive
Arguments of Knowledge) have demonstrated significant suc-
cess in achieving succinctness. Ongoing research focuses on
refining zk-SNARK constructions, exploring new mathemati-
cal frameworks, and addressing limitations to further enhance
their efficiency and applicability.

XI. CONCLUSION

This document introduces an extensive examination of con-
temporary DLTs through a thorough and multi-layered state-
of-the-art analysis. We introduce a conceptual and referential
framework aimed at enhancing comprehension and catego-
rization of DLTs. Our specific focus is on defining clear
boundaries and reducing ambiguity between blockchain and
other DLT systems, referred to as ”blockchain-like”. Moreover,
we employ the provided framework as a guide to examine the

different design-choices adopted by various DLTs across four
layers: data structure, execution, consensus, and application
layers. The application of our reference framework results
in the creation of a novel taxonomy for classifying DLTs,
broadly categorizing them into two groups: blockchain and
blockchain-like systems. Additionally, we conduct a qualita-
tive and comparative analysis of numerous existing DLTs, with
a dedicated examination of the most significant and recent
consensus mechanisms. This survey aims to provide valuable
insights for designers of new DLT systems and consensus
mechanisms, along with assisting decision-makers. It offers
a clear and detailed overview of recent contributions at each
layer, highlighting trade-offs and limitations resulting from
different design choices. Furthermore, the analysis can aid
in advocating the selection of a DLT solution for building
decentralized systems. Finally, we identify several important
open issues that merit attention in future research.

In conclusion, our work contributes to advancing the un-
derstanding of DLTs, their classifications, and the nuances
among various systems. We hope this survey serves as a
valuable resource for both academia and industry, guiding the
development of robust and efficient decentralized technologies.

REFERENCES

[1] S. Nakamoto, “Bitcoin : A Peer-to-Peer Electronic Cash System,” pp.
1–9, 2008.

[2] L. Team, “Litecoin.” [Online]. Available: https://litecoin.org/
[3] S. King and S. Nadal, “Peercoin–secure & sustainable cryptocoin,”

Aug-2012 [Online]. Available: https://peercoin. net/whitepaper (),
2012.

[4] S. Popov, “The Tangle,” Tech. Rep., 2017.
[5] H. Foundation, “Hyperlegder Project.” [Online]. Available: https:

//www.hyperledger.org/
[6] Hedra, “Hedera Hashgraph.” [Online]. Available: https://www.hedera.

com/
[7] ITU, “Focus Group on Application of Distributed Ledger Technology.”

[Online]. Available: https://www.itu.int/en/ITU-T/focusgroups/dlt/
Pages/default.aspx

[8] E. N. Dawson, A. Taylor, and Y. Chen, “ISO/TC 307 Blockchain
and distributed ledger technologies.” [Online]. Available: https:
//www.iso.org/committee/6266604.html

[9] ISO/TR, “ISO/TR 23455:2019 Blockchain and distributed ledger tech-
nologies — Overview of and interactions between smart contracts in
blockchain and distributed ledger technology systems.”

[10] I. S. Association, “IEEE blockchain standards.” [Online]. Available:
https://blockchain.ieee.org/standards

[11] C. Wittbrodt and S. Hares, “Essential Tools for the OSI Internet.”
[12] B. Bellaj, A. Ouaddah, E. Bertin, N. Crespi, and A. Mezrioui, “Sok:

a comprehensive survey on distributed ledger technologies,” in 2022
IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, 2022, pp. 1–16.

[13] ——, “Untangling the overlap between blockchain and dlts,” in Science
and Information Conference. Springer, 2022, pp. 483–505.

[14] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications
Surveys, 2015. [Online]. Available: http://ieeexplore.ieee.org/abstract/
document/7423672/

[15] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and
P. Rimba, “A Taxonomy of Blockchain-Based Systems for Architecture
Design,” in Proceedings - 2017 IEEE International Conference on Soft-
ware Architecture, ICSA 2017. Institute of Electrical and Electronics
Engineers Inc., 5 2017, pp. 243–252.

[16] B. J. Butijn, D. A. Tamburri, and W. J. V. D. Heuvel, “Blockchains: A
Systematic Multivocal Literature Review,” 6 2020. [Online]. Available:
https://doi.org/xxx

https://litecoin.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hedera.com/
https://www.hedera.com/
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx
https://www.itu.int/en/ITU-T/focusgroups/dlt/Pages/default.aspx
https://www.iso.org/committee/6266604.html
https://www.iso.org/committee/6266604.html
https://blockchain.ieee.org/standards
http://ieeexplore.ieee.org/abstract/document/7423672/
http://ieeexplore.ieee.org/abstract/document/7423672/
https://doi.org/xxx

[17] M. C. Ballandies, M. M. Dapp, and E. Pournaras, “Decrypting
Distributed Ledger Design – Taxonomy, Classification and Blockchain
Community Evaluation,” 10 2018. [Online]. Available: http://arxiv.org/
abs/1811.03419

[18] P. Tasca and C. J. Tessone, “A Taxonomy of Blockchain Technologies:
Principles of Identification and Classification,” Ledger, vol. 4, 2 2019.

[19] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9591. Springer Verlag, 2016, pp. 112–125.

[20] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the
wild,” in Leibniz International Proceedings in Informatics, LIPIcs,
vol. 91. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH,
Dagstuhl Publishing, 10 2017.

[21] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A framework for analyzing private blockchains,” in Pro-
ceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 1085–1100.

[22] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, “Consensus in the Age of Blockchains,”
11 2017. [Online]. Available: http://arxiv.org/abs/1711.03936

[23] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A Survey on Consensus Mechanisms and Mining
Strategy Management in Blockchain Networks,” IEEE Access, vol. 7,
pp. 22 328–22 370, 2019.

[24] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” Tech. Rep.

[25] M. S. Ferdous, M. J. M. C. arXiv, and u. 2020, “Blockchain Consensus
Algorithms: A Survey,” ui.adsabs.harvard.edu. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2020arXiv200107091S/abstract

[26] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum
Systems Security: Vulnerabilities, Attacks, and Defenses,” 6 2020.

[27] Z. Zheng, S. Xie, H. N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 4 2020.

[28] A. S. Almasoud, F. K. Hussain, and O. K. Hussain, “Smart contracts for
blockchain-based reputation systems: A systematic literature review,”
Journal of Network and Computer Applications, vol. 170, p. 102814,
11 2020.

[29] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. H. Nyang,
and D. Mohaisen, “Exploring the Attack Surface of Blockchain: A
Comprehensive Survey,” IEEE Communications Surveys and Tutorials,
vol. 22, no. 3, pp. 1977–2008, 7 2020.

[30] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the
security of blockchain systems,” Future Generation Computer Systems,
vol. 107, pp. 841–853, 6 2020.

[31] M. R. Islam and M. M. Rashid, “A survey on blockchain security and
its impact analysis,” in 2023 9th International Conference on Computer
and Communication Engineering (ICCCE). IEEE, 2023, pp. 317–321.

[32] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to Scalability of
Blockchain: a Survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

[33] A. Hafid, A. S. Hafid, and M. Samih, “Scaling Blockchains: A
Comprehensive Survey,” IEEE Access, vol. 8, pp. 125 244–125 262,
2020.

[34] H. N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things:
A Survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–
8094, 10 2019.

[35] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.
Rehmani, “Applications of Blockchains in the Internet of Things: A
Comprehensive Survey,” pp. 1676–1717, 4 2019.

[36] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng,
“Survey on blockchain for Internet of Things,” pp. 10–29, 2 2019.

[37] L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A survey of
IoT applications in blockchain systems: Architecture, consensus, and
traffic modeling,” 2 2020.

[38] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao, “A Survey of Blockchain
Applications in Different Domains,” in ICBTA 2018: Proceedings of
the 2018 International Conference on Blockchain Technology and
Application. Association for Computing Machinery, 12 2018, pp.
17–21. [Online]. Available: https://doi.org/10.1145/3301403.3301407

[39] J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A
Survey of Blockchain Technology Applied to Smart Cities: Research
Issues and Challenges,” IEEE Communications Surveys and Tutorials,
vol. 21, no. 3, pp. 2794–2830, 7 2019.

[40] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for 5G and beyond networks: A state of the art survey,”
p. 102693, 9 2020.

[41] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated Blockchain
and Edge Computing Systems: A Survey, Some Research Issues and
Challenges,” pp. 1508–1532, 4 2019.

[42] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Blockchain and
Machine Learning for Communications and Networking Systems,”
IEEE Communications Surveys and Tutorials, vol. 22, no. 2, pp. 1392–
1431, 4 2020.

[43] K. Salah, M. H. U. Rehman, N. Nizamuddin, and A. Al-Fuqaha,
“Blockchain for AI: Review and open research challenges,” IEEE
Access, vol. 7, pp. 10 127–10 149, 2019.

[44] J. Kolb, M. Abdelbaky, R. H. Katz, and D. E. Culler, “Core Concepts,
Challenges, and Future Directions in Blockchain: A Centralized
Tutorial,” ACM Computing Surveys, vol. 53, no. 1, 2 2020. [Online].
Available: https://doi.org/10.1145/3366370

[45] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey
on Blockchain Interoperability: Past, Present, and Future Trends,”
2020. A Survey on Blockchain Interoperability: Past, Present, and
Future Trends, vol. 1, no. 1, p. 60, 2020. [Online]. Available:
https://arxiv.org/abs/2005.14282

[46] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain
from the perspectives of applications, challenges, and opportunities,”
pp. 117 134–117 151, 2019.

[47] M. Belotti, N. Bozic, G. Pujolle, and S. Secci, “A Vademecum on
Blockchain Technologies: When, Which and How,” IEEE Communi-
cations Surveys & Tutorials, pp. 1–1, 7 2019.

[48] S. Bouraga, “A taxonomy of blockchain consensus protocols: A survey
and classification framework,” Expert Systems with Applications, vol.
168, p. 114384, 2021.

[49] A. R. Sai, J. Buckley, B. Fitzgerald, and A. Le Gear, “Taxonomy of
centralization in public blockchain systems: A systematic literature
review,” Information Processing & Management, vol. 58, no. 4, p.
102584, 2021.

[50] P. Tasca and C. J. Tessone, “Taxonomy of blockchain technolo-
gies. principles of identification and classification,” arXiv preprint
arXiv:1708.04872, 2017.

[51] J. Werner, S. Frost, and R. Zarnekow, “Towards a taxonomy for
governance mechanisms of blockchain-based platforms,” 2020.

[52] F. E. Alzhrani, K. A. Saeedi, and L. Zhao, “A taxonomy for character-
izing blockchain systems,” IEEE Access, vol. 10, pp. 110 568–110 589,
2022.

[53] J. Biolchini, P. Gomes Mian, A. Candida Cruz Natali, and
G. Horta Travassos, “Systematic Review in Software Engineering,”
2005.

[54] B. Kitchenham, “Procedures for Performing Systematic Reviews,”
2004.

[55] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp. 101–
121, 7 2017. [Online]. Available: https://arxiv.org/abs/1707.02553v4

[56] S. Haber and W. S. Stornetta, “How to time-stamp a digital docu-
ment,” in Conference on the Theory and Application of Cryptography.
Springer, 1990, pp. 437–455.

[57] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in cryptology. Springer, 1983, pp. 199–203.

[58] D. L. Chaum, “World’s First Electronic Cash Payment Over Computer
Networks,” Digicash, press release, vol. 26, 1994.

[59] A. Back, “Hashcash-a denial of service counter-measure,” 2002.
[60] W. Dai, “B-Money-an anonymous, distributed electronic cash system,”

1998.
[61] G. Wood, “Ethereum: a secure decentralised generalised transaction

ledger,” 2014.
[62] R3, “R3 strory.” [Online]. Available: https://www.r3.com/history/
[63] M. Hearn, “Corda: A distributed ledger,” Corda Technical White Paper,

vol. 2016, 2016.
[64] V. Dhillon, D. Metcalf, M. Hooper, V. Dhillon, D. Metcalf, and

M. Hooper, “The Hyperledger Project,” in Blockchain Enabled Ap-
plications. Apress, 2017, pp. 139–149.

[65] V. Buterin, “A next-generation smart contract and decentralized
application platform,” Etherum, no. January, pp. 1–36, 2014. [Online].
Available: http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf

http://arxiv.org/abs/1811.03419
http://arxiv.org/abs/1811.03419
http://arxiv.org/abs/1711.03936
https://ui.adsabs.harvard.edu/abs/2020arXiv200107091S/abstract
https://doi.org/10.1145/3301403.3301407
https://doi.org/10.1145/3366370
https://arxiv.org/abs/2005.14282
https://arxiv.org/abs/1707.02553v4
https://www.r3.com/history/
http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf

[66] X. He, Y. Cui, and Y. Jiang, “An improved gossip algorithm based
on semi-distributed blockchain network,” in Proceedings - 2019 In-
ternational Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, CyberC 2019. Institute of Electrical and
Electronics Engineers Inc., 10 2019, pp. 24–27.

[67] N. Berendea, H. Mercier, E. Onica, and E. Rivière, “Fair and
Efficient Gossip in Hyperledger Fabric,” 4 2020. [Online]. Available:
http://arxiv.org/abs/2004.07060

[68] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.

[69] S. Kyun Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and
M. Bailey, “Measuring Ethereum Network Peers,” p. 14, 2018.
[Online]. Available: https://doi.org/10.1145/3278532.3278542

[70] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[71] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “Analysis of the Bitcoin UTXO set,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10958 LNCS.
Springer Verlag, 2019, pp. 78–91.

[72] I. Eyal, A. Gencer, and E. Sirer, “Bitcoin-ng: A scalable blockchain
protocol,” 13th USENIX Symposium, 2016. [Online]. Available: https://
www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

[73] P. Jovanovic, “ByzCoin: Securely Scaling Blockchains,” Hacking,
Distributed, August, 2016.

[74] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “{CHAINIAC}: Proactive software-
update transparency via collectively signed skipchains and verified
builds,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1271–1287.

[75] A. Churyumov, “Byteball: A decentralized system for storage and
transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.

[76] S. L. W. paper and u. 2015, “DagCoin: a cryptocurrency without
blocks.”

[77] A. D. Dwivedi, G. Srivastava, R. Singh, and A. Dhar Dwivedi,
“PHANTOM Protocol as the New Crypto-Democracy Big Data
and Social Media Influence View project Fuzzy based Decision
making system View project PHANTOM protocol as the new Crypto-
democracy,” Springer, vol. 11127 LNCS, pp. 499–509, 2018. [Online].
Available: https://www.researchgate.net/publication/327155886

[78] A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions
in the blockchain,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 11368 LNCS. Springer Verlag, 2019, pp. 327–
351.

[79] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 507–527.

[80] L. Baird, “THE SWIRLDS HASHGRAPH CONSENSUS ALGO-
RITHM: FAIR, FAST, BYZANTINE FAULT TOLERANCE,” Tech.
Rep., 2016.

[81] C. LeMahieu, “RaiBlocks: A feeless distributed
cryptocurrency network,” URL https://raiblocks.
net/media/RaiBlocks Whitepaper English. pdf, 2017.

[82] T.-Y. Chen, W.-N. Huang, P.-C. Kuo, H. Chung, and T.-W. Chao,
“DEXON: A Highly Scalable, Decentralized DAG-Based Consensus
Algorithm,” arXiv preprint arXiv:1811.07525, 2018.

[83] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: A Fast and
Scalable Cryptocurrency Protocol.” IACR Cryptology ePrint Archive,
vol. 2016, p. 1159, 2016.

[84] Y. Sompolinsky and A. Zohar, “Phantom, Ghostdag,” 2020.
[85] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain

protocols,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 8975. Springer Verlag, 2015, pp. 528–547.

[86] C. R3, “Corda Documentaion.” [Online]. Available: https://docs.corda.
net/docs/corda-os/4.4/node-database-tables.html

[87] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, and Y. Manevich,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–15.

[88] I. Grigg, “Eos-an introduction,” White paper.
https://whitepaperdatabase. com/eos-whitepaper, 2017.

[89] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” white paper,
BigChainDB, 2016.

[90] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, vol. 5, no. 8, 2014.

[91] S. Thomas and E. Schwartz, “A protocol for interledger payments,”
URL https://interledger. org/interledger. pdf, 2015.

[92] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, 2016.

[93] S. Brakeville and P. Bhargav, “Blockchain ba-
sics: Glossary and use cases,” 2016. [Online].
Available: https://developer.ibm.com/technologies/blockchain/tutorials/
cl-blockchain-basics-glossary-bluemix-trs/

[94] Jpmorganchase, “GitHub - jpmorganchase/constellation: Peer-to-
peer encrypted message exchange.” [Online]. Available: https:
//github.com/jpmorganchase/constellation

[95] Tessera, “GitHub - jpmorganchase/tessera: Tessera - Enterprise
Implementation of Quorum’s transaction manager.” [Online]. Available:
https://github.com/jpmorganchase/tessera

[96] Segwit, “bips/bip-0009.mediawiki at master · bitcoin/bips ·
GitHub.” [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0009.mediawiki

[97] E. Lombrozo, J. Lau, and P. Wuille, “Segregated Witness (Consensus
layer),” 2015. [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0141.mediawiki

[98] B. r. Network, “The Bitcoin Relay Network.” [Online]. Available:
https://bitcoinrelaynetwork.org/

[99] S. BASU, I. EYAL, and E. G. SIRER, “FLACON,” p. 2016. [Online].
Available: https://www.falcon-net.org/

[100] U. Klarman, S. Basu, A. Kuzmanovic, and E. Gün Sirer, “bloXroute: A
Scalable Trustless Blockchain Distribution Network WHITEPAPER,”
Tech. Rep. [Online]. Available: https://medium.com/@bloxroutelabs/
bloxroute-business-model-nov-2019-bb1b2f6d0bde,

[101] A. Cullen, P. Ferraro, C. King, and R. Shorten, “Distributed
Ledger Technology for IoT: Parasite Chain Attacks,” IEEE Internet
of Things Journal, vol. 7, no. 8, pp. 7112–7122, 3 2019.
[Online]. Available: http://arxiv.org/abs/1904.00996http://dx.doi.org/
10.1109/JIOT.2020.2983401

[102] Z. Team, “The ZILLIQA technical whitepaper,” Retrieved September,
vol. 16, p. 2019, 2017.

[103] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016.

[104] b. l. Est., “THE RAIDEN NETWORK.” [Online]. Available:
https://github.com/raiden-network/raiden

[105] IBM, “Blockcchain- Entreprise blockchain solutions & Services.”
[Online]. Available: https://www.ibm.com/blockchain

[106] Microsoft, “Azure Blockchain Service.” [Online]. Available: https:
//azure.microsoft.com/en-us/services/blockchain-service/

[107] Y. Chen, J. Gu, S. Chen, S. Huang, and X. S. Wang, “A Full-Spectrum
Blockchain-as-a-Service for Business Collaboration,” in 2019 IEEE
International Conference on Web Services (ICWS). IEEE, 2019, pp.
219–223.

[108] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity
in bitcoin using p2p network traffic,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 469–
485.

[109] I. D. Mastan and S. Paul, “A new approach to deanonymization of
unreachable bitcoin nodes,” in International Conference on Cryptology
and Network Security. Springer, 2017, pp. 277–298.

[110] Deterministic wallet, “Deterministic wallet.” [Online]. Available:
https://en.bitcoin.it/wiki/Deterministic wallet

[111] S. Noether, “Ring SIgnature Confidential Transactions for Monero.”
IACR Cryptology ePrint Archive, vol. 2015, p. 1098, 2015.

[112] Zcash, “Zcash is a privacy-protecting, digital currency built on strong
science.” [Online]. Available: https://z.cash/

[113] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic
Span Programs and Succinct NIZKs without PCPs.” Springer
Berlin Heidelberg, 2013, pp. 626–645. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-38348-9 37

[114] J. Barcelo, “User Privacy in the Public Bitcoin Blockchain,” vol. 6,
no. 1, 2007.

http://arxiv.org/abs/2004.07060
https://doi.org/10.1145/3278532.3278542
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.researchgate.net/publication/327155886
https://docs.corda.net/docs/corda-os/4.4/node-database-tables.html
https://docs.corda.net/docs/corda-os/4.4/node-database-tables.html
https://developer.ibm.com/technologies/blockchain/tutorials/cl-blockchain-basics-glossary-bluemix-trs/
https://developer.ibm.com/technologies/blockchain/tutorials/cl-blockchain-basics-glossary-bluemix-trs/
https://github.com/jpmorganchase/constellation
https://github.com/jpmorganchase/constellation
https://github.com/jpmorganchase/tessera
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoinrelaynetwork.org/
https://www.falcon-net.org/
https://medium.com/@bloxroutelabs/bloxroute-business-model-nov-2019-bb1b2f6d0bde,
https://medium.com/@bloxroutelabs/bloxroute-business-model-nov-2019-bb1b2f6d0bde,
http://arxiv.org/abs/1904.00996 http://dx.doi.org/10.1109/JIOT.2020.2983401
http://arxiv.org/abs/1904.00996 http://dx.doi.org/10.1109/JIOT.2020.2983401
https://github.com/raiden-network/raiden
https://www.ibm.com/blockchain
https://azure.microsoft.com/en-us/services/blockchain-service/
https://azure.microsoft.com/en-us/services/blockchain-service/
https://en.bitcoin.it/wiki/Deterministic_wallet
https://z.cash/
http://link.springer.com/10.1007/978-3-642-38348-9_37
http://link.springer.com/10.1007/978-3-642-38348-9_37

[115] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security. Springer, 2014, pp. 345–364.

[116] A. Poelstra, “Mimblewimble,” 2016.
[117] Grin, “The Best Automated Trading Robots ? ? ? ?” [Online].

Available: https://grin-tech.org/
[118] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards

Privacy in a Smart Contract World.” IACR Cryptology ePrint Archive,
vol. 2019, p. 191, 2019.

[119] J. Xin, P. Huang, L. Chen, X. Lai, X. Zhang, W. Li, and Y. Wang,
“WaterCarver: Anonymous Confidential Blockchain System based on
Account Model.”

[120] Z. J. Williamson, “The aztec protocol,” URL: https://github.
com/AztecProtocol/AZTEC, 2018.

[121] L. Lamport, “Proving the Correctness of Multiprocess Programs,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
1977.

[122] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10211 LNCS. Springer Verlag, 2017,
pp. 643–673.

[123] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 4 1988.

[124] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming, 1982. [Online].
Available: http://dl.acm.org/citation.cfm?id=357176

[125] M. Hirt and U. Maurer, “Player simulation and general adversary
structures in perfect multiparty computation,” Journal of Cryptology,
vol. 13, no. 1, pp. 31–60, 4 2000.

[126] I. Abraham and D. Malkhi, “The blockchain consensus layer and BFT,”
Bulletin of EATCS, vol. 3, no. 123, 2017.

[127] BitFury Group and J. Garzik, “Public versus Private Blockchains.
Part 1: Permissionless Blockchains,” pp. 1–23, 2015. [On-
line]. Available: http://bitfury.com/content/5-white-papers-research/
public-vs-private-pt1-1.pdf

[128] R. M. Nadir, “Comparative study of permissioned blockchain solutions
for enterprises,” in 2019 International Conference on Innovative Com-
puting (ICIC). IEEE, 2019, pp. 1–6.

[129] D. Antoine, E. Ben-Hamida, D. Leporini, and G. Memmi, “Asymp-
totic Performance Analysis of Blockchain Protocols,” arXiv preprint
arXiv:1902.04363, 2019.

[130] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[131] D. Ongaro and J. Ousterhout, In Search of an Understandable
Consensus Algorithm. [Online]. Available: https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro

[132] J. Clow and Z. Jiang, “A Byzantine Fault Tolerant Raft,” 2017.
[133] C. Copeland and H. Zhong, “Tangaroa: a byzantine fault tolerant raft,”

2016.
[134] H. Moniz, “The Istanbul BFT Consensus Algorithm,” arXiv preprint

arXiv:2002.03613, 2020.
[135] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and

V. Sassone, “PBFT vs proof-of-authority: Applying the CAP theorem
to permissioned blockchain,” 2018.

[136] T. PARITY, “Aura - authority round consensus.” [Online]. Available:
https://openethereum.github.io/wiki/Aura

[137] C. Consensus, “Clique Consensus.” [Online]. Available: https:
//github.com/ethereum/EIPs/issues/225

[138] V. Gramoli, “The Red Belly Blockchain,” personal Communication,
Facebook, USA., 2017.

[139] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 31–
42.

[140] C. Cachin and J. A. Poritz, “Secure intrusion-tolerant replication on
the Internet,” in Proceedings International Conference on Dependable
Systems and Networks. IEEE, 2002, pp. 167–176.

[141] A. Mostefaoui, M. Raynal, and F. Tronel, “The best of both worlds:
A hybrid approach to solve consensus,” in Proceeding International
Conference on Dependable Systems and Networks. DSN 2000. IEEE,
2000, pp. 513–522.

[142] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[143] C. Berger and H. P. Reiser, “Scaling Byzantine Consensus: A Broad
Analysis,” 2018. [Online]. Available: https://doi.org/10.1145/3284764.
3284767.

[144] J. R. Douceur, “The sybil attack,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 2429. Springer Verlag, 2002, pp. 251–
260.

[145] C. Dwork, M. Naor, and H. Wee, “Pebbling and proofs of work,” in
Annual International Cryptology Conference. Springer, 2005, pp. 37–
54.

[146] J. Tromp, “Cuckoo cycle: a memory bound graph-theoretic proof-of-
work,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 49–62.

[147] L. Ren and S. Devadas, “Bandwidth hard functions for ASIC resis-
tance,” in Theory of Cryptography Conference. Springer, 2017, pp.
466–492.

[148] C. Percival, “Stronger key derivation via sequential memory-hard
functions,” 2009.

[149] S. King, “Primecoin: Cryptocurrency with prime number proof-of-
work,” July 7th, vol. 1, no. 6, 2013.

[150] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,” Ledger, vol. 2, pp.
1–30, 2017.

[151] N. Van Saberhagen, “CryptoNote v 2.0,” 2013.
[152] E. Wiki, “Introduction to Ethereum Mining.” [Online]. Available:

https://github.com/ethereum/wiki/wiki/Mining
[153] Nicehash, “DAG size limit problem for 4GB

GPUs.” [Online]. Available: https://www.nicehash.com/blog/post/
dag-size-limit-problem-for-4gb-gpus

[154] P. Ranjan, “Ethereum Core Devs Meeting 81
Notes.” [Online]. Available: https://github.com/ethereum/
pm/blob/25bd9c2223635c3c3c5f4643fd924f6b44db62a6/
AllCoreDevsMeetings/Meeting81.md

[155] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” self-published paper, August, vol. 19, 2012.

[156] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[157] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
10821 LNCS. Springer Verlag, 2018, pp. 66–98.

[158] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros genesis: Composable proof-of-stake blockchains with dy-
namic availability,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 913–930.

[159] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros chronos: Permissionless clock synchronization via proof-
of-stake,” Tech. Rep., 2019.

[160] NTP, “Network Time Protocol.” [Online]. Available: http://www.ntp.
org/

[161] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” in In-
ternational Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 23–41.

[162] R. Pass and E. Shi, “The sleepy model of consensus,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10625 LNCS.
Springer Verlag, 2017, pp. 380–409.

[163] F. Schuh and D. Larimer, “Bitshares 2.0: general overview,”
accessed June-2017.[Online]. Available: http://docs. bitshares.
org/downloads/bitshares-general. pdf, 2017.

[164] E. Kogias, P. Jovanovic, N. Gailly, and I. Khoffi,
“Enhancing bitcoin security and performance with strong
consistency via collective signing,” 25th USENIX Security, 2016.
[Online]. Available: https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16 paper kokoris-kogias.pdf

[165] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities” honest or bust”

https://grin-tech.org/
http://dl.acm.org/citation.cfm?id=357176
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://openethereum.github.io/wiki/Aura
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://doi.org/10.1145/3284764.3284767.
https://doi.org/10.1145/3284764.3284767.
https://github.com/ethereum/wiki/wiki/Mining
https://www.nicehash.com/blog/post/dag-size-limit-problem-for-4gb-gpus
https://www.nicehash.com/blog/post/dag-size-limit-problem-for-4gb-gpus
https://github.com/ethereum/pm/blob/25bd9c2223635c3c3c5f4643fd924f6b44db62a6/All Core Devs Meetings/Meeting 81.md
https://github.com/ethereum/pm/blob/25bd9c2223635c3c3c5f4643fd924f6b44db62a6/All Core Devs Meetings/Meeting 81.md
https://github.com/ethereum/pm/blob/25bd9c2223635c3c3c5f4643fd924f6b44db62a6/All Core Devs Meetings/Meeting 81.md
http://www.ntp.org/
http://www.ntp.org/
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf

with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP). Ieee, 2016, pp. 526–545.

[166] G. A. Pierro and R. Tonelli, “Can solana be the solution to the
blockchain scalability problem?” in 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2022, pp. 1219–1226.

[167] X. Li, X. Wang, T. Kong, J. Zheng, and M. Luo, “From bitcoin
to solana–innovating blockchain towards enterprise applications,” in
International Conference on Blockchain. Springer, 2021, pp. 74–100.

[168] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling Byzantine Agreements for Cryptocurrencies,” in SOSP
2017 - Proceedings of the 26th ACM Symposium on Operating Systems
Principles. Association for Computing Machinery, Inc, 10 2017, pp.
51–68.

[169] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155–183, 7 2019.

[170] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2018, pp. 3–33.

[171] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[172] E. Buchman, “Buchman, E. (2016). Tendermint: Byzantine fault toler-
ance in the age of blockchains.Tendermint: Byzantine fault tolerance
in the age of blockchains,” 2016.

[173] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[174] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the Libra Blockchain,” 2019.

[175] IOTA, “Shimmer IOTA: la solution du coordicide.” [Online]. Available:
https://www.iota-guide.com/module-shimmer/

[176] S. Popov, H. Moog, D. Camargo, A. Capossele, V. Dimitrov, A. Gal,
A. Greve, B. Kusmierz, S. Mueller, A. Penzkofer, O. Saa, W. Sanders,
L. Vigneri, W. Welz, and V. Attias, “The Coordicide,” Tech. Rep., 2020.

[177] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9229. Springer Verlag, 2015, pp. 163–
180.

[178] Stellar, “Intuitive Stellar Consensus Protocol - Developers
Blog.” [Online]. Available: https://www.stellar.org/developers-blog/
intuitive-stellar-consensus-protocol

[179] D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32,
2015.

[180] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[181] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling Blockchain
Innovations with Pegged Sidechains,” pp. 1–25, 2014. [Online].
Available: http://www.blockstream.com/sidechains.pdf://www.bitcoin.
fr/public/divers/docs/sidechains.pdf

[182] G. Greenspan, “Multichain private blockchain-white paper,” URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf,
2015.

[183] S-tikhomirov, “GitHub - s-tikhomirov/smart-contract-languages: A
curated collection of resources on smart contract programming
languages.” [Online]. Available: https://github.com/s-tikhomirov/
smart-contract-languages

[184] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An adaptive gas cost mechanism for ethereum to defend
against under-priced DoS attacks,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10701 LNCS, pp. 3–24, 2017.

[185] D. Perez and B. Livshits, “Broken Metre: Attacking Resource Metering
in EVM,” 2 2020.

[186] B. Script, “bitcoin/script.h at 0.19 · bitcoin/bitcoin · GitHub.” [Online].
Available: https://github.com/bitcoin/bitcoin/blob/0.19/src/script/script.
h

[187] IVY, “GitHub - ivy-lang/ivy-bitcoin: A high-level language and
IDE for writing Bitcoin smart contracts.” [Online]. Available:
https://github.com/ivy-lang/ivy-bitcoin

[188] blockstream, “GitHub - ElementsProject/simplicity: Simplicity
is a blockchain programming language designed as an
alternative to Bitcoin script.” [Online]. Available: https:
//github.com/ElementsProject/simplicity

[189] stefanolande, “GitHub - bitml-lang/bitml-compiler: Compiler
for BitML.” [Online]. Available: https://github.com/bitml-lang/
bitml-compiler

[190] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park, “Formal model
and policy specification of usage control,” ACM Transactions on
Information and System Security, vol. 8, no. 4, pp. 351–387, 11 2005.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1108906.
1108908

[191] N. Mining, “Rootstock (RSK): Smart contracts on Bitcoin. Medium,”
2018.

[192] Stellar, “Stellar Smart Contracts — Stellar Develop-
ers.” [Online]. Available: https://www.stellar.org/developers/guides/
walkthroughs/stellar-smart-contracts.html

[193] S. Developpers, “Horizon Reference Overview — Stellar Developers.”
[Online]. Available: https://www.stellar.org/developers/reference/

[194] Nxter, “IGNIS — NXTER.ORG.” [Online]. Available: https://www.
nxter.org/understanding-ignis/#smarttransactions

[195] NeoVM, “NeoVM.” [Online]. Available: https://docs.neo.org/docs/
en-us/basic/technology/neovm.html

[196] ——, “Smart Contract Writing Limitations.” [Online]. Available:
https://docs.neo.org/docs/en-us/sc/write/limitation.html

[197] Plutus, “GitHub - input-output-hk/plutus: The Plutus language
implementation and tools.” [Online]. Available: https://github.com/
input-output-hk/plutus/

[198] Z. Team, “GitHub - Zilliqa/scilla: Scilla - A Smart Contract
Intermediate Level Language.” [Online]. Available: https://github.com/
Zilliqa/scilla

[199] H. Fabric, “Smart Contract Processing — hyperledger-fabricdocs
master documentation.” [Online]. Available: https://hyperledger-fabric.
readthedocs.io/en/release-2.0/developapps/smartcontract.html

[200] startis academy, “Welcome to Stratis Academy — Stratis Academy
documentation.” [Online]. Available: https://academy.stratisplatform.
com/

[201] Counterparty, “Counterparty.” [Online]. Available: https://counterparty.
io/

[202] Drivechain, “Projects — Drivechain: Peer-to-Peer Bitcoin Sidechains.”
[Online]. Available: http://www.drivechain.info/projects/index.html

[203] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, pp. 1–47, 2017.

[204] J. Poon and O. Team, “OmiseGo Decentralized Exchange and
Payments Platform,” White paper. https://whitepaperdatabase.
com/omisego-omg-whitepaper, 2017.

[205] Loom, “Loom Network – Production-Ready, Multichain Interop
Platform for Serious Dapp Developers.” [Online]. Available: https:
//loomx.io/

[206] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, pp. 89 948–
89 966, 2019.

[207] V. Buterin, “Chain interoperability,” R3 Research Paper, 2016.
[208] Catus, “GitHub - hyperledger/cactus: Hyperledger Cactus is a new

approach to the blockchain interoperability problem.” [Online].
Available: https://github.com/hyperledger/cactus

[209] Polkadot, “Validator · Polkadot Wiki.” [Online]. Available: https:
//wiki.polkadot.network/docs/en/maintain-validator

[210] Parachain, “Bridges · Polkadot Wiki.” [Online]. Available: https:
//wiki.polkadot.network/docs/en/learn-bridges

[211] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,”
URL https://cosmos. network/whitepaper, 2016.

[212] IBC, “ics/ibc at master · cosmos/ics · GitHub.” [Online]. Available:
https://github.com/cosmos/ics/tree/master/ibc

[213] Waves, “Open platform for Web 3.0 applications.” [Online]. Available:
https://wavesprotocol.org/

[214] Wanchain, “Wanchain 4.0 T-Bridge Framework Tech Explainer:
Part 1 — General Overview - Wanchain.” [Online]. Available:
shorturl.at/sZ145

[215] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, pp. 89 948–
89 966, 2019.

https://www.iota-guide.com/module-shimmer/
https://www.stellar.org/developers-blog/intuitive-stellar-consensus-protocol
https://www.stellar.org/developers-blog/intuitive-stellar-consensus-protocol
http://www.blockstream.com/sidechains.pdf://www.bitcoin.fr/public/divers/docs/sidechains.pdf
http://www.blockstream.com/sidechains.pdf://www.bitcoin.fr/public/divers/docs/sidechains.pdf
https://github.com/s-tikhomirov/smart-contract-languages
https://github.com/s-tikhomirov/smart-contract-languages
https://github.com/bitcoin/bitcoin/blob/0.19/src/script/script.h
https://github.com/bitcoin/bitcoin/blob/0.19/src/script/script.h
https://github.com/ivy-lang/ivy-bitcoin
https://github.com/ElementsProject/simplicity
https://github.com/ElementsProject/simplicity
https://github.com/bitml-lang/bitml-compiler
https://github.com/bitml-lang/bitml-compiler
http://portal.acm.org/citation.cfm?doid=1108906.1108908
http://portal.acm.org/citation.cfm?doid=1108906.1108908
https://www.stellar.org/developers/guides/walkthroughs/stellar-smart-contracts.html
https://www.stellar.org/developers/guides/walkthroughs/stellar-smart-contracts.html
https://www.stellar.org/developers/reference/
https://www.nxter.org/understanding-ignis/#smarttransactions
https://www.nxter.org/understanding-ignis/#smarttransactions
https://docs.neo.org/docs/en-us/basic/technology/neovm.html
https://docs.neo.org/docs/en-us/basic/technology/neovm.html
https://docs.neo.org/docs/en-us/sc/write/limitation.html
https://github.com/input-output-hk/plutus/
https://github.com/input-output-hk/plutus/
https://github.com/Zilliqa/scilla
https://github.com/Zilliqa/scilla
https://hyperledger-fabric.readthedocs.io/en/release-2.0/developapps/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/developapps/smartcontract.html
https://academy.stratisplatform.com/
https://academy.stratisplatform.com/
https://counterparty.io/
https://counterparty.io/
http://www.drivechain.info/projects/index.html
https://loomx.io/
https://loomx.io/
https://github.com/hyperledger/cactus
https://wiki.polkadot.network/docs/en/maintain-validator
https://wiki.polkadot.network/docs/en/maintain-validator
https://wiki.polkadot.network/docs/en/learn-bridges
https://wiki.polkadot.network/docs/en/learn-bridges
https://github.com/cosmos/ics/tree/master/ibc
https://wavesprotocol.org/
shorturl.at/sZ145

[216] Randaow, “GitHub - randao/randao: RANDAO: A DAO working as
RNG of Ethereum.” [Online]. Available: https://github.com/randao/
randao

[217] Corda, “Deterministic JVM — Corda OS 4.4 — Corda
Documentation.” [Online]. Available: https://docs.corda.net/docs/
corda-os/4.4/key-concepts-djvm.html

[218] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
Crier: An Authenticated Data Feed for Smart Contracts,” dl.acm.org,
vol. 24-28-Octo, pp. 270–282, 10 2016. [Online]. Available:
http://dx.doi.org/10.1145/2976749.2978326

[219] Provable, “Provable - blockchain oracle service, enabling data-rich
smart contracts.” [Online]. Available: https://provable.xyz/

[220] GlobalPlatform and Inc, “GlobalPlatform Security Task Force Root of
Trust Definitions and Requirements,” Tech. Rep., 2017.

[221] G. Team, “Gnosis-whitepaper,” URL: https://gnosis.
pm/resources/default/pdf/gnosis whitepaper. pdf, 2017.

[222] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander,
“Augur: a Decentralized Oracle and Prediction Market Platform,”
Tech. Rep., 2018. [Online]. Available: https://www.wunderground.
com/history/airport/KSFO/2018/4/10/

[223] M. Abramowicz and M. T. Henderson, “Prediction markets for corpo-
rate governance,” Notre Dame L. Rev., vol. 82, p. 1343, 2006.

[224] Dai, “The Dai Stablecoin System Whitepaper,” Tech. Rep. [Online].
Available: https://makerdao.com/

[225] Maker, “Maker - Feeds price feed oracles.” [Online]. Available:
https://developer.makerdao.com/feeds/

[226] Hyperledger Composer, “Calling external HTTP or REST services
— Hyperledger Composer.” [Online]. Available: https://hyperledger.
github.io/composer/v0.19/integrating/call-out

[227] Aeternity, “æternity - a blockchain for scalable, secure and
decentralized æpps.” [Online]. Available: https://aeternity.com/

[228] Blog, “Blockchain Oracles - æternity blog.” [Online]. Available:
https://blog.aeternity.com/blockchain-oracles-657f134ffbc0

[229] X. Jiang, N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo,
and T. Yu, “{EOSAFE}: Security Analysis of {EOSIO} Smart
Contracts,” usenix.org. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/he-ningyu

[230] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing
Safety of Smart Contracts.” in NDSS, 2018, pp. 1–12.

[231] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh,
“Empirical Vulnerability Analysis of Automated Smart Contracts
Security Testing on Blockchains,” Tech. Rep., 2018. [Online].
Available: https://doi.org/xxxx

[232] T. Hewa, M. Ylianttila, and M. Liyanage, “Survey on blockchain based
smart contracts: Applications, opportunities and challenges,” Journal of
Network and Computer Applications, vol. 177, p. 102857, 3 2021.

[233] S. Aggarwal and N. Kumar, “Blockchain 2.0: Smart contracts,” Ad-
vances in Computers, vol. 121, pp. 301–322, 1 2021.

[234] T. M. Hewa, Y. Hu, M. Liyanage, S. S. Kanhare, and M. Ylianttila,
“Survey on Blockchain-Based Smart Contracts: Technical Aspects and
Future Research,” IEEE Access, vol. 9, pp. 87 643–87 662, 2021.

[235] L. Ante, “Smart contracts on the blockchain – A bibliometric analysis
and review,” Telematics and Informatics, vol. 57, p. 101519, 3 2021.

[236] E. Blog, “CRITICAL UPDATE Re: DAO Vulnerability — Ethereum
Foundation Blog.” [Online]. Available: https://blog.ethereum.org/2016/
06/17/critical-update-re-dao-vulnerability/

[237] P. Zhang, F. Xiao, and X. Luo, “SolidityCheck : Quickly Detecting
Smart Contract Problems Through Regular Expressions,” Tech. Rep.

[238] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 67–82.

[239] ChainSecurity, “Security Audit of WBTC DAO’s Smart Contracts,”
Tech. Rep., 2018. [Online]. Available: https://chainsecurity.com

[240] C. Ferreira Torres, M. Steichen, R. Norvill, B. Fiz Pontiveros, and
H. Jonker, “ÆGIS: Shielding Vulnerable Smart Contracts Against At-
tacks,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security (ASIA CCS’20), October 5–9, 2020,
Taipei, Taiwan, 2020.

[241] F. Schrans, D. Hails, A. Harkness, S. Drossopoulou, and S. Eisenbach,
“Flint for Safer Smart Contracts,” arXiv preprint arXiv:1904.06534,
2019.

[242] SOLIDITYX, “SolidityX - Secure-by-default superset of Solidity.”
[Online]. Available: https://solidityx.org/

[243] J. Pettersson and R. Edström, “Safer smart contracts through type-
driven development Using dependent and polymorphic types for safer
develop-ment of smart contracts,” Tech. Rep.

[244] E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of functional program-
ming, vol. 23, no. 5, pp. 552–593, 2013.

[245] KEVM, “KEVM: A Complete Semantics of the Ethereum Virtual Ma-
chine - FSL.” [Online]. Available: http://fsl.cs.illinois.edu/index.php/
KEVM: A Complete Semantics of the Ethereum Virtual Machine

[246] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti,
“Blockchain and trusted computing: Problems, pitfalls, and a solution
for hyperledger fabric,” arXiv preprint arXiv:1805.08541, 2018.

[247] Nick Johnson, “upgradeable.sol · GitHub.” [Online]. Available:
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f

[248] Manuel Araoz, “Proxy Libraries in Solidity – OpenZep-
pelin blog.” [Online]. Available: https://blog.openzeppelin.com/
proxy-libraries-in-solidity-79fbe4b970fd/

[249] Kadena, “Kadena-PactWhitepaper — Kadena.” [Online]. Available:
https://www.kadena.io/kadena-pactwhitepaper

[250] GS1, “Blockchain — GS1.” [Online]. Available: https://www.gs1.org/
standards/blockchain

[251] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts,” in 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 5 2016, pp. 839–858. [Online]. Available:
http://ieeexplore.ieee.org/document/7546538/

[252] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,”
arXiv preprint arXiv:1804.05141, 2018.

[253] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized
Computation Platform with Guaranteed Privacy,” pp. 1–14, 2015.
[Online]. Available: http://enigma.media.mit.edu/enigma full.pdf:
//arxiv.org/abs/1506.03471

[254] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel, “Lessons
Learned from Implementing a Privacy-Preserving Smart Contract in
Ethereum,” in 2018 9th IFIP International Conference on New Tech-
nologies, Mobility and Security, NTMS 2018 - Proceedings, vol. 2018-
Janua. Institute of Electrical and Electronics Engineers Inc., 3 2018,
pp. 1–5.

[255] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, 2022.

[256] “EOS Token Contract and Distribution Chart.”
[Online]. Available: https://etherscan.io/token/tokenholderchart/
0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0

[257] “GitHub - ethereum/web3.js: Ethereum JavaScript API.” [Online].
Available: https://github.com/ethereum/web3.js/

[258] Camel-web3j, “camel/web3j-component.adoc at mas-
ter · apache/camel · GitHub.” [Online].
Available: https://github.com/apache/camel/blob/master/components/
camel-web3j/src/main/docs/web3j-component.adoc

[259] Infura, “Ethereum API — IPFS API Gateway — ETH Nodes as a
Service — Infura.” [Online]. Available: https://infura.io/

[260] Metamask, “MetaMask.” [Online]. Available: https://metamask.io/
[261] Eos Java, “EOSIO SDK for Java - EOSIO.” [Online]. Available:

https://eos.io/build-on-eosio/eosio-sdk-for-java/
[262] P. Eos, “GitHub - Netherdrake/py-eos-api: Unofficial Wrapper

for EOS API (eosd) for Python 3.6+.” [Online]. Available:
https://github.com/Netherdrake/py-eos-api

[263] S. E. Wrapper, “GitHub - EOSEssentials/Scala-API-Wrapper: A
Scala wrapper for EOS RPC API.” [Online]. Available: https:
//github.com/EOSEssentials/Scala-API-Wrapper

[264] P. Xiao, “Java programming for blockchain applications,” 2019.
[265] A.-K. Wickert, L. Baumgärtner, F. Breitfelder, and M. Mezini, “Python

crypto misuses in the wild,” in Proceedings of the 15th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2021, pp. 1–6.

[266] R. Li and E. Unger, “Security issues with tcp/ip,” ACM SIGAPP
Applied Computing Review, vol. 3, no. 1, pp. 6–13, 1995.

[267] K. Wu, “An Empirical Study of Blockchain-based Decentralized Ap-
plications,” arXiv preprint arXiv:1902.04969, 2019.

[268] D. Das, P. Bose, N. Ruaro, C. Kruegel, G. Vigna, and G.-V. Vigna,
“Understanding security Issues in the NFT Ecosystem,” arxiv.org,
2022. [Online]. Available: https://arxiv.org/abs/2111.08893

https://github.com/randao/randao
https://github.com/randao/randao
https://docs.corda.net/docs/corda-os/4.4/key-concepts-djvm.html
https://docs.corda.net/docs/corda-os/4.4/key-concepts-djvm.html
http://dx.doi.org/10.1145/2976749.2978326
https://provable.xyz/
https://www.wunderground.com/history/airport/KSFO/2018/4/10/
https://www.wunderground.com/history/airport/KSFO/2018/4/10/
https://makerdao.com/
https://developer.makerdao.com/feeds/
https://hyperledger.github.io/composer/v0.19/integrating/call-out
https://hyperledger.github.io/composer/v0.19/integrating/call-out
https://aeternity.com/
https://blog.aeternity.com/blockchain-oracles-657f134ffbc0
https://www.usenix.org/conference/usenixsecurity21/presentation/he-ningyu
https://www.usenix.org/conference/usenixsecurity21/presentation/he-ningyu
https://doi.org/xxxx
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://chainsecurity.com
https://solidityx.org/
http://fsl.cs.illinois.edu/index.php/KEVM:_A_Complete_Semantics_of_the_Ethereum_Virtual_Machine
http://fsl.cs.illinois.edu/index.php/KEVM:_A_Complete_Semantics_of_the_Ethereum_Virtual_Machine
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f
https://blog.openzeppelin.com/proxy-libraries-in-solidity-79fbe4b970fd/
https://blog.openzeppelin.com/proxy-libraries-in-solidity-79fbe4b970fd/
https://www.kadena.io/kadena-pactwhitepaper
https://www.gs1.org/standards/blockchain
https://www.gs1.org/standards/blockchain
http://ieeexplore.ieee.org/document/7546538/
http://enigma.media.mit.edu/enigma_full.pdf://arxiv.org/abs/1506.03471
http://enigma.media.mit.edu/enigma_full.pdf://arxiv.org/abs/1506.03471
https://etherscan.io/token/tokenholderchart/0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0
https://etherscan.io/token/tokenholderchart/0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0
https://github.com/ethereum/web3.js/
https://github.com/apache/camel/blob/master/components/camel-web3j/src/main/docs/web3j-component.adoc
https://github.com/apache/camel/blob/master/components/camel-web3j/src/main/docs/web3j-component.adoc
https://infura.io/
https://metamask.io/
https://eos.io/build-on-eosio/eosio-sdk-for-java/
https://github.com/Netherdrake/py-eos-api
https://github.com/EOSEssentials/Scala-API-Wrapper
https://github.com/EOSEssentials/Scala-API-Wrapper
https://arxiv.org/abs/2111.08893

[269] G. Wang and M. Nixon, “Sok: Tokenization on blockchain,” in Pro-
ceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing Companion, 2021, pp. 1–9.

[270] DAPP, “Dapp.com 2019 Annual Dapp Market Report By
Dapp.com.” [Online]. Available: https://www.dapp.com/article/
dapp-com-2019-annual-dapp-market-report

[271] M. Kim, Y. Kwon, and Y. Kim, “Is Stellar as secure as you think?” in
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2019, pp. 377–385.

[272] C. Nguyen, D. Hoang, D. Nguyen, D. N. I. . . . , and u. 2019, “Proof-
of-stake consensus mechanisms for future blockchain networks: funda-
mentals, applications and opportunities,” ieeexplore.ieee.org. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8746079/

[273] Coindesk, “Debate 2017. No Incentive? Algorand Blockchain
Sparks Debate at Cryptography Event.” [Online]. Available: https:
//www.google.com/amp/s/www.coindesk.com/

[274] E. Voting, “EOS Voting Pattern Analysis.” [Online]. Avail-
able: https://eosauthority.com/producers relation?TB iframe=true&
width=1367.1&height=678.6

[275] Y. Kwon, J. Liu, M. Kim, D. Song, and Y. Kim, “Impossibility of full
decentralization in permissionless blockchains,” in Proceedings of the
1st ACM Conference on Advances in Financial Technologies, 2019, pp.
110–123.

[276] Bips, “bips/bip-0009.mediawiki at master · bitcoin/bips ·
GitHub.” [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0009.mediawiki

[277] H. Fabric, “Procedure for Upgrading from v1.0.x
— hyperledger-fabricdocs master documentation.” [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/
upgrade to one point one.html

[278] V. Buterin, “Ethereum DEV plan,” p. 35, 2014. [Online]. Available:
https://www.ethereum.org/pdfs/Ethereum-Dev-Plan-preview.pdf

[279] S. Wang, R. Pei, and Y. Zhang, “EIDM: A Ethereum-Based Cloud
User Identity Management Protocol,” IEEE Access, vol. 7, pp. 115 281–
115 291, 8 2019.

[280] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access
Management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1184–1195, 4 2018.

[281] P. GIULIO, “Slock.it to Introduce Smart Locks Linked to
Smart Ethereum Contracts, Decentralize the Sharing Economy,”
11 2015. [Online]. Available: https://bitcoinmagazine.com/articles/
slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719

[282] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain
for data sharing and collaboration in mobile healthcare applications,” in
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC, vol. 2017-Octob. Institute of Electrical and
Electronics Engineers Inc., 2 2018, pp. 1–5.

[283] Shipchain, “The ShipChain Ecosystem · Shipchain.” [Online].
Available: https://docs.shipchain.io/docs/intro.html

[284] S. Loss, N. Cacho, J. M. D. Valle, and F. Lopes, “Orthus: A blockchain
platform for smart cities,” in 5th IEEE International Smart Cities
Conference, ISC2 2019. Institute of Electrical and Electronics
Engineers Inc., 10 2019, pp. 212–217.

[285] M. B. Weiss, K. Werbach, D. C. Sicker, and C. E.
Bastidas, “On the application of blockchains to spectrum
management,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 5, no. 2, pp. 193–205, 6
2019. [Online]. Available: https://experts.syr.edu/en/publications/
on-the-application-of-blockchains-to-spectrum-management

[286] R. Khalid, N. Javaid, A. Almogren, M. U. Javed, S. Javaid, and
M. Zuair, “A Blockchain-Based Load Balancing in Decentralized
Hybrid P2P Energy Trading Market in Smart Grid,” IEEE Access,
vol. 8, pp. 47 047–47 062, 2020.

[287] J. D. Harris and B. Waggoner, “Decentralized and collaborative AI on
blockchain,” in Proceedings - 2019 2nd IEEE International Conference
on Blockchain, Blockchain 2019. Institute of Electrical and Electronics
Engineers Inc., 7 2019, pp. 368–375.

[288] B. Bellaj, A. Ouaddah, N. Crespi, A. Mezrioui, and E. Bertin, “Gb-
trust: Leveraging edge attention in graph neural networks for trust
management in p2p networks,” in 22th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 2023.

[289] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander,
“Augur: a Decentralized Oracle and Prediction Market Platform

(v2.0),” Forecast Fondation, Tech. Rep., 11 2019. [Online]. Available:
https://www.wunderground.com/history/airport/KSFO/2018/4/10/

[290] C. Noyes, “BitAV: Fast Anti-Malware by Distributed Blockchain Con-
sensus and Feedforward Scanning,” arXiv preprint arXiv:1601.01405,
2016. [Online]. Available: https://arxiv.org/abs/1601.01405

[291] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “FairAccess:
a new Blockchain-based access control framework for the Internet
of Things,” Security and Communication Networks, 2017. [Online].
Available: http://doi.wiley.com/10.1002/sec.1748

[292] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain games: A survey,”
in IEEE Conference on Computatonal Intelligence and Games, CIG,
vol. 2019-Augus. IEEE Computer Society, 8 2019.

[293] EosJs, “GitHub - EOSIO/eosjs: General purpose library for the EOSIO
blockchain.” [Online]. Available: https://github.com/EOSIO/eosjs

[294] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “LSB:
A Lightweight Scalable BlockChain for IoT Security and Privacy,”
Journal of Parallel and Distributed Computing, vol. 134, pp. 180–
197, 12 2017. [Online]. Available: http://arxiv.org/abs/1712.02969http:
//dx.doi.org/10.1016/j.jpdc.2019.08.005

[295] K. J. Peterson, R. Deeduvanu, P. Kanjamala, and K. Mayo, “A
Blockchain-Based Approach to Health Information Exchange Net-
works,” 2016.

[296] T. Antipova, “Using blockchain technology for government auditing,”
in Iberian Conference on Information Systems and Technologies, CISTI,
vol. 2018-June. IEEE Computer Society, 6 2018, pp. 1–6.

[297] F. Casino, V. Kanakaris, T. K. Dasaklis, S. Moschuris, and N. P.
Rachaniotis, “Modeling food supply chain traceability based on
blockchain technology,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 2728–
2733, 9 2019.

[298] R. M. Haris and S. Al-Maadeed, “Integrating Blockchain Technology
in 5G enabled IoT: A Review,” in 2020 IEEE International Conference
on Informatics, IoT, and Enabling Technologies, ICIoT 2020. Institute
of Electrical and Electronics Engineers Inc., 2 2020, pp. 367–371.

[299] S. Dekhane, K. Mhalgi, K. Vishwanath, S. Singh, and N. Giri,
“GreenCoin: Empowering smart cities using Blockchain 2.0,” in 2019
International Conference on Nascent Technologies in Engineering,
ICNTE 2019 - Proceedings. Institute of Electrical and Electronics
Engineers Inc., 1 2019.

[300] P. Mamoshina, L. Ojomoko, Y. Yanovich, A. Ostrovski, A. Botezatu,
P. Prikhodko, E. Izumchenko, A. Aliper, K. Romantsov, A. Zhebrak,
I. O. Ogu, and A. Zhavoronkov, “Converging blockchain and
next-generation artificial intelligence technologies to decentralize
and accelerate biomedical research and healthcare,” Oncotarget,
vol. 9, no. 5, pp. 5665–5690, 11 2018. [Online]. Available:
www.impactjournals.com/oncotarget/

[301] T. Antipova, “Using blockchain technology for government auditing,”
in Iberian Conference on Information Systems and Technologies, CISTI,
vol. 2018-June. IEEE Computer Society, 6 2018, pp. 1–6.

[302] S. Liu and S. He, “Application of Block Chaining Technology in
Finance and Accounting Field,” in Proceedings - 2019 International
Conference on Intelligent Transportation, Big Data and Smart City,
ICITBS 2019. Institute of Electrical and Electronics Engineers Inc.,
3 2019, pp. 342–344.

[303] P. D. Dozier and T. A. Montgomery, “Banking on Blockchain: An
Evaluation of Innovation Decision Making,” IEEE Transactions on
Engineering Management, 2019.

[304] J. Brown-Cohen, A. Narayanan, and S. M. Weinberg, “Formal
Barriers to Longest-Chain Proof-of-Stake Protocols *,” dl.acm.org,
pp. 459–473, 6 2019. [Online]. Available: https://doi.org/10.1145/
3328526.3329567

[305] Corda, “Notaries — Corda OS 4.4 — Corda Documenta-
tion.” [Online]. Available: https://docs.corda.net/docs/corda-os/4.4/
key-concepts-notaries.html

[306] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich,
R. Tamari, and D. Yakira, “A fair consensus protocol for transaction
ordering,” in 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 2018, pp. 55–65.

[307] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-Fairness for
Byzantine Consensus,” Tech. Rep., 2020.

[308] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is bitcoin a
decentralized currency?” IEEE security & privacy, vol. 12, no. 3, pp.
54–60, 2014.

[309] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast

https://www.dapp.com/article/dapp-com-2019-annual-dapp-market-report
https://www.dapp.com/article/dapp-com-2019-annual-dapp-market-report
https://ieeexplore.ieee.org/abstract/document/8746079/
https://www.google.com/amp/s/www.coindesk.com/
https://www.google.com/amp/s/www.coindesk.com/
https://eosauthority.com/producers_relation?TB_iframe=true&width=1367.1&height=678.6
https://eosauthority.com/producers_relation?TB_iframe=true&width=1367.1&height=678.6
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/upgrade_to_one_point_one.html
https://hyperledger-fabric.readthedocs.io/en/v1.1.0-alpha/upgrade_to_one_point_one.html
https://www.ethereum.org/pdfs/Ethereum-Dev-Plan-preview.pdf
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719
https://docs.shipchain.io/docs/intro.html
https://experts.syr.edu/en/publications/on-the-application-of-blockchains-to-spectrum-management
https://experts.syr.edu/en/publications/on-the-application-of-blockchains-to-spectrum-management
https://www.wunderground.com/history/airport/KSFO/2018/4/10/
https://arxiv.org/abs/1601.01405
http://doi.wiley.com/10.1002/sec.1748
https://github.com/EOSIO/eosjs
http://arxiv.org/abs/1712.02969 http://dx.doi.org/10.1016/j.jpdc.2019.08.005
http://arxiv.org/abs/1712.02969 http://dx.doi.org/10.1016/j.jpdc.2019.08.005
www.impactjournals.com/oncotarget/
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567
https://docs.corda.net/docs/corda-os/4.4/key-concepts-notaries.html
https://docs.corda.net/docs/corda-os/4.4/key-concepts-notaries.html

payments in bitcoin,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 906–917.

[310] R. Pass and E. Shi, “Rethinking large-scale consensus,” in 2017 IEEE
30th Computer Security Foundations Symposium (CSF). IEEE, 2017,
pp. 115–129.

[311] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey
on long-range attacks for proof of stake protocols,” IEEE Access, vol. 7,
pp. 28 712–28 725, 2019.

[312] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling Byzantine Agreements for Cryptocurrencies,” in SOSP
2017 - Proceedings of the 26th ACM Symposium on Operating Systems
Principles. Association for Computing Machinery, Inc, 10 2017, pp.
51–68.

[313] J. Kwon, “TenderMint : Consensus without Mining,” pp. 1–10.
[314] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the

Presence of Faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 4 1980.

[315] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10401 LNCS.
Springer Verlag, 2017, pp. 357–388.

[316] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G.
Sirer, “Scalable and Probabilistic Leaderless BFT Consensus through
Metastability,” 6 2019. [Online]. Available: http://arxiv.org/abs/1906.
08936

[317] B. Charts, “Graphiques sur le Bitcoin.” [Online]. Available:
https://www.blockchain.com/charts/transactions-per-second

[318] E. Buchman, “Tendermint: Byzantine Fault Tolerance in the
Age of Blockchains,” Tech. Rep., 2016. [Online]. Available:
http://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769

[319] OpenZeppelin, “GitHub - OpenZeppelin/openzeppelin-contracts:
OpenZeppelin Contracts is a library for secure smart contract
development.” [Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-contracts

[320] I. Age, “Ethereum Difficulty Bomb (Ice Age) - EthHub.”
[Online]. Available: https://docs.ethhub.io/questions-about-ethereum/
what-is-the-difficulty-bomb/

[321] A. Altarawneh, T. Herschberg, S. Medury, F. Kandah, and A. Skjellum,
“Buterin’s scalability trilemma viewed through a state-change-based
classification for common consensus algorithms,” in 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC).
IEEE, 2020, pp. 0727–0736.

[322] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in Blockchains,” IEEE Access, vol. 8, pp. 14 155–14 181,
2020.

[323] Y. Murray and D. A. Anisi, “Survey of formal verification methods
for smart contracts on blockchain,” in 2019 10th IFIP International
Conference on New Technologies, Mobility and Security, NTMS 2019
- Proceedings and Workshop. Institute of Electrical and Electronics
Engineers Inc., 6 2019.

[324] J. Liu and Z. Liu, “A Survey on Security Verification of Blockchain
Smart Contracts,” IEEE Access, vol. 7, pp. 77 894–77 904, 2019.

[325] X. Sun, Q. Wang, P. Kulicki, and X. Zhao, “Quantum-enhanced
Logic-based Blockchain I: Quantum Honest-success Byzantine
Agreement and Qulogicoin,” 5 2018. [Online]. Available: http:
//arxiv.org/abs/1805.06768

[326] D. B. Schenker, “DB Schenker and VeChain pioneer in the use of
blockchain for the logistics industry,” 2019.

[327] M. Ball, A. Rosen, M. Sabin, and P. Nalini Vasudevan, “Proofs
of Useful Work,” 2017. [Online]. Available: https://allquantor.at/
blockchainbib/pdf/ball2017proofs.pdf

[328] A. Lihu, J. Du, I. Barjaktarevic, P. Gerzanics, and M. Harvilla, “A
Proof of Useful Work for Artificial Intelligence on the Blockchain,”
arXiv preprint arXiv:2001.09244, 2020.

[329] P.-W. Chi, Y.-H. Lu, and A. Guan, “A privacy-preserving zero-
knowledge proof for blockchain,” IEEE Access, 2023.

http://arxiv.org/abs/1906.08936
http://arxiv.org/abs/1906.08936
https://www.blockchain.com/charts/transactions-per-second
http://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://docs.ethhub.io/questions-about-ethereum/what-is-the-difficulty-bomb/
https://docs.ethhub.io/questions-about-ethereum/what-is-the-difficulty-bomb/
http://arxiv.org/abs/1805.06768
http://arxiv.org/abs/1805.06768
https://allquantor.at/blockchainbib/pdf/ball2017proofs.pdf
https://allquantor.at/blockchainbib/pdf/ball2017proofs.pdf

	Introduction
	 Motivation, aims and impact of the survey
	 Problem statement and motivations
	Our proposed approach and methodology
	 Results and impact of the survey

	Contributions
	Paper’s Organization
	Comparison with existing surveys and tutorials
	Survey’s approach and methodology

	HISTORY AND BACKGROUND
	Contextualized History
	Terminology and Background

	DCEA Framework: A Taxonomy-Oriented Approach to Conceptualize and Explore Distributed Ledger Technologies (DLTs)
	Introduction to the DCEA Framework
	Distinguishing Between Blockchain and Blockchain-Like Systems

	Data layer
	Components and properties
	Data-Structure
	State Management
	Data Shareability in DLT Networks
	Data immutability / Atomicity

	State-of-the-Art in Data Layer
	Data-structure
	Decentralized Databases
	Hybrid DLTs
	Data shareability
	Data immutability

	Data Layer: Discussion
	Tradeoff: Data Integrity (Block Size) versus Transaction Throughput (Performance)
	The Challenge of Fast-Growing Ledger Size
	The transparent aspect of the blockchain versus privacy of shared data

	Consensus Layer
	Components and Properties
	Basic Properties
	Network Models
	Failure Models
	Adversary Models
	Adversary Modes
	Identity Model
	Governance Model
	Transactions Ordering
	Conflict Resolution Model

	Consensus Layer: State of the Art
	BFT Consensus Family (PBFT-like)
	Nakamoto consensus family
	Proof of stake and its variants
	 Hybrid protocols
	 DAG-based Protocols
	Federated BFT

	Execution Layer
	Components and properties
	Execution environment
	Turing Completeness
	Determinism
	Runtime Openness
	Interoperability

	Execution layer: state of the art
	Execution environments
	Interoperability
	Determinism

	Environment Openness
	Execution Layer: Discussion

	Application layer
	components and properties
	Application Layer: State of the Art
	Application Layer: Discussion

	Evaluation and discussion
	A Comparative evaluation of Blockchain and blockchain-like system based on DCEA framework
	Decentralization
	Governance
	Conflict Resolution
	Application Scenarios for Blockchain and Blockchain-like Systems

	A comparative analysis of consensus protocols
	Zero-Knowledge Rollups and zkEVM: A Comparative Overview
	DApps Attractiveness: A Comparative Overview

	Lessons Learned and Tutorials for Designing New DLT Solutions
	BLOCKCHAIN CHALLENGES AND FUTURE RESEARCH DIRECTIONS
	CONCLUSION
	References

