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Abstract: This paper proposes new heuristics to the classic non-preemptive scheduling problem
of assigning n jobs on m identical parallel machines with the objective to minimize the makespan.
Starting from the List Scheduling method (LS), used for example in the LPT [Graham, 1969] or
SLACK [Della Croce & Scatamacchia, 2020] heuristics, we derive a branching strategy that also
considers assigning a job to the second best machine, in addition the first one, the only one usually
dealt with in literature. Along the exploration of solutions, we keep only the best solution. This
strategy leads to two heuristics, thought in an effort to speed up the solution search. The first, named
Branch & Parallelize LS (BPLS), parallelizes the two alternatives considered on each job. The second,
named BBLS, applies a Branch & Bound method to widely prune the solution tree. As a trade-off
between computation time and solution quality, these heuristics are parameterized in order to assign
only a subset of jobs according to the branching strategy. Out of this subset, the assignment is made
by the classic LS, that is, each time on the first available machine. We show on literature instances
that our heuristics outperform many of well-known algorithms on the vast majority of the considered
instances. We also investigate the subspace of instances for which our heuristics are not able to beat
all of these algorithms. Finally, we propose an ad hoc heuristic named MULTI-BBLS (MBBLS)
which consists in multiple calls to BBLS that permit to rank first even on this instance subspace.

Key-words: identical parallel machines scheduling, heuristics, branch and bound, list scheduling
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Résumé : Cet article propose de nouvelles heuristiques pour le problème classique de l’ordonnancement
non préemptif qui consiste à assigner n tâches à m machines parallèles identiques, avec pour objectif
de minimiser le temps de terminaison. En partant de la méthode du List Scheduling (LS), utilisée par
exemple dans LPT [Graham, 1969] ou SLACK [Della Croce & Scatamacchia, 2020], nous dérivons
une stratégie d’exploration qui considère également l’assignation d’une tâche à la deuxième meilleure
machine, en plus de la première, la seule habituellement traitée dans la littérature. Tout au long de
l’exploration des solutions, nous ne conservons que la meilleure solution. Cette stratégie conduit à
deux heuristiques, pensées dans le but d’accélérer la recherche de solutions. La première, nommée
Branch & Parallelize LS (BPLS), parallélise les deux alternatives considérées pour chaque tâche. La
seconde, appelée BBLS, applique une méthode Branch & Bound pour élaguer largement l’arbre des
solutions. Dans le but d’obtenir un compromis entre le temps de calcul et la qualité de la solution,
ces heuristiques sont paramétrées de manière à n’assigner qu’un sous-ensemble de tâches selon la
stratégie de parcours. Hors de ce sous-ensemble, l’assignation est faite par LS classique, c’est-à-dire
à chaque fois sur la première machine disponible. Nous montrons sur des exemples de la littérature
que notre heuristique surpasse de nombreux algorithmes bien connus sur la grande majorité des in-
stances considérées. Nous étudions également le sous-espace des instances pour lesquelles notre
heuristique n’est pas capable de battre tous ces algorithmes. Enfin, nous proposons une heuristique
ad hoc appelée MULTI-BBLS (MBBLS) qui consiste en de multiples appels à BBLS permettant de
se classer premier même sur ce sous-espace d’instances.

Mots-clés : ordonnancement, machines parallèles identiques, heuristique, branch and bound, ordon-
nancement de liste
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1 Introduction

Let us consider the identical parallel machine scheduling problem, denoted P||Cmax according to Gra-
ham’s three-field notation [Graham et al., 1979]: given m identical parallel machines {1 ≤ i ≤ m} and
a larger number of jobs {1 ≤ j ≤ n} whose processing times are denoted {p j} j∈{1,2,...,n}, we have to
find a non-preemptive schedule such that the makespan Cmax is minimum. More formally, the makespan
is defined by Cmax = maxi{Ci,1 ≤ i ≤ m}, Ci = ∑ki pki being the i-th machine completion time for its
assigned jobs ki. Cmax is hence the completion time for the execution of all jobs. Most of the time, as
we do in this paper, the p j values are considered as a set of positive integers1. Finding the optimal solu-
tion, denoted C∗max, constitutes a strongly NP-hard problem in combinatorial optimization as described
in [Garey & Johnson, 1979]. This problem has practical utility in industry and engineering and has been
the focus of extensive research for more than half a century. Several approximation algorithms have
been proposed in the literature.

A first family of algorithms is based on the List Scheduling algorithm (LS). These algorithms all
work in two stages: the jobs are first sorted under a certain order then the LS algorithm is applied. The
LS heuristic rule is to assign each job to the current least loaded machine, that is the first one available.
The most famous of these algorithms is the Longest Processing Time First rule (LPT) due to Graham
(see [Graham, 1969]), which sorts the jobs in non-increasing order of p j’s. More recently, another LS
algorithm, named SLACK, was published in [Della Croce & Scatamacchia, 2020]. SLACK proceeds in
a bit more complicated way than LPT for the sorting. Firstly, it sorts also the jobs in non-increasing
order of p j’s. But then it splits the list in tuples of size m, completing the last tuple, if necessary, with
null processing time jobs. Next, the tuples are sorted in non-increasing order of their slack, which is the
absolute difference between the smallest and the largest p j’s of the tuple. Finally, LS is applied to the
job list formed by concatenation of the sorted tuples.

Another family of heuristics developed to tackle the P||Cmax problem is based on the bin-packing
problem (BPP). In this problem, n objects of different finite sizes have to fit into bins of finite capacity
or length L. The objective is to minimize the number of bins used. The First Fit Decreasing algorithm
(FFD) [Coffman et al., 1978] gives a bin-packing solution in two steps. First, it sorts the objects in non-
increasing order of their size. Then, starting with only one open bin, it assigns the objects according
to this order, one by one to the first bin it can fit into. If there is not enough space in all bins then
a new bin is opened. A form of duality exists between BPP and P||Cmax. Indeed, given a solution
of BPP, as a number of m′ bins, the capacity L is an upper bound to C∗max for the P||Cmax instance
composed of as many jobs as objects in the BPP instance, with processing times p j equal to the object
sizes and with an assignment on m≥ m′ machines. This duality is the base of the MULTIFIT algorithm
[Coffman et al., 1978]: a binary search of the P||Cmax instance makespan, identified to the BPP capacity

1But note that this is made without loss of generality because floating/fixed-point numbers can be bijectively converted to
integers, the P||Cmax problem solved and then the resulting schedule converted back to floating/fixed-point numbers
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2 Hakim Hadj-Djilani et all

Table 1: Upper bounds on approximation ratio & Time complexity

Algorithm Upper bounds Time complexity

LPT [Graham, 1969] rLPT ≤ 4
3 −

1
3m O(n log n)

SLACK [Della Croce & Scatamacchia, 2020] N.D. O(n log n)
MULTIFIT [Coffman et al., 1978] rMULT IFIT ≤ 1.22+2−k O(n log n+ k n log m)

COMBINE [Lee & Massey, 1988] rCOMBINE ≤ rMULT IFIT ,rLPT O(n log n+ k n logm)

LISTFIT [Gupta & Ruiz-Torres, 2001]rLIST FIT ≤ 13/11+2−k O(n2 log n+n2 k log m)

Hochbaum & Shmoys
PTAS [Hochbaum & Shmoys, 1987]

rPTAS ≤ 1+ ε O((n/ε)⌈1/ε2⌉)

LDM [Michiels et al., 2003] 4
3 −

1
3(m−1) ≤ rLDM ≤ 4

3 −
1

3m

for m≥ 3 and rLDM = 7/6 for
m = 2

O(n log n)

L, by iterating on the FFD algorithm to find out if it is an upper bound, i.e. m ≥ m′. The COMBINE
algorithm [Lee & Massey, 1988] came next as a combination of LPT and MULTIFIT. It first uses the
former and, if its solution is not guaranteed to be optimal, it tries MULTIFIT with a search upper bound
set to the makespan found by LPT. About a decade later, Gupta and Ruiz-Torres proposed LISTFIT
in [Gupta & Ruiz-Torres, 2001]. Their approach is also based on FFD but tries 4n different specially
forged orders of p j’s as input of FFD. Thanks to its wider solution exploration, LISTFIT provides very
often better solutions than MULTIFIT.

Of course a myriad of other algorithms exists for P||Cmax. We can, for instance, cite the Polynomial
Time Approximation Scheme proposed in [Hochbaum & Shmoys, 1987], which has some similarities
with MULTIFIT in that it also uses the duality with BPP and a binary search, but turns to dynamic pro-
gramming for the problem solving. The Largest Differencing Method (LDM) is another method that al-
lows to solve a P||Cmax equivalent partitioning problem ([Michiels et al., 2003], [Karmarkar & Karp, 1982]).
Many metaheuristics as genetic algorithms [Min & Cheng, 1999], tabu search, simulated annealing
[Glass et al., 1994], swarm optimization [Kashan & Karimi, 2009], harmony search [Chen et al., 2012]
or ant colony optimization [Yibao et al., 2002], have also largely been used to search for local optima of
P||Cmax solutions.

Because they produce suboptimal solutions, P||Cmax heuristics, are evaluated according to their ap-
proximation ratio: rA = CA

max
C∗max

, with A an algorithm to be evaluated, CA
max the algorithm makespan and

C∗max the optimal solution. When possible, a worst-case analysis is made to define upper bounds, the
more tight as possible, for an algorithm approximation ratio. Table 1 lists known upper bounds and
algorithm computational complexities of several well-known algorithms. Alternatively, evaluating and
comparing the performance of algorithms is made through empirical protocols using pseudo-random
instances defined in the literature.

The main contribution of this paper is the Branch & Bound List Scheduling algorithm (BBLS).
Because LS-based heuristics concentrate on the job list order and restricts the assignment of jobs to the
first available machine, we propose with BBLS to consider assigning jobs not only to the first available
machine but also to the next ones. The Branch & Bound part of BBLS is highly linked to the research
introduced in [Dell’Amico & Martello, 1995] which aims at producing exact/optimal P||Cmax solutions
considering basically all the m machines for a job assignment. On the other hand BBLS is more about
searching approximate solutions in a smaller amount of time and hence limits the number of considered
machines. In this goal it leverages many elements of optimization that are developed and assessed in
this paper.

FEMTO-ST Institute
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This article is organized in five sections. In section 2, we examine the LS heuristic and describe
the branching strategy of a first LS variant, called BLS for Branch LS. BLS is a first step toward
BBLS. It represents the alternative job assignments on the first available machines as a tree and then
searches for the best solution. We show how this strategy can easily be parallelized into an algorithm
named BPLS (for Branch & Parallelize LS). Then, in section 3, pursuing an effort to speed up these
variants, we derive BBLS that is able to prune the tree of solutions by testing their makespan lower
bounds as in [Dell’Amico & Martello, 1995]. Besides, we introduce several optimization properties and
parameters to speed up the tree pruning. Next, in the section 4 we define MULTI-BBLS (or MBBLS)
methods that mainly consist in calling BBLS several times in parallel in order to enhance the qual-
ity of solutions. Finally, in section 5, we set up an empirical protocol based on literature instances
[Gupta & Ruiz-Torres, 2001], [Della Croce & Scatamacchia, 2020] to show how BPLS and BBLS can
outperform the renowned algorithms presented before. The section 6 comes as a complement to see
how the MBBLS approaches can be combined together to beat all the tested algorithms for subgroups
of instances on which BBLS and BPLS were not able to dominate.

2 The BLS and BPLS algorithms

As previously explained, the LS algorithm consists in assigning each job to the current least loaded
machine. In many cases however it can be observed that some of the machines are not much more loaded
than the first one. Hence it is meaningful to assess the impact of also considering several least loaded
machines instead of only the first one. On the other hand it is worth noticing that the exploration with
several machines at each step of the assignment quickly leads to a combinatorial explosion. Furthermore,
tests made by considering the third least loaded machine showed to be less efficient when adding the
pruning process2. We hence only explore alternative of the second least loaded machine in the remainder
of the paper.

Let us start with a very simple example, before explaining how an algorithm based on this idea
works. Consider the following instance I = {P = (91,90,71,59,56,27,16,16,16,7),m = 3} as input
of LPT. The sorting stage of P is already done in non-increasing order. Then, with LS, comes the
assignment of the jobs whose processing times are listed in P to obtain the schedule shown in Figure 1.
If we introduce an exception to the LS rule, by allowing once to assign a job to the second least loaded
machine, we obtain the assignment illustrated in Figure 2, which happens to be an optimal solution for
I. This short example shows that exploring solutions with the two least loaded machines has a potential
to find better results than LS or even optimal solutions for certain instances.

We can now define the Branch LS algorithm (BLS). Basically, it is a recursive algorithm that concur-
rently tries, for each job, an assignment on the two least loaded machines. Once the last job is assigned,
a backtracking process takes place to compare, at each level of recursion, the two job assignment al-
ternatives according to their makespans in order to keep the best solution. This approach is simply a
solution search structured in a binary tree. The left child node represents an assignment on the first least
loaded machine, while the right one is an assignment on the second least loaded machine. Notice that
there is no interest to assess the two alternatives for the m first jobs that are always assigned one on each
machine. The last job of the list is likewise assigned according to LS because this is always the best
choice.

2We give more details about this question and our related tests in 5.3.1 and also in discussion about complexity equation
(1) in the following of this section. The pruning process is discussed in 3.2

RR -FEMTO-ST-2919



4 Hakim Hadj-Djilani et all

Figure 1

Figure 2: The black framed job represents an assignment on the second least loaded machine, other
assignments are all made on the first least loaded one according to LS

Unfortunately, this approach has an exponential computational cost of C(n,m) = Θ(m2n−m). A first
step for reducing this cost is to consider that not only the m first jobs can be excluded from the binary
search but also several other jobs since, as can be seen on the example of Figure 2, several jobs are
assigned to the first least loaded machine in the optimal solution. Knowing which jobs to exclude seems
complicated but limiting to a parameter, denoted N, the number of consecutive jobs included in the
binary search can achieve a linear asymptotic complexity since 2N is a constant. The BLS complexity is
then defined in (1).

C(n,m) = O(2Nm)+O(n−N) = O(n) (1)

Note that, even if 2N is just a multiplicative constant, it should not be underestimated as it remains
an exponential term. By the way, if our strategy has considered the three first available machines instead
of only the two first ones, the basis of this exponential would have been 3, increasing again the com-
putational cost. On the other hand, it is possible to reduce the value of N to achieve a comparable cost
whatever is the basis of the exponential. Precisely, if N = N2 in basis 2 and N = N3 in basis 3 and we
choose an arbitrary N2, we can adjust the value of N3 to obtain in the induced ternary tree an equal or

FEMTO-ST Institute



Branching List Scheduling Algorithms 5

lower number of nodes than in the binary tree induced by N2. The formula of this constraint is simply:
N3 = ⌊log3(2N2+2− 1)− 1⌋. However, as explained in 5.3.1, using a ternary tree does not give good
results with the tested instances.

Algorithm 1: BLS(P,m,σ ,N)

Input:
m : integer
// σ [ j][k]: job k put on machine j

σ ←{()i∈{1,...,m}} : schedule
// pσ [ j][k]: job k processing time

P←{p j} j∈{1,...,n}
// default complexity limit

Optional parameter : N← ∞ : integer
Data:

i1, i2: integer
1 begin
2 if empty(σ ) then
3 σ ← assign(σ ,1, p1)
4 σ ← assign(σ ,2, p2)
5 . . .
6 σ ← assign(σ ,m, pm)
7 σ ′← BLS(P−{p1, . . . , pm},m,σ ,N)
8 return σ ′

9 end if
10 i1← argmini∈{1,...,m}∑1≤k≤size(σ [i])(pσ [i][k])

11 i2← argmini∈{1,...,m}−{i1}∑1≤k≤size(σ [i])(pσ [i][k])

12 if size(P)> 1 then
13 if N > 0 then
14 σ ′1← assign(σ , i1, p1)
15 σ ′2← assign(σ , i2, p1)
16 σ ′1← BLS(P−{p1},m,σ ′1,N−1)
17 σ ′2← BLS(P−{p1},m,σ ′2,N−1)
18 if makespan(σ ′2)< makespan(σ ′1) then return σ ′2
19 else return σ ′1
20 end if
21 σ ′← assign(σ , i1, p1)
22 σ ′← BLS(P−{p1},m,σ ′,0)
23 return σ ′

24 end if
25 σ ′← assign(σ , i1, p1)
26 return σ ′

27 end

The BLS heuristic, given as Algorithm 1, recursively builds the schedule, denoted σ for an input
instance defined by (P = {p j}1≤ j≤n,m). It starts (line 3) from an empty σ , assigns the first m jobs
j ∈ {1, . . . ,m} according to LS and makes a recursive call (line 7) to enter in the branching part of the

RR -FEMTO-ST-2919



6 Hakim Hadj-Djilani et all

algorithm. Once σ is initialized the two least loaded machines, i1 and i23, are identified (lines 10, 11).
The two following conditions (lines 12, 13) assert that it remains at least two jobs to assign (remember
that the machines are not challenged for the last jobs) and less than N +m jobs are already assigned
into σ . The algorithm then takes the first of the remaining jobs, whose processing time is p1, assigns it
alternatively on i1 and i2 by updating respective schedules σ ′1 and σ ′2 (lines 14, 15). Then (lines 16, 17)
it makes two BLS recursive calls responsible for assigning the remaining jobs into σ ′1 and σ ′2 according
to the same recursive process. On each recursive call N is decremented and P loses its first processing
time. Going ahead, N becomes zero or P becomes a singleton. In both cases BLS switches back to LS
algorithm for assigning the remaining jobs: jobs m+ 1+N to n− 1, lines 21-23 and last job, line 25.
Afterward a backtracking takes place on lines 18 and 19, where the makespans of the two alternative
schedules σ ′1 and σ ′2 are compared, keeping the best makespan solution. The backtracking continues
toward parent calls until the recursion level of the first job assigned is reached back to finally return the
BLS overall best solution found.

It is worth noticing that, to keep it simple, the branching strategy is here applied starting from the job
m+1 to the job m+N. For more generality, the N jobs could have been picked in the remainder of the
job list 4. Anyway, the parameter N cannot be greater than (n−m−1) because, as already mentioned,
the m first jobs and the last one are assigned according to LS.

2.1 BPLS: a parallelization of BLS

Due to the BLS algorithmic complexity it is worth proposing solutions to improve its running time
on large instances. Since BLS is considering many alternative solutions, it is possible to parallelize the
search. Note that this is not the case for LPT and SLACK that produce a single solution for which there is
no possible parallelization regarding the dependency between the algorithm steps. A basic parallelization
can be done on the two alternatives (i1, i2 choices) using two processes, each one computing one of the
assignments made according to the branching strategy. We name BPLS the parallelization variant of
BLS (for Branch & Parallelize LS). An example is given in Figure 3 for a parallelization using a total
of four processes Prock∈{1,...,4} to produce a schedule when N = 2. The number of processes must be
limited to at most 2N , which is the number of leaves of the binary tree, above what there is no interest
to parallelize. There is likewise and obviously no point to parallelize using more processes than the
number of threads the CPU used is capable to run in parallel. A basic experiment has, for example,
shown that running BPLS with at most 27 processes on instances defined as n = 212, m = 2,4,8,16 and
N = 10 can generate a median speedup of 28 (from a time of approximately 12.5 sec for BLS to only
0.44 sec for BPLS5). More elements about both the computation time and performance of the makespan
minimization are presented in section 5. About the performance, we can already state that BLS and
BPLS cannot produce worse solutions than LS because the LS solution is included in the solutions
evaluated by the branching strategy and kept as final solution if it is the best.

2.2 A branching strategy for all LS-based algorithms

A primary interest of this branching strategy used in BLS and BPLS algorithms is that it can be used in
any LS algorithm. Thereby we can easily write a B-SLACK or a BP-SLACK algorithm or likewise a
B-LPT or a BP-LPT algorithm. The job assignment stage, in the LS algorithm, has only to be replaced
by one of the branching LS algorithms. This is also true for the BBLS algorithm presented in the next
section which has been used to write a BB-SLACK variant.

3Notice that we should respectively name i1, j and i2, j the two least loaded machines at the assignment time of the j-th job
but, when there is no ambiguity, we only denote them i1 and i2, without any mention of the next job to assign.

4We work toward this variation with BBLS and its parameter S in 3.2.1
5On an Intel(R) Xeon(R) Platinum 9242 equipped of 48 cores, that is 96 threads
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Branching List Scheduling Algorithms 7

Figure 3: Parallelization tree of BPLS (N = 2) using 4 processes Prock. Left and right BPLS nodes
represent respectively i1 and i2 alternative machine assignments performed each time on two separate
processors. The classic LS heuristic is used for the first jobs indexed from 1 to m and also for the last
jobs indexed from m+3 to n. The two jobs in between are assigned using BPLS.
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BPLSi1(m+1)

BPLSi1
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LS({m+3, . . . ,n})
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Proc1

BPLSi2
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LS({m+3, . . . ,n})
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BPLSi2
(m+2)

Proc4

LS({m+3, . . . ,n})

Proc4

Proc2

3 A Branch & Bound LS algorithm

As previously mentioned, BLS and BPLS algorithms explore the whole binary tree for assigning N
jobs, each time on the two first available machines. On the other hand, there is no interest to continue
exploring toward a node if the best makespan found so far in the exploration is a lower bound for the
subset of solutions this node is encoding. That remark leads us straight right to branch-and-bound (BB)
algorithms. In fact, BLS is half way to be a BB algorithm because it already provides the branching part
but not the bounding one. The principle for a Branch and Bound LS algorithm (BBLS) is, as for BLS,
that any node in the tree represents a partial schedule and child nodes encode the solution subsets of the
parent node. One job is added in the partial schedule at each level of the tree whether on machine i1
or on machine i2. In addition to that process, a lower bound of the subset of solutions represented by
a node can be computed on the fly to find out if this solution has a chance to give a better makespan
than the current best one. So the algorithm starts by exploring the tree with the LS solution as initial
best makespan and, for each node, it computes a lower bound for the corresponding solution. If this
lower bound is greater than the current best makespan, then there is no interest to go further on this
branch, since all child solutions are bounded with the same lower limit, and the branch is pruned out of
the tree. Otherwise the algorithm continues exploring and, at each time it reaches a leaf, it compares
the makespan of this particular schedule to the current best makespan. If the new solution has a lower
makespan it becomes the new best solution for the next of the exploration. Such a method can really
speed up the tree exploration by widely pruning the tree.

3.1 P||Cmax Lower bounds

To implement BBLS, especially the pruning strategy discussed above, we need lower bounds as tight
as possible to the optimal makespan. Simple lower bounds can be established on any P||Cmax instance,
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8 Hakim Hadj-Djilani et all

whatever algorithm is used. We present here the lower bounds already described at least in [Dell’Amico & Martello, 1995].
The simplest one, L0, is obtained by a preemptive relaxation of the P||Cmax instance:

L0 =
1
m

n

∑
j=1

p j

L0 formula means that this is not possible to obtain a smaller makespan than the one obtained by con-
sidering that the jobs can be preempted. Indeed, if the jobs can be split, the resulting fragments can
always be spread equitably to the machines, such that the completion time is the same on all machines:
Ci =Ci+1,∀i < m. This completion time is the optimal makespan.

A second lower bound comes from the non-preemptive constraint of the problem which implies that
the makespan of any P||Cmax instance cannot be lower than any p j. This lower bound is

L1 = max(L0,max{p j})

A third bound, more precise when not equal to L1 or L0, is obtained by another problem relaxation
which consists in reducing the instance to the (m+1) jobs of largest processing times. Assume that the
processing times (p j) j∈1,...,n are sorted in non-increasing order, then the jobs of processing times pm and
pm+1 must be assigned to the same machine to get an optimal solution for the relaxed instance. Indeed,
the machine running the job m will be the first available machine at the moment of assigning job (m+1).
Therefore we have the following bound:

L2 = max(L1, pm + pm+1)

Another lower bound, denoted L3, is proposed in [Dell’Amico & Martello, 1995]. To introduce this
bound we recall that the bin-packing problem (BPP) is dual to P||Cmax. Dell’Amico and Martello limit
the number of bins of the BPP obtained by a dual reformulation of a P||Cmax instance I into an instance
I′ of BPP. We denote m′(L,{p j}1≤ j≤n), a solution of the bin packing problem, i.e. a number of bins
for I′ with L the bin capacity and p j the item sizes, that come directly from I. If an optimal solution
m′∗(L,{p j}) is such that m′∗(L,{p j})> m, m being the number of machines in I, then L is obviously a
lower bound of the optimal makespan of I. Since the p j’s are integers, it is also clear that L+1 is also
a valid lower bound for I. That is what Dell’Amico and Martello did using two possible lower bounds
of the optimal solution of I′ with a certain capacity L to prove that L+ 1 is a lower bound for I. The
two lower bounds are denoted Bα and Bβ . The first one was introduced in [Martello & Toth, 1990] and
the second one in [Dell’Amico & Martello, 1995]. Their definitions are based on a subset of processing
times { p̄} = {p j ≤ L

2} and other subsets denoted J1, J2 and J3. These three subsets form together a
partition of all jobs whose processing times are greater or equal to a given p̄. They are defined by:

J1 = { j|L− p̄ < p j} (2)

J2 = { j|L/2 < p j ≤ L− p̄} (3)

J3 = { j|p̄≤ p j ≤ L/2} (4)

The two bounds are then defined as follows for a given p̄ and a given bin capacity L:

Bα(L, p̄) = |J1|+ |J2|+max(0,
⌈

∑ j∈J3 p j− (L|J2|−∑i∈J2 p j)

L

⌉
) (5)

Bβ (L, p̄) = |J1|+ |J2|+max(0,


|J3|−∑ j∈J2

⌊
L−p j

p̄

⌋
⌊

L
p̄

⌋
) (6)

The idea of these bounds is that no jobs in J1 or J2 can be in the same bin because they all exceed
the processing time L

2 . So one bin is used for each one of these jobs. The remaining J3 jobs cannot fit in
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bins that already contain a J1 job. Since this type of job has a p j greater than L− p̄, this does not leave
enough space to let a J3 job fit into the bin. So the bounds Bα and Bβ , in their right ‘max’ term, take
both account of the minimum number of new bins that are necessary to make all the J3 jobs fit into the
bins and form a full bin packing. Precisely, some of the J3 jobs might fit into bins that already contain
one J2 job, if there is such. But if it remains other jobs of J3 then the opening of at least one new bin is
needed. Finally, it is stated that, consistently with the dual relationship between P||Cmax and BPP, if

Bα(L, p̄)> m or Bβ (L, p̄)> m (7)

then (L + 1) is a lower bound for I. In [Dell’Amico & Martello, 1995] the bound named L3 is the
maximum capacity that verifies the property (7) but in this paper we denote L3 any bound that verifies
this property because, as detailed in the next subsection, it is enough to justify a pruning.

For a single value L, it costs up to O(n2) to compute if L+1 is a lower bound for a P||Cmax instance.
This is a considerable cost but, hoping that the tree of solutions will be massively pruned in BBLS, the
lower bound computation could be worth it. This is empirically verified in section 5. Besides, we give
optimization properties for the calculation of these bounds in 3.2.2.

3.2 The BBLS algorithm and its pruning process

Algorithm 2: Function bb_node_instance Computes a tree node transformed instance.
- P is the p j’s of jobs yet to assign,
- σ is the node partial schedule.

1 Function bb_node_instance(σ , P, m)
2 begin

// P does not contain any p j of job already assigned in σ

3 for j← 1, . . . ,m do
4 p′j← ∑1≤k≤size(σ [ j])(pσ [ j][k])

5 end for
6 for j← 1, . . . ,size(P) do p′m+ j← P[ j]
7 return (p′j)1≤ j≤m+size(P)

8 end

The condition (7) now allows to complete the bounding part of the BBLS algorithm envisioned in the
beginning of this section, i.e. pruning nodes for which the best makespan found so far, denoted Cb

max, is
larger than the node lower bound. Considering a given node, we can proceed, as in [Dell’Amico & Martello, 1995],
by transforming the problem instance I to another instance I′ whose solutions are precisely the subset
of solutions encoded by this node. The bb_node_instance function, given as Algorithm 2, builds the
transformed instance from a BBLS tree node.

The jobs previously assigned to the m machines are replaced by m jobs where p′j (1 ≤ j ≤ m), the
processing time of job j in the transformed instance I′, is equal to the sum of the processing times of the
jobs already assigned to the j-th machine. These jobs are those assigned by the parent nodes that led to
the considered node. From the way they are created, we name these m jobs the aggregated jobs. These
jobs processing times are calculated in line 4 of bb_node_instance. The jobs that were not assigned yet
to any machine are simply added as is in the transformed instance (line 6).

Next, property (7) has to be tested to verify that the current best bound Cb
max is a lower bound of the

transformed instance. The function is_L3_bound, given as Algorithm 3, is used in this purpose. If this is
the case, then no better solution can be found by considering this instance node and further child nodes.
The node is hence pruned out. On the contrary, if Cb

max is not a lower bound for the transformed instance
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Algorithm 3: Function is_L3_bound
Tests if L is a L3 lower bound for I′ = (P,m)

1 Function is_L3_bound(L,P,m)
2 begin
3 L← L−1

// use (7) on I′ = (P,m) for all 0 < p̄≤ L/2
4 for p̄ ∈ {p j| j ∈ {1, . . . ,size(P)}, p j ≤ L/2} do
5 J1←{ j|L− p̄ < p j}
6 J2←{ j|L/2 < p j ≤ L− p̄}
7 J3←{ j|p̄≤ p j ≤ L/2}
8 Bα(L, p̄)← |J1|+ |J2|+max(0,

⌈
∑ j∈J3

p j−(L|J2|−∑ j∈J2
p j)

L

⌉
)

9 Bβ (L, p̄)← |J1|+ |J2|+max(0,

⌈
|J3|−∑ j∈J2

⌊ L−p j
p̄

⌋
⌊ L

p̄⌋

⌉
)

10 if Bα(L, p̄)> m∨Bβ (L, p̄)> m then return true
11 end for
12 return false
13 end

then the exploration continues on the child nodes. Note that Cb
max can be tested first against L2 which is

less expensive to compute than L3. If Cb
max > L2 then is_L3_bound is used to test if Cb

max is a L3 lower
bound. Besides, since L2 was tested before, the set of p̄ tested in is_L3_bound can be limited to the jobs
that verify the condition p̄ ≤ pm+2 as proved in [Dell’Amico & Martello, 1995]. It implies however to
sort the p j’s in non-increasing order.

At this point BBLS, given as Algorithm 4, is almost a complete Branch & Bound algorithm. As
mentioned before, the classic LS solution, that assigns each task to the first available machine, is used
for the initialization. In the exploration tree it means that, for building the first complete solution, the
left child node is always chosen until the leftest leaf is reached. This is made very naturally because the
solution search is a depth-first search. For this reason, in Algorithm 4, line 13, the left child node is never
ignored as long as Cb

max = ∞ (its initial value). Notice that Algorithm 4 is very similar to Algorithm 1.
Indeed, only a few parts change compared to BLS, mainly for the pruning implementation integrated in
lines 12 to 30. In this block, precisely lines 13 and 19, Cb

max is tested as a lower bound of the transformed
instance corresponding to each alternative assignment of the current job (to machine i1 or i2). Hence, if
Cb

max is confirmed to be a lower bound, the node is pruned out, that is no further recursive call is made
for the corresponding partial schedule (σ ′1 or σ ′2) which is marked as pruned out using the empty set /0.
As in BLS the backtracking process keeps the best solution between each two alternatives except that
for BBLS the empty schedules, resulting from the pruning, are ignored. In the following subsection is
described the parameter S which is an optimization of BBLS that is not present in BLS.

3.2.1 A shifting parameter S indexing the first job to start BBLS on

In Algorithm 4, the N parameter defines the number of jobs on which the branching is performed, other
jobs being assigned according to the classic LS. This parameter however does not indicate the job of the
list where to start the branching. The only constraints are that the job start index is strictly greater than
m and smaller than or equal to (n−N). For this reason, we introduce another BBLS parameter, named
S, a positive integer that defines a shifting to start the branching strategy, i.e. the S parameter allows to
start the branching on job of index (m+ 1+ S). There is a computational interest to pick up a larger
value of S as the following properties show.
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Algorithm 4: BBLS(P,m,σ ,N,S)

Input:
P←{p j} j∈{1,...,n}
m : integer
σ ←{()i∈{1,...,m}} : schedule
Optional parameter : N← ∞ : integer // default value (complexity limit)

Optional parameter : S← 0 : integer // job index shift for branching strategy

start

Data:
Cb

max← ∞ // global variable

i1, i2: integer
1 begin
2 if empty(σ ) then
3 σ ← LS({p1, . . . , pm+S},m)
4 σ ′← BBLS(P−{p1, . . . , pm+S},m,σ ,N)
5 return σ ′

6 else
7 i1← argmini∈{1,...,m}∑1≤k≤size(σ [i])(pσ [i][k])

8 i2← argmini∈{1,...,m}−{i1}∑1≤k≤size(σ [i])(pσ [i][k])

9 end if
10 if size(P)> 1 then
11 if N > 0 then
12 σ ′1← assign(σ , i1, p1)
13 if Cb

max = ∞∨ ¬ is_L3_bound(Cb
max, bb_node_instance(σ ′1, P, m), m) then

14 σ ′1← BBLS(P−{p1},m,σ ′1,N−1)
15 else
16 σ ′1← /0 // elimination of the i1 node

17 end if
18 σ ′2← assign(σ , i2, p1)
19 if ¬is_L3_bound(Cb

max,bb_node_instance(σ ′2,P,m),m) then
20 σ ′2← BBLS(P−{p1},m,σ ′2,N−1)
21 else
22 σ ′2← /0 // elimination of the i2 node

23 end if
// Keep the best solution between σ ′1 and σ ′2 or /0
// if the two nodes were pruned out

24 if σ ′1 = /0∧σ ′2 = /0 then return /0
25 else if σ ′1 = /0 then return σ ′2
26 else if σ ′2 = /0 then return σ ′1
27 else
28 if makespan(σ ′2)< makespan(σ ′1) then return σ ′2
29 else return σ ′1
30 end if
31 else
32 σ ′← assign(σ , i1, p1)
33 σ ′← BBLS(P−{p1},m,σ ′,0)
34 return σ ′

35 end if
36 else
37 σ ′← assign(σ , i1, p1)
38 if makespan(σ ′)<Cb

max then Cb
max← makespan(σ ′)

39 return σ ′

40 end if
41 end
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Theorem 3.1. It exists a S > 0 large enough to reduce the practical computational cost of BBLS.

Proof. First, note that taking a value of S greater than zero does not change the asymptotic complexity
of BBLS. The dominant term of the BBLS complexity, implied by is_L3_bound, is O(n2) which does
not depend on S but only on the size of the transformed instance produced by bb_node_instance. So
for a same size of tree and a same pruning efficiency taking a greater S cannot be slower. On the
contrary, recall that bb_node_instance produces a transformed instance I′ which includes m aggregated
jobs formed by grouping the jobs already assigned to each machine in parent nodes. So the greater is
S, the lower is n′, the number of jobs to compose I′. Hence running is_L3_bound is faster if S is larger.
For the root node of the tree n′ = n−m− S for a positive S, while it is n′ = n−m if S = 0. So with
respect to the quadratic growth of the complexity it is obviously faster to take a larger S. Another reason
for a larger S to accelerate BBLS is that the subset of jobs {p′j ≤ L/2|L = Cb

max− 1} in the instance I′

can only shrink along the depth of the BB tree whatever is the order of the job list. Again, assigned jobs
are aggregated into m larger ones in I′, so looking at is_L3_bound we see that if S is larger enough the
number of p̄ candidates diminishes and so the time to compute the function.

Theorem 3.2. A large enough value of S allows a wider pruning of the BBLS tree.

Proof. Suppose that the m aggregated jobs of a transformed instance I′ have processing times p′j∈{1,...,m}>
L/2 and reconsider Bα and Bβ bounds in is_L3_bound. The aggregated jobs all belong to J1 or J2 what-
ever is the p̄ considered. It gives that |J1|+ |J2| ≥m hence, if it remains enough jobs in J3, it is most likely
that Bα or Bβ will be greater than m and so the node associated to I′ in the BBLS tree will be pruned out
because the condition (7) is fulfilled. If it exists a j ∈ {1, . . . ,m} such that p′j ≤ L/2 then continue to in-
crease S until there is no such j. It should happen because the processing times of aggregated jobs grow
with S (the greater is S the more jobs have been assigned before). If it cannot happen consider anyway
two values of shifting S1 and S2 such that S1 < S2 and respectively I′S1

, I′S2
the corresponding transformed

instances for the root node in the BB tree. Then it is always true that |J1S1 |+ |J2S1 | ≤ |J1S2 |+ |J2S2 | for a
same pair (L, p̄) because again the aggregated jobs processing times can only be larger if more jobs have
been assigned before. So the pruning can only be as or more efficient if the shifting of the branching is
made according to a larger S.

Therefore, BBLS (Algorithm 4) uses the job index m+ S+ 1 to start the branching strategy for N
jobs (line 3, jobs j = 1 to j = m+ S are assigned according the classic LS). Note, that a meaningful S
must be such that 0≤ S≤ n−N−m−1. To test our assertions about the speedup and the wider pruning
obtained with a greater S used in BBLS we have defined a protocol introduced in 5.2.

3.2.2 Other properties for optimization of the pruning process

According to our tests, using the parameter S, along with the parameter N, is the most efficient op-
timization of the pruning process we experienced. We present nevertheless several other properties
to optimize BBLS and in particular is_L3_bound. The simple Theorem 3.3 was already known in
[Martello & Toth, 1990] and results related to Theorems 3.4 and 3.5 also but were limited to Bα and
decreasingly sorted p j’s. Here we extend the results to Bβ and arbitrary order of p j’s. Besides, we
introduce two other Theorems (3.6, 3.7) and explain how they might optimize a BBLS implementation
for particular cases. To the extent of our knowledge these theorems are new.

Theorem 3.3. For a given L, J1∪ J2 and the sum |J1|+ |J2| are the same for all p̄.

Proof. J1 ∪ J2 = {p j|p j >
L
2}, this set does not depend on p̄. As p̄ increases J2 shrinks and J1 widens

but their union does not change. Besides, by definition J1∩ J2 = /0.
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The previous property allows to precompute the sum |J1|+ |J2| once and for all p̄ without having
to build J1 for each p̄ in the loop that computes Bα and Bβ . Still J2 has to be built separately on each
iteration as it depends on p̄. The next theorem mitigates this need.

Theorem 3.4. For a given L and any pair (p̄ j1 , p̄ j2) such that 0 < p̄ j1 ≤ p̄ j2 ≤ L
2 , we have J2(L, p̄ j2) ⊆

J2(L, p̄ j1). Likewise, J3(L, p̄ j2)⊆ J3(L, p̄ j1).

Proof. It is obvious by definition of J2 and J3.

Corollary 3.5. Let p̄sup be the greatest p̄≤ L
2 , it comes that ∀p̄≤ L

2 ,J2(L, p̄sup)⊆ J2(L, p̄) and J3(L, p̄sup)⊆
J3(L, p̄).

Proof. For any p̄, take p̄ j2 = p̄sup and p̄ j1 = p̄ then refer to Theorem 3.4.

If the p̄’s are considered in non-increasing order in the loop of is_L3_bound then the bounds Bα and
Bβ can be calculated iteratively from a greater p̄ to a smaller p̄ because according to Theorem 3.4:

∑
j∈J2(L,p̄ j1 )

p j = ∑
j∈J2(L,p̄ j2 )

p j + ∑
j∈(J2(L,p̄ j1 ) \ J2(L,p̄ j2 ))

p j

∑
j∈J3(L,p̄ j1 )

p j = ∑
j∈J3(L,p̄ j2 )

p j + ∑
j∈(J3(L,p̄ j1 ) \ J3(L,p̄ j2 ))

p j

Hence, along iterations on p̄’s, keeping track of sums corresponding to J2(L, p̄), J3(L, p̄) it is possible
to compute Bα(L, p̄) and Bβ (L, p̄) by incrementing the previous sums instead of computing the whole
sums for each p̄. As argued in [Martello & Toth, 1990] it allows to move from a O(n2) to a O(n)
complexity for the calculation of Bα for all p̄ and as well for Bβ .

On the other hand, if the p̄’s are sorted in arbitrary order, corollary 3.5 implies that for computing
Bα(L, p̄) and Bβ (L, p̄) it is possible to precompute the formula sums that correspond to the subsets
J2(L, p̄sup), J3(L, p̄sup) and increment these sums by the sums corresponding to the specific parts of the
J2(L, p̄),J3(L, p̄) because:

∑
j∈J2(L,p̄)

p j = ∑
j∈J2(L,p̄sup)

p j + ∑
j∈(J2(L,p̄) \ J2(L,p̄sup))

p j

∑
j∈J3(L,p̄)

p j = ∑
j∈J3(L,p̄sup)

p j + ∑
j∈(J3(L,p̄) \ J3(L,p̄sup))

p j

Next, we describe another theorem that is able, in certain particular cases, to infer at constant cost
O(1) the result of is_L3_bound. The idea is to deduce the result of the function for a BBLS tree node
knowing the result it gave for the parent node (which is always ‘false’ when a child node is considered
otherwise it would have been pruned out).

We first introduce a bit of context and notations for the next theorem. Let I′k be the transformed
instance of the considered node k in the BBLS tree, ik the index of the machine to try on the assignment
of the next job, whose processing time is pa. The load of this machine before assignment is denoted
Cik and pik = pa +Cik is the processing time of the new aggregated job, added to form the transformed
instance I′k. The transformed instance of the parent node (k− 1) is denoted I′k−1, the corresponding
bounds are denoted Bα,k−1(p̄) and Bβ ,k−1(p̄) for the current Cb

max and a given p̄.

Theorem 3.6. For a parent node (k−1) of transformed instance I′k−1 and its child node k of transformed
instance I′k corresponding to the assignment of the next job pa on machine ik giving pik = pa +Cik , the

processing time of the new aggregated job of I′k, if pik ≤
(Cb

max−1)
2 and ∀p̄,Bα,k−1(p̄)< m and Bβ ,k−1(p̄)<

m then Cb
max is not a L3 lower bound for I′k and the node k must not be pruned out.
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Proof. See appendix A.

Let us discuss about the practical optimization of the pruning process this theorem implies. For
any child node k, the following conditions about the parent node are always true: ∀p̄ Bα,k−1 ≤ m and
Bβ ,k−1 ≤ m. If they were not, the parent node would have been pruned out and the child node k ignored
automatically, which is not the case. The theorem conditions are however slightly different, because
it is asked that the bounds are not only lower but strictly lower than m and this is not guaranteed. We
mitigate this point noting that, in all the bounds considered in cases (8) to (12), only four out of ten can
make the equality of child bounds Bα,k,Bβ ,k to m possible and there is no reason for this to happen every
time. The risk is to explore one child node that would have been pruned out otherwise but allowing
to speed up the lower bound testing for many other nodes. Anyway it cannot for sure take BBLS to a
worse solution that the one obtained without this optimization. In fact, it gives the exact same solution.
Besides, we verified experimentally that it is worth it when S = 0.

To sum up the consequences of Theorem 3.6, the process of pruning in BBLS can be accelerated by
considering that, if the new aggregated job pik verifies the condition pik ≤

(Cb
max−1)

2 , then Cb
max is most

likely not a L3 lower bound for this node. It avoids to compute the precise bounds Bα and Bβ and spare
some calculation time.

In a close idea than that of Theorem 3.6, the lower bound testing of a node k might be optimized
based on the result obtained on a sibling left node ℓ. The idea is to infer in particular cases that Cb

max is
a lower bound of the instance I′k without any use of the function is_L3_bound. In these particular cases,
we suppose that the left sibling, whose instance is denoted I′ℓ, was pruned out, that is Cb

max was tested to
be a lower bound for I′ℓ.

Theorem 3.7. Consider a node k and its left sibling ℓ in a BBLS tree and their respective transformed
instances I′k, I

′
ℓ. The node ℓ represents an assignment of the next job to the machine iℓ giving the aggre-

gated job of processing time piℓ to be included in I′ℓ. Likewise, the node k corresponds to an assignment
to the machine ik and to the I′k’s aggregated job of processing time pik . Note that, because ℓ is a left
sibling, the related machine iℓ is less loaded than the right sibling machine ik, therefore piℓ ≤ pik . Now

assume that Cb
max is a L3 lower bound of I′ℓ then, if pik ≤

(Cb
max−1)

2 , the node k has to be pruned out.

Proof. First, note that ℓ has been pruned out (Cb
max is the same for nodes ℓ and k), then for any valid p̄:

• if pik < p̄, Js,k = Js,ℓ,∀s ∈ {1,2,3} and so Bα,k = Bα,ℓ,Bβ ,k = Bβ ,ℓ.

• if p̄ ≤ pik ≤
(Cb

max−1)
2 notice that the only subset of I′k’s jobs with a potential change compared to

I′ℓ’s subsets is J3,k. Either piℓ ∈ J3,ℓ and J3,k = (J3,ℓ ∪{pik}) \ {piℓ} or piℓ /∈ J3,ℓ and we simply
have J3,k = J3,ℓ ∪ {pik}. Recall that piℓ ≤ pik and that Js,k = Js,ℓ,s ∈ {1,2} then conclude that
Bα,k ≥ Bα,ℓ,Bβ ,k ≥ Bβ ,ℓ. So according to (7) if ℓ node was pruned out, k node can only be pruned
out because its bounds are greater or equal to ℓ’s.

4 MULTI-BBLS: parallel runs of BBLS

In section 2 we present BLS and its parallel version BPLS. Then, in section 3, we introduce BBLS, an
improvement of BLS that uses pruning to reduce the solution search tree. Doing so we freed computa-
tional power that we can now use to enhance the BBLS solutions at a small additional cost. We name
this basic idea MULTI-BBLS (or MBBLS) which consists generally in running BBLS multiple times,
mostly in parallel.

We devise three specific strategies in this purpose. They are described in 4.1, 4.2, 4.3. Each one
of these strategies is not necessarily more efficient than a simple BBLS for all instances, it depends.
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Interesting use cases are presented in section 6 where it is shown that combining these multiple calls
of BBLS allows to outperform other heuristics on instances for which all our tested configurations of a
single BBLS were unable to do so (see section 5).

4.1 MBBLS1: trying different orders of the job list

As mentioned previously, BBLS, as any other LS algorithm, assigns jobs in a specific order. However,
trying different orders does not give the same result not only for BBLS but also for a classic LS like
LPT or SLACK. LISTFIT solutions are also more efficient than MULTIFIT’s because LISTFIT tries
much more orders of the n jobs than MULTIFIT, which only tries one. The idea for MBBLS1 is then
to leverage the power of a multi-core CPU to run BBLS on different job list orders. Because these
runs are parallel it should not take more time than only one BBLS run, except if we add more than
one supplementary order per CPU core. If needed one can decide to try more orders to pursue better
solutions but it goes obviously with an increase of the computational cost.

It remains a question about what orders should be tried. We denote O the number of orders we want
to try. We already know that the LPT and SLACK orders produce good solutions for many instances.
So, if O ≥ 2, we always pick both of them. if O > 2 we simply try to pick additional orders that are as
different as possible because we do not have any information about which order is more efficient for a
given instance. Indeed, it does not seem very wise to try very similar orders. Following this idea we try
permutations of the LPT order taken in lexicographic order. More precisely, if PLPT is the whole set
of permutations of the LPT order of jobs j, we denote d = |PLPT |

O−1 the offset between two permutations
we want to try as input of BBLS (including the LPT order). We denote π(k) the function that gives
the k-th permutation of PLPT sorted in lexicographic order. The LPT order is the permutation π(1),
defined by: π(1) = 1,2, . . . ,n, assuming that p1 ≥ p2 ≥ . . . ≥ n. The other permutations picked are
π(⌊d⌋),π(⌊2 ∗ d⌋), . . . ,π((O − 1)d = |PLPT |). Because of the lexicographic order, π((O − 1)d), the
last permutation picked is the so called SPT order (for Shortest Processing Time first) π((O − 1)d) =
n,n− 1, . . . ,1. Note that it does not need to build the entire set PLPT to extract a number of (O − 1)
permutations. The permutation extraction complexity is considered O(1).

This approach is written in algorithm 5, in which three functions must be explained.

• P 7→ Porder = order(P,order) is the function that takes a list of processing times P and returns
Porder, the list ordered in a specific order (e.g. ‘LPT’, ‘SLACK’ or ‘SPT’) .

• parallel( f unction(args)) is a non-blocking function that performs the parallel execution, as a
thread or a process, of a f unction configured with arguments args.

• waitall() blocks the current program until all parallel calls made before has ended their execution.

4.2 MBBLS2: one BBLS per subgroup of jobs

Another way to run multiple BBLS for a P||Cmax instance I = (P = {p j} j∈{1,...,n},m) is to divide the set
of n jobs into a partition of K job subsets of sizes n1, . . . ,nK such that n1 + · · ·+ nK = n. Then BBLS
is performed on each subset so that we obtain K different sub-schedules on m machines. These BBLS
executions can be totally parallel if K is lower or equal to the number of CPU cores. Finally, these
sub-schedules are grouped together to obtain a full schedule for the original instance I. This approach is
presented as algorithm 6. For the grouping part (lines 16-18), we consider I′, another P||Cmax instance,
formed from the K sub-schedules. Each sub-schedule gives m jobs. One job p′k,i is obtained by summing
the processing times p j of the jobs assigned to a machine i. Hence I′ has a number of K×m jobs. A
last BBLS execution is performed on I′ (line 21) then the resulting schedule is transformed back to
the original p j’s of I by splitting the p′k,i accordingly (lines 23-28) in order to reverse the summing
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Algorithm 5: MBBLS1(P,m,N,S,O)

Input:
P←{p j} j∈{1,...,n}
m : integer
Optional parameter : N← ∞ : integer
Optional parameter : S← 0 : integer
Optional parameter : O ← 1 : integer

Data:
Cmax[O] : integer
σ [O]←{()i∈{1,...,m}} : schedule
k← 2 : integer

1 begin
2 PLPT ← order(P, ‘LPT ′)
3 σ [1],Cmax[1]← parallel(BBLS(PLPT ,m,σ [1],N,S))

4 d← |PLPT |
O−1

5 while k < O do
6 if k = O−1 then πk← π(|PLPT |)
7

8 else πk← π(⌊d ∗ (k−1)⌋)
9

10 Pk← PLPT [πk[1]], . . . ,PLPT [πk[n]]
11 σ [k],Cmax[k]← parallel(BBLS(Pk,m,σ [k],N,S))
12 k← k+1
13 end while
14 PSLACK ← order(P, ‘SLACK′)
15 σ [O],Cmax[O]← parallel(BBLS(PSLACK ,m,σ [O],N,S))
16 waitall()
17 kbest ← argmink(Cmax)
18 return σ [kbest ]

19 end
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Algorithm 6: MBBLS2(P,m,N,S,K)

Input:
P←{p j} j∈{1,...,n}
m : integer
Optional : N← ∞,S← 0,K← 1 : integer

Data:
σK [K],σ ′,σ ←{()i∈{1,...,m}} : schedule
Sk,Nk,S′,N′,n′← K×m : integer
n1, . . . ,nK ,q,r,k← 0, j← 1 : integer

1 begin
2 q← ⌊n/K⌋
3 r← n−Kq
4 n1,n2, . . . ,nK ← q
5 for j← 1 to r do n j← n j +1
6 j← 1
7 while j ≤ n do
8 Pk←{P[ j],P[ j+1], . . . ,P[ j+nk−1]}
9 j← j+nk

10 k← k+1
11 Nk←max(min(nk−m−1,N),0)
12 Sk←max(min(S,nk−Nk−m−1),0)
13 σK [k]← parallel(BBLS(Pk,m,σK [k],Nk,Sk))

14 end while
15 waitall()
16 for k← 1, . . . ,K do
17 for i← 1, . . . ,m do p′k,i← pσK [k][i][1]+ pσK [k][i][2]+ · · ·+ pσK [k][i][size(σK [k][i])]

18 end for
19 N′←max(min(N,n′−m−1),0)
20 S′←max(0,min(S,n′−N′−m−1))
21 σ ′← BBLS((p′1,1, . . . , p′1,m, p′2,1, . . . , p′2,m,
22 . . . , p′K,1, . . . , p′K,m), m,σ ′,N′,S′)
23 for k← 1, . . . ,K do
24 for i← 1, . . . ,m do
25 σ ← replace(σ ′,(k, i),σK [k],(i,1),
26 . . . ,(i,size(σK [k])))
27 end for
28 end for
29 return σ

30 end

process made to form I′. This conversion is done by the replace function. It replaces the merger job
of index (k, i) of instance I′ set in schedule σ ′ by the corresponding jobs of original instance I whose
p j were summed to obtain p′k,i. The schedule σ thus built is the P||Cmax solution of I. The functions
parallel,waitall are the same as in 4.1.

Using MBBLS2, makes sense particularly on instances where n is very large. Indeed, it explores
combinatorial possibilities on different subsets of the jobs instead of just one subset (defined by N and S
in BBLS). The branching strategy is working at different levels of the job list and it is done in parallel, so
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the computation time does not have to be more important to get more different solutions and potentially a
better schedule. Finally, when the sub-schedules are added together to form one full schedule, we know
it has been more refined than what BBLS alone is capable of. The same idea lays behind MBBLS3,
described in the following, but for this heuristic the sub-problems are defined on subsets of machines
instead of subsets of jobs.

4.3 MBBLS3: one BBLS per subgroup of machines

Yet another way to run multiple BBLS is to pose sub-problems that reduce the number of machines used.
If m is the number of machines of the original instance I, we defined a number of K sub-instances Ik in
which the numbers of machines are m1,m2, . . . ,mK . That is only interesting if m is large enough (in our
tests we considered it is worth it if m > 5). Indeed, the larger m is, the less binary BBLS is exploring
the field of possibilities, because the algorithm is not allowed to try assignments on the third up to the
m-th least loaded machines. On the other hand, increasing arity was not found to be an efficient way to
proceed (as mentioned earlier and empirically elaborated in 5.3.1).

The strategy of splitting the m machines by groups is an attempt to enlarge the spanning of the
exploration. The algorithm 7 follows this strategy. It works in three times:

1. Split the n jobs into K subgroups as balanced as possible. This partition problem is equivalent to
a P||Cmax problem on K machines so we can use BBLS in that purpose too (line 8). Of course
K must stay small to be consistent with the idea to really reduce the number of machines. In our
experiments we limit m to at most 25 machines. Another constraint is that all the mk must be equal
to each other to avoid unbalanced partition of jobs.

2. Solve corresponding K sub-instances of P||Cmax whose numbers of machines are m1, . . . ,mK (line
15).

3. Concatenate together the K (line 18) sub-schedules obtained to solve P||Cmax on the initial instance
I.

An additional refinement is possible before the last step, by proceeding to job interchanges between
sub-schedules in order to reduce the possible unbalance between two sub-schedules. A simple rule
would be: let Ik1 , Ik2 the sub-instances for which the makespans obtained are Cmax,k1 ,Cmax,k2 , such that
they are respectively the greatest and the smallest of all sub-schedules. Then if δ =Cmax,k1 −Cmax,k2 is
such that it exists a pair of jobs (p1, p2) ∈ Ik1 × Ik2 , with p1 being assigned to the machine of greatest
completion time Cmax,k1 , and 0 < p1− p2 < δ then swapping these two jobs between sub-schedules of
Ik1 and Ik2 is lowering the overall Cmax for I. We do not have to assess all pairs (p1, p2), only taking the
two first largest can be enough. This interchanging process can hence be repeated in a time complexity
of at most O(n). It is not included in algorithm 7 but could easily be inserted on the end.

5 Experimental evaluation of BBLS and BPLS

In this section we mainly provide a global evaluation of BBLS and BPLS. They are compared to other
algorithms mentioned in the introduction. More precisely, we present benchmarks for BB-SLACK and
BP-SLACK, variants of SLACK [Della Croce & Scatamacchia, 2020], already introduced in 2.2. We did
not integrate BB-LPT and BP-LPT in our tests because LPT has shown, in [Della Croce & Scatamacchia, 2020],
to be less effective than SLACK on most of the instances considered. For reproducibility, all the source
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Algorithm 7: MBBLS3(P,m,N,S,K)

Input:
P←{p j} j∈{1,...,n}
m : integer
Optional parameter : N← ∞ : integer
Optional parameter : S← 0 : integer
Optional parameter : K← 1 : integer

Data:
σK [K]←{()i∈{1,...,m}} : schedule
σ ′,σ ←{()i∈{1,...,m}} : schedule
k← 0 : integer
Sk,Nk : integer
q,r : integer
n1, . . . ,nK : integer
m1, . . . ,mK : integer

1 begin
2 q← ⌊m/K⌋
3 r← m−Kq
4 n1,n2, . . . ,nK ← q
5 if r > 0 then
6 error(’m must be evenly divided by K’)
7 end if
8 σ ′← BBLS(P,K,σ ′,N,S)
9 for k← 1, . . . ,K do

10 mk← q
11 Pk← (pσ ′[k][1], . . . , pσ ′[k][mk])

12 nk← size(Pk)
13 Nk←max(min(nk−mk−1,N),0)
14 Sk←max(nk−Nk−mk−1,0)
15 σK [k]← parallel(BBLS(Pk,mk,σK [k],Nk,Sk))

16 end for
17 waitall()
18 σ ← (σK [1][1], . . . ,σK [1][m1], . . . ,σK [K][1],
19 . . . ,σK [K][mk])
20 return σ

21 end

code on which the experiments are based is available online [Hadj-Djilani, 2023a]. Before the bench-
marks we take a little detour for testing the shifting parameter S studied in subsection 3.2.1.

But first we describe the sets of instances used in our experiments. They are all taken as references
from the literature.

6Exact instances used in 5.3 are available online [Hadj-Djilani, 2023b]
7Although the value m = 5 is not used in the original E2 experiment ([Gupta & Ruiz-Torres, 2001]), it is used in GR2

instance set.
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Table 2: Experiment instances

Instances6 Distribution m n [a,b]
Della Croche and Scatamacchia Instances

DCU Uniform 5, 10, 25 10, 50, 100, 500, 1000 [1, 100], [1, 1000]

[1, 10000]

DCNU Non-uniform 5, 10, 25 10, 50, 100, 500, 1000 [1, 100], [1, 1000]

[1, 10000]

Gupta et Ruiz-Torres Instances
GR1 Uniform 3, 4, 5 2m, 3m, 5m [1, 20], [20, 50]

GR27 Uniform 2, 3, 4, 5, 6, 8, 10 10, 30, 50, 100 [100, 800]

GR3 Uniform 3, 5, 8, 10 3m+1, 3m+2, 4m+1, [1, 100], [100, 200]

4m+2, 5m+1, 5m+2

5.1 The instances

We selected different sets of instances from the literature, they are listed in table 2. The first group
of instances comes from [Della Croce & Scatamacchia, 2020] but originally from [França et al., 1994]
for uniform instances (DCU) and from [Frangioni et al., 2004] for non-uniform instances (DCNU). The
second group of instances is composed of three subgroups denoted GR1, GR2 and GR3 in reference to
experiences E1, E2 and E3 made in [Gupta & Ruiz-Torres, 2001]. We chose those instances: (i) firstly
because, as variants of SLACK, BB-SLACK and BP-SLACK should be evaluated according to the
same protocol used in [Della Croce & Scatamacchia, 2020], (ii) secondly because, in our experiments,
LISTFIT delivers good performance but comparing SLACK and LISTFIT using one or another set of
instances did not give the same results, hence the need to use several set of instances like the one used
to evaluate LISTFIT in [Gupta & Ruiz-Torres, 2001]. The instances are generated as follows: for each
combination of m,n and interval [a,b] in the lines of the table 2, such that m < n, 20 instances are drawn
with processing times picked randomly in interval [a,b] according to the instance group distribution
(uniform or non-uniform). The non-uniform distribution is such that 98% of the processing times are
integers uniformly distributed in [0.9(b− a), b] while the remaining ones are uniformly distributed in
[a, 0.2(b− a)]. All these instances sum up to 780 DCU instances and as many DCNU instances, 360
GR1 instances, 540 GR2 instances and 960 GR3 instances for a total of 3420 instances.

5.2 Testing the parameter S of BBLS

The goal of the experiment described here is to verify empirically the effect of Theorems 3.1, 3.2.
The instance family tested is a subset of GR2 instances (see table 2). Note that other instance subsets

of table 2 would allow to make similar observations on computation times and BBLS tree pruning. So
we generate 200 pseudo-random instances for each pair (m,n) with m ∈ {4,8} and n = 100, that is a
total of 400 instances. The processing times are picked in {100, . . . ,800} according to an uniform law.

For our tests, we use BB-SLACK and BP-SLACK algorithms, that is BBLS and BPLS. In these runs
N is always set to 10 but the value of S varies. BB-SLACK is ran two times, the first one with S = 0 and
the second one with S = 80. For BP-SLACK, S is not used so it is equivalent to the configuration S = 0.
The algorithm is here parallelized with at most 8 processes 8. We intend to show that a larger value of
S is interesting not only by speeding up the computation of BPP bounds (5), (6) but also by pruning
widely the BB trees. BP-SLACK plays the role of the baseline to evaluate BB-SLACK performance
in both cases S = 0 and S = 80. Indeed, remember that BBLS first objective remains to work faster
than BPLS, without risking to produce poorer solutions. This is only possible when S > 0, otherwise

8Precisely, 8 cores of a AMD Ryzen 5 2500U CPU
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BBLS (or BB-SLACK) produces the exact same solutions as BPLS (or BP-SLACK) as we verify in the
following. We also verify that increasing S for a same N does not necessarily imply a loss of quality of
the solutions.

Figure 4: Histograms for the comparison of BB-SLACK tree sizes for S = 0 (on the top) and S = 80 (on
the bottom)

We present the results of this experiment in Figures 4, 5 and 6, where the top subplot is the case
S = 0 for BB-SLACK while the bottom one is the case S = 80. In Figure 4 the histogram shows that
S = 80 results in a wider pruning of the trees. Indeed, for most of the instances (more than 250 out of
400), the pruning is such that the number of leaves is lower than 100, while it can go up to 2N = 1024
with no pruning. Besides, no tree of BB-SLACK with S = 80 is full, with 1024 leaves, the greatest tree
size being 1010 leaves. The histogram for S = 0 shows, on the contrary, that for most of the instances
(about 300 over 400) there is almost no pruning in BB-SLACK run (35 trees are full with 1024 leaves).
We can therefore verify that increasing S is efficient to achieve a wider pruning for many instances as
stated in Theorem 3.2.

The speedup of BB-SLACK, compared to BP-SLACK, according to the size of the pruned tree is
shown in Figure 5. We can observe that, even for a same size of tree, BB-SLACK is faster when S = 80.
This experimentally confirms Theorem 3.1. For example, for a size of 10 leaves, BB-SLACK with S = 0
reached a speedup about 13, while BB-SLACK with S = 80 allows a speedup about 45.
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Figure 5: BB-SLACK vs BP-SLACK speedups obtained w.r.t. to the tree size for S = 0 (on the top) and
S = 80 (on the bottom)

With Figure 6 we can evaluate how S can affect the quality of the P||Cmax solutions for the considered
instance family. In the two subplots shown in this figure, the results are partitioned in 3 groups:

1. The left bars count for instances for which BB-SLACK pruned the tree and was faster than BP-
SLACK.

2. The middle bars count the instances for which BB-SLACK pruned the tree but was slower than
BP-SLACK .

3. The right bars count cases for which BB-SLACK was not able to prune the tree at all and hence
was slower than BP-SLACK.

Note that cases 2 and 3 dit not happen for S = 80, so there is no bar at all.
In the top subplot, S = 0, so that the same pair (N,S) is used for BB-SLACK and BP-SLACK. Hence

their solutions are exactly the same. Indeed, the sizes of the red bars are equal to these of the blue bars,
which means that, for all the instances, BB-SLACK (BBLS) and BP-SLACK (BPLS) returned the same
makespans. We can also see that, for S = 0, on the most part of the instances BB-SLACK is slower than
BP-SLACK.

In the bottom subplot, where S = 80, the instances for which the makespans of BB-SLACK and BP-
SLACK are equal are accounted in red, the instances for which BB-SLACK is better than BP-SLACK
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Figure 6: Performance of BB-SLACK compared to BP-SLACK, in case S = 0 (on the top) and S = 80
(on the bottom)

are in green and the ones for which BP-SLACK does better are in orange. The green part is the largest
for this instance family, which means that increasing S does not lead to poorer performance in that case.
It is noteworthy in this figure that again, for all of the instances, BB-SLACK set with S = 80 is faster
than BP-SLACK running on the same instances, even if the tree is not largely pruned. Indeed, up to
to a tree of 1010 leaves BB-SLACK does faster than BP-SLACK while when S = 0 the tree needs to
be smaller than 178 leaves for BB-SLACK to do faster. We see in the next of this section that S can
nevertheless impact the performance of BB-SLACK, in a sense that for a same N, the smaller S the
better the solutions even if that is not always true for specific subgroups of instances. This tendency is
globally observed on the considered instances.

In the remainder of the section we establish a richer protocol with more instances to compare BB-
SLACK and BP-SLACK not only to each other but also to well-known heuristics designed to tackle the
P||Cmax problem.

5.3 Benchmarking BBLS and BPLS against well-known heuristics

5.3.1 Protocol and algorithms

We present now an experiment established in order to evaluate the performance of BBLS and BPLS.
This evaluation takes into account not only the quality of the solutions but also the computational time.
The tests are performed on BB-SLACK (BBLS) and BP-SLACK (BPLS). We compare those algorithms
to other well-known algorithms:

RR -FEMTO-ST-2919



24 Hakim Hadj-Djilani et all

• LS-based algorithms with LPT and SLACK,

• Bin-packing based algorithms like MULTIFIT, LISTFIT for which the number of iterations is
always k = 7. This is the configuration advised for MULTIFIT in [Coffman et al., 1978] and also
applied in [Gupta & Ruiz-Torres, 2001].

• COMBINE which is a mixed strategy between the two previous kinds (MULTIFIT being called
with the same number of iterations, k = 7),

• We also chose to evaluate LDM because it can be very efficient. Besides, it implements yet another
strategy [Michiels et al., 2003].

BP-SLACK and BB-SLACK were both configured with N = 10 and N = 15 in two separate runs.
However the shifting parameter S was always zero for BP-SLACK while a value of S near to the maxi-
mum (n−N−m−1) was used for BB-SLACK. Recall that S matters only in a pruning scenario, that is
why BP-SLACK (BPLS) does not use it. We executed these algorithms on all the instances described in
table 2. The exact instances used are available online [Hadj-Djilani, 2023b].

Note that two sets of experiments, done to widen the scope of our investigations, are not presented
here. First, we ran the algorithms on perfect matching instances (PMI’s, instances where the optimal
solution is known) but it did not give any major difference in the evaluation of our algorithms. Please
refer to appendix B for more details on these results and how we built PMI’s. Second, we did not include
our experiments about BBLS configured with ternary trees because it turns out to be less efficient for the
same computational cost as binary tree BBLS. Indeed, we tested a ternary tree based BBLS and limited
the number of nodes to get the same cost than that obtained with binary binary BBLS (commentary
of (1) in section 2 details how to do that). We hence had to use a smaller value for the parameter N
of ternary BBLS than for binary BBLS. This implies that less jobs were assigned by the branching
strategy for ternary BBLS than for binary BBLS. Precisely, we used N2 ∈ {10,15} for binary BBLS
and N3 = {6,9} for ternary BBLS. We noticed that for more than 90% of instances listed in table 2,
binary BBLS produced equal or better solutions than ternary BBLS while the latter conversely produced
better or equal solutions to binary BBLS for only 70% on the instances. Furthermore, ternary BBLS
was twice more computationally expensive than binary BBLS even if the full ternary tree of the former
was smaller, in number of nodes, than that of binary BBLS. It suggests that the tree pruning is far less
efficient with arity 3.

The algorithm implementations were all written in Python using Numpy (https://numpy.org).
For the BBLS implementation, to optimize the computation of the L3 bound, we used Numba (https:
//numba.pydata.org). Optimization properties 3.3, 3.4, 3.5 were enabled for BBLS but not Theo-
rem 3.6 because it was tested efficient only when S = 0 (in which case it allows an acceleration of one
to several orders of magnitude, approximately as much as Numba just-in-time compiling permits). The
Theorem 3.7 was not used either because it did not show a significant speedup on the pruning (which
obviously depends on the instances used).

The LISTFIT implementation has been parallelized. Indeed, the 4n MULTIFIT calls needed by
LISTFIT can easily be spread on several processors/cores as threads or processes. A quick experiment
allowed to verify that the parallelization of LISTFIT is worth it on the CPU used9 if the number of jobs
is greater or equal to 100 (limit under what we used a sequential LISTFIT). These details matter in the
computation time measurement made further in this section.

5.3.2 The results

9An Intel(R) Xeon(R) Platinum 9242 equipped of 48 cores, that is 96 threads.

FEMTO-ST Institute

https://numpy.org
https://numba.pydata.org
https://numba.pydata.org


Branching List Scheduling Algorithms 25

Figure 7: Performance of the branching heuristics relatively to well-known algorithms. All instances of
Table 2 (DCU, DCNU, GR1, GR2, GR3) are grouped in the figures.

Figure 7 presents the makespans obtained with each algorithm as well as their execution times. In
order to compare the results for different instances in the same figure the makespans are normalized using
the lower bound L0 (see section 3.1). Hence the ranks according to the median normalized makespans
are indicated on the figure along the algorithm names which are sorted according to their rank from left
to right. Two algorithms might have the same rank in case of tie. The makespan boxplot is useful as
it gives an insight of the algorithm result distribution over the full set of instances. However, medians
should be read carefully because it is totally possible, for two algorithms A1 and A2, to obtain makespan
medians m1 and m2 such that m1 ≤m2 but with a number of better results far more important for A2. For
that reason, the stacked bar chart at the bottom of Figure 7, displays the number of instances for which
an algorithm ranks first, with the best makespan, or second and so on (with possible ties here too). The
ranks span from #1 to #4 since the last ranks (#5 to #10) were not shown in the figure for readability
reasons. Besides, we are more interested in first ranks even if looking more carefully almost all instances
are accounted in the figures. Note that on the top of each bar is printed the total number of instances for
all accounted ranks. Likewise, over each sub-bar is displayed the number of instances counted for the
corresponding algorithm rank listed in the legend.

All instances grouped: Figure 7 shows the results obtained with instances from all different
groups (DC and GR) combined. A first general remark is that all heuristics perform very well with
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median normalized makespans very close to one, that is median makespans close to the lower bound
L0. For any tested algorithm the difference between the median makespan and L0 is smaller than 2%
of L0. The algorithms are very competitive to each other. Indeed they all have been already proven to
be effective in the literature. However it is clear that the spanning of the makespans over the instances
can vary significantly from one algorithm to another (e.g. about 5% of L0 for LISTFIT to more than
10% for LPT 10). Besides, depending on the jobs processing times, even 1% of the makespan can be
interesting for the performance of a schedule. Furthermore, even if the makespan changes just a bit
from an algorithm to another for a given instance, we are still interested in enhancing the performance
toward the optimal solution. Anyway, out of makespan value considerations, counting the number of #1
ranks, we see significant variations among algorithms. We can see in the "per-rank instance counts" bar
chart of Figure 7 that BP-SLACK and BB-SLACK give the best makespan for a number of instances
significantly greater than all other algorithms. A larger value of N giving obviously the best results. A
value of S = 0 for BP-SLACK runs shows also a significant advantage over BB-SLACK runs that almost
maximize S. This advantage however comes with a larger computational cost. This can be seen in the
"Computation time" boxplots, where BP-SLACK ranks 9 and 10, while BB-SLACK ranks 6 and 7, even
if there are outliers with larger times for BB-SLACK configured with N = 15. These outliers are most
likely due to a poor pruning of the corresponding solution trees by BBLS but we note that, for the most
part, they do not go as high as BP-SLACK set also to N = 15.

10The figures for the normalized makespans do not show the outliers for the sake of readability but we noticed outliers were
not making a difference between one algorithm to each other. The greatest outlier makespan was about 30% above L0 for all
algorithms.
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Figure 8: Benchmark on DCU and DCNU instances (see table 2)
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Looking at the "Normalized makespans" boxplots, we see again that BP-SLACK and BB-SLACK
algorithms are top ranked, from 1 to 5. LISTFIT ranks 3, just after the BP-SLACK algorithm and before
the BB-SLACK algorithm. From the bar chart we can nevertheless verify that LISTFIT has less instances
than BB-SLACK (N = 15) for which it obtains the best makespan. On the other hand, considering the
makespans of all instances, the median for LISTFIT is better than that of BB-SLACK (N = 10,15).

In the following, we assess the heuristics over the different subgroups of instances. In particular we
show for which instance subgroups LISTFIT manages to be better than the BB/BP-SLACK algorithms.

DC instances: The results obtained with DC instances are presented in Figure 8. Note that we
also ran the experiment on equivalent instances from University of Bologna and obtained similar results
(see appendix C, Figure 20).

Starting with the DCNU instances, that is the non-uniform instances, it is pretty obvious that BB-
SLACK, and even more BP-SLACK, outperform all other algorithms. Whether we look at the bar chart
or at the boxplots, they accumulate a clearly larger number of instances on which they ranked at the top,
and reach smaller median makespans than all other algorithms.

Regarding the computation time, LISTFIT occupies the last position (rank 10) just behind BP-
SLACK (ranks 8 and 9) and surprisingly BB-SLACK (N=10) managed to do faster than COMBINE
and LDM. It is likely that the tree pruning was very efficient on this configuration and set of instances.
According to this experiment, if we were to restrain ourselves to only BB-SLACK N = 10 against all
other algorithms (excluding those of our contributions), we could, for the DCNU instances, have the
best solutions to P||Cmax and be ranked 4 out of 7 regarding the computation time. In this figure we also
notice, as in [Della Croce & Scatamacchia, 2020], that SLACK is very efficient for that kind of instances
compared to COMBINE, MULTIFIT or LISTFIT (bin-packing algorithms in general).

For uniform instances (DCU), we observe that BB-SLACK and BP-SLACK do quite good with
a median normalized makespan, at rank 2 for BP-SLACK N = 15 and rank 3 for its number of best
makespan instances. This configuration of BP-SLACK ranks just after LDM (rank 1) and just before
COMBINE (rank 3) for the median makespan, while LDM is first, COMBINE second and BP-SLACK
N = 15 third for the number of best makespan instances. Note however that the latter manages to
accumulate the most important number of instances for which it is ranked in the top 4. BP-SLACK
N = 10 produces less good results than LDM and COMBINE too and is ranked 4 regarding the median
makespan and 6 for the number of best makespan instances, behind BB-SLACK N = 15. This one
ranks better than BB-SLACK N = 10 but with almost the same performance because the former is the
best for 367 instances, while the latter is for 366 instances. It is however worth noting that, on this set
of DCU instances, BB-SLACK N = 10 median computation time is smaller than that of MULTIFIT,
COMBINE, LDM and LISTFIT. According to the median time BB-SLACK N = 15 is faster than LDM
and LISTFIT. However, BP-SLACK configurations, N = 15 and N = 10 (with S = 0), are slower than
all other algorithms except LISTFIT which is the slowest of all.

In Figure 9, we see that LDM becomes more and more dominant on DCU instances, when b grows
from 100 to 10000. It is also noticeably true when n grows as shown in table 3. An explanation for
these two facts is to find in the LDM strategy. First, LDM subdivides the jobs into smaller packets of
jobs, the partial schedules. When new assignments of jobs are made by merging two partial schedules,
the whole set of n jobs is taken into account (by comparing the differences of machine loads among
partial schedules). On the other side, BBLS and BPLS only consider the loads of the two least loaded
machines when assigning the next job with no consideration at all to other jobs yet to assign. Going
blindly on the remaining jobs to assign, is a risk that is more and more important as n grows. Similarly,
when b grows, the difference between two p j’s has a greater chance to be larger so that a wrong choice
of assignment might be more penalizing on the machine load balancing. Besides, for a same n, the
availability of smaller jobs becomes less probably when b is larger (remember that here we consider
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Figure 9

Table 3: LDM versus BP/BB-SLACK wins w.r.t. n

n number of
instances

LDM BP-SLACK
N = 15

BP-SLACK
N = 10

BB-
SLACK
N = 15

BB-
SLACK
N = 10

10 60 54 55 55 55 55
50 180 76 86 131 84 84
100 180 100 35 47 43 44
500 180 175 70 70 78 78
1000 180 180 95 95 106 106
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uniform instances). But smaller jobs are precisely what is needed to balance differences of machine
loads implied by larger jobs.

Figure 10: Benchmark on GR1 and GR2 instances (see table 2).

In section 6 we show how MBBLS2, introduced in 4.2, can mitigate those penalties on BBLS, by
working on smaller packets of jobs first, as LDM does, and then grouping the sub-schedules obtained
into a complete one.

GR instances: For GR instances the rankings are also subtly different. First we consider GR1 and
GR2 on Figure 10. It is clear that both BP-SLACK and BB-SLACK outperform all other algorithms
for all our metrics, except for the computation time. However BB-SLACK (N = 10,15) is faster than
LISTFIT which produced significantly less good solutions, especially for GR2 instances.

For GR3 instances, in Figure 11, the interesting point is that LISTFIT outperforms most of our
algorithms on median makespan and all of them on number of best makespan instances. However its
median execution time is larger than BB-SLACK’s. We zoomed on specific subgroups of GR3 instances
to understand where exactly LISTFIT achieves to be the best algorithm.
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Figure 11: Benchmark on GR3 instances (see table 2).

In Figures 12 to 15 we clearly see that LISTFIT gets its advantage when the interval of processing
times is [a = 100, b = 200] (see bottom subplots), while the interval [a = 1, b = 100] (see top subplots)
fits better to BP-SLACK and BB-SLACK best performance. When m ≥ 8, there is a slight difference
because BP/BB algorithms do less well when m becomes larger. Indeed, with m = 10, LISTFIT ranks
first, even if a = 1 (with 84 instances for which LISTFIT is the best and 80 for BP-SLACK N = 15).
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Figure 12: Focus on GR3 instances, m = 3 (see table 2)

Figure 14: Focus on GR3 instances, m = 8 (see table 2)
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Figure 13: Focus on GR3 instances, m = 5 (see table 2)

Figure 15: Focus on GR3 instances, m = 10 (see table 2)
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The fact that our algorithms are less efficient when a = 100 is to find in the other LS-based algo-
rithms that seem to all follow this tendency, contrary to FFD based algorithms that behave well in this
configuration, LISTFIT being at the top. Preventing any smaller p j puts LS-based algorithms in difficult
situation to balance machines loads because, as mentioned before in LDM performance comparison, the
smaller jobs are necessary in this purpose. About the effect of the m value, it is clear that, when m is
greater, there is much of a chance that the optimal choice of assignment for each job is another machine
than the first or second available ones. Therefore the likelihood to get less efficient solutions for BP-
SLACK and BB-SLACK is larger when m grows. MBBLS1 and MBBLS2 introduced in 4.1 and 4.2 are
used in section 6 to overcome these LS-based algorithm disadvantages.

6 An ad hoc MBBLS

Figure 16: Ad hoc MBBLS flowchart

Input I = (P = (p1, . . . ,pn),m)

I is uniform BB-SLACK

m≤ 5 or n
m = 2 n < 100 or

n
m = 2

m < 5 and
a≥ 100

MBBLS2
K = 4

MBBLS3

K =


m/5 if 5|m
m/4 if 4|m
m/3 if 3|m
m/2 if 2|m

MBBLS1
O = 64

m≤ 25 and

(2|m or 3|m or 5|m)

Error11

Output: σ ,Cmax

YES

NO

NO

YES

NO

YES

NO

YES

YES

NO

FEMTO-ST Institute



Branching List Scheduling Algorithms 35

Starting from the results of the experiment presented in section 5.3, we propose an ad hoc MBBLS
heuristic using the three heuristics introduced in 4.1, 4.2, 4.3. The flowchart, presented in Figure 16,
shows how this heuristic works. Basically, it calls MBBLS1, MBBLS2, MBBLS3 or just BB-SLACK
in order to maximize the quality of solutions for all the tested instances. Indeed, BB-SLACK performs
very well on non-uniform instances (DCNU), so it was maintained for those instances, but has clear
weaknesses on other instances. On GR3 instances BB-SLACK does not perform as well as LISTFIT
when m grows so, for m > 5, MBBLS calls MBBLS3 which divides the P||Cmax problem into sub-
problems that use a smaller number of machines. On the same subset of instances, we noticed that
LISTFIT is also better if the lower bound a, chosen to draw the p j’s, is greater or equal to 100, hence, in
that case, we call MBBLS1. Two exceptions should be noticed in the flowchart. First, when m = 5, even
if a≥ 100, rather to call MBBLS1, MBBLS calls BB-SLACK. The reason for this choice is simply that
BB-SLACK does better on this subset. For the same reason, a second exception is made about MBBLS3.
It is not called when n

m = 2, even if m > 5. Among tested instances the only precise case that verifies
this condition is when m = 25 and n = 50. Indeed, on these instances, we observed that BB-SLACK is
more efficient than MBBLS3. We also use MBBLS2 on cases where n ≥ 100 since that is the point of
this heuristic to run on instances that contain a large number of jobs. That choice was made to manage
outperforming LDM on DCU instances.

By running MBBLS as defined by the flowchart, we were able to outperform LDM and LISTFIT on
instances for which BB-SLACK alone was not able to do so (as shown in 5.3.2). Figures 17 and 18 12

show the results respectively for the GR3 and DCU instances. In Figure 17, apart from our heuristics,
only LISTFIT is considered, because that is the challenging algorithm identified in 5.3.2 for GR3 in-
stances (see Figure 11). LDM is likewise included in Figure 18 regarding the results obtained for DCU
instances (see Figure 8). Another point that requires attention, is the increase of N up to 16 for MBBLS.
The reason for this configuration is the greater number of wins for LDM compared to MBBLS N = 15.

Note however that, even if MBBLS N = 15 has less wins than LDM, the former more often ranks in
the two first algorithms than the latter. Anyway, MBBLS N = 16 is enough to produce more wins than
LDM. Finally, note that although LDM is ranked first according to its median normalized makespan
(Figure 18) the spanning of its makespans, is quite larger than that obtained with any configuration of
MBBLS (even N = 10). MBBLS N = 17, while not present in the figure, was also ran and gave a median
normalized Cmax lower than that of LDM. This allows us to conclude that the MBBLS approach, with
increasing values of N can outperform LDM.

Conclusion

In this paper we show how a modification in the LS algorithm, considering an assignment on other
machines than the first available one (actually only the second one), can improve the makespan obtained
for a P||Cmax problem. We show that branching strategies can easily be derived, as in BLS algorithm,
although the cost is exponential in the number of jobs n. A parameter N, that limits the number of jobs
treated by BLS, the others being handled by the classic LS, is our first step to speed up the method. This
parameter N is used without losing the algorithm interest regarding the quality of solutions. Then we
show, with BPLS, that a basic parallelization of the alternatives encoded in the solution search tree allows
to speed up significantly the branching process. Besides, it makes possible to scale up to the available
computational power of a multi-core CPU or a computation grid, adjusting the quality of solutions
through the parameter N. Next, we develop a Branch & Bound algorithm, named BBLS, on the same
principle introduced in [Dell’Amico & Martello, 1995] by allowing to prune out from the tree, subsets of

11The error case might happen only if MBBLS receives an instance that is not from the tested instances presented in table 2. It
is however totally envisionable to extend MBBLS3 to any m > 25 with no divisibility constraint for other families of instances.

12We also ran the experiment on equivalent instances from University of Bologna website and obtained similar results (see
appendix C, Figure 21)
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Figure 17: MBBLS versus LISTFIT on GR3 instances (see table 2)

solutions for which equivalent transformed instances indicate lower bounds that are not worthy relatively
to the best solution so far. A shifting parameter S, added to BBLS, allows to speed up the computation
of lower bounds and enhance the pruning effect of the algorithm. We propose additional theorems in
the goal to optimize BBLS. To assess the performance of the branching heuristics, benchmarks include
many known algorithms as challengers. They show clearly, on literature instances, that BB-SLACK and
BP-SLACK can really outperform the other algorithms on the vast majority of these instances. On the
other hand, we also identify where they are not so efficient compared to LISTFIT (on instances whose
job times start from 100 and above or when m grows) or LDM (on instances for which n or job times
are larger). Making multiple calls to BBLS, varying the order of the jobs, or relying on sub-problems
with a smaller number of machines or jobs, we have been able to define an ad hoc heuristic, named
MBBLS, purposed to beat LDM and LISTFIT on the problematic subsets of instances. Appendices are
joined to the paper in order to confirm or complete the results shown in the body of the paper on other
instances, as perfect matching instances (appendix B), instances found online (appendix C) or instances
created through independent generators (appendices, D). Future works are envisioned as benchmarking
our heuristics on other instance families, as bin-packing instances. Evaluating these heuristics against
the metaheuristics mentioned in introduction should also be interesting.
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Figure 18: MBBLS versus LDM on DCU instances (see table 2)
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A Proof of theorem 3.6

Proof. Denote J1,k,J2,k,J3,k the subsets for the instance I′k of node k for a given p̄, and J1,k−1,J2,k−1,J3,k−1
the subsets for the parent node (k−1) and the same p̄. Because L =Cb

max−1 and pik =Cik + pa ≤ L/2
we have Cik ≤ L/2 and pa ≤ L/2. Denote J4(p̄) = { j|p j < p̄} the subset of jobs that are ignored in Bα ,
Bβ and notice that there are five possible cases for the processing times pik ,Cik , pa:

pik ,Cik , pa ∈ J3,k× J3,k−1× J3,k−1 (8)

pik ,Cik , pa ∈ J3,k× J3,k−1× J4,k−1 (9)

pik ,Cik , pa ∈ J3,k× J4,k−1× J3,k−1 (10)

pik ,Cik , pa ∈ J3,k× J4,k−1× J4,k−1 (11)

pik ,Cik , pa ∈ J4,k× J4,k−1× J4,k−1 (12)

Denote R(Bα ,k− 1) =
∑ j∈J3,k−1

p j−(L|J2,k−1|−∑i∈J2,k−1
p j)

L and R(Bβ ,k− 1) =
|J3,k−1|−∑ j∈J2,k−1

⌊ L−p j
p̄

⌋
⌊ L

p̄⌋
that are

terms of the parent node I′k−1 Bα and Bβ formulas and consider each one of the aforementioned cases.

• Case (8):

Since
J1,k = J1,k−1,
J2,k = J2,k−1,
J3,k = (J3,k−1∪{pik})\{pa,Cik}

and because
Bβ ,k = |J1,k−1|+ |J2,k−1|+max(0,⌈R(Bβ ,k−1)−

1
⌊L

p̄⌋
⌉)

We have:

Bα,k = Bα,k−1
Bβ ,k ≤ Bβ ,k−1

• Case (9):

Since
J1,k = J1,k−1,
J2,k = J2,k−1,
J3,k = (J3,k−1∪{pik})\{Cik}

and because
Bα,k = |J1,k−1|+ |J2,k−1|+max(0,⌈R(Bβ ,k−1)+

pa

L
⌉)

We have:

RR -FEMTO-ST-2919



40 Hakim Hadj-Djilani et all

Bα,k =


Bα,k−1

if ⌈R(Bα,k−1)⌉−R(Bα,k−1)≥ pa
L > 0

Bα,k = Bα,k−1 +1 otherwise
Bβ ,k = Bβ ,k−1

• Case (10):

Since
J1,k = J1,k−1,
J2,k = J2,k−1,
J3,k = (J3,k−1∪{pik})\{pa}

and because
Bα,k = |J1,k−1|+ |J2,k−1|+max(0,⌈R(Bβ ,k−1)+

Cik
L
⌉)

We have:

Bα,k =


Bα,k−1

if ⌈R(Bα,k−1)⌉−R(Bα,k−1)≥
Cik
L > 0

Bα,k = Bα,k−1 +1 otherwise
Bβ ,k = Bβ ,k−1

• Case (11):

Since
J1,k = J1,k−1,
J2,k = J2,k−1,
J3,k = J3,k−1∪{pik}

and because
Bα,k = |J1,k−1|+ |J2,k−1|+max(0,⌈R(Bβ ,k−1)+

pik
L
⌉)

Bβ ,k = |J1,k−1|+ |J2,k−1|+max(0,⌈R(Bβ ,k−1)+
1
⌊L

p̄⌋
⌉)

We have:

Bα,k =


Bα,k−1

if ⌈R(Bα,k−1)⌉−R(Bα,k−1)≥
pik
L > 0

Bα,k = Bα,k−1 +1 otherwise

Bβ ,k =


Bβ ,k−1

if ⌈R(Bβ ,k−1)⌉−R(Bβ ,k−1)≥ 1
⌊ L

p̄ ⌋
> 0

Bβ ,k = Bβ ,k−1 +1 otherwise

• Case (12):

Since
J1,k = J1,k−1,
J2,k = J2,k−1,
J3,k = J3,k−1

We have:
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Bα,k = Bα,k−1
Bβ ,k = Bβ ,k−1

In all cases from (8) to (12) the bounds Bα,k,Bβ ,k are always such that Bα,k ≤ Bα,k−1+1,Bβ ,k ≤ Bβ ,k−1+
1, so recalling that in the theorem we must verify Bα,k−1 < m and Bβ ,k−1 < m for any p̄ we can assert
that Bα,k ≤m and Bβ ,k ≤m, hence according to (7) Cb

max is not a L3 lower bound for I′k and the node k is
not to be pruned out.

B Results on perfect matching instances

Figure 19: Overall performance on PMI’s of our branching heuristics relatively to well-known algo-
rithms

This appendix presents the results obtained with perfect matching instances respecting the exact
same (m,n) combinations as instances presented in table 2 but with a different law for picking the p j’s.
Indeed, a perfect matching instance (PMI) is an instance for which it exists a solution schedule that is
such that Cmax =

∑1≤ j≤n p j
m = L0 which is also the completion time of all machines. The main interest

of this kind of instances is that the optimal makespan is easily computable. Our PMI’s were built as
follows:

1. Generate an instance I = ({p j}1≤ j≤n,m) as in table 2.
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2. Solve it with LPT and save CLPT
max . The goal is to obtain a reference makespan for our PMI.

3. For builing the PMI start by creating the m blocks representing the machine completion times all
equal to CLPT

max . Then cut these blocks in random positions until n sub-blocks are obtained. The n
sub-blocks identify the job processing times of the PMI.

Note that a simpler method is to compute a LPT schedule and then fills the gaps to CLPT
max for each

machine by introducing new jobs or by enlarging pre-existing ones. However this method is kind of
biased because it tends to advantage LPT by design for much of the instances.

The Figure 19 presents the results obtained with PMI’s running the same experiment as in 5.3. The
exact instances used to produce this figures are available online [Hadj-Djilani, 2023d]. The main change
we notice is that COMBINE is a way more efficient with these PMI’s. It remains that BB-SLACK and
BP-SLACK algorithms stay in the top five, as in 7, according to both median normalized makespans and
counts of first ranks. Because we use PMI’s we are able to see that the gap between solutions and optima
is about 1% of L0 =C∗max for BP-SLACK runs and a little more for BB-SLACK’s. For comparison this
gap can go up to 4% in SLACK solutions.

C Results on instances from University of Bologna

The figures 20 and 21 are the results obtained with instances found on the website of the University of
Bologna in this page:
https://site.unibo.it/operations-research/en/research/library-of-codes-and-instances-113

We used them to run the same experiment as in figures 8 and 18 discussed respectively in 5.3.2
and 6. Note that in our experiments we used 20 instances per valid combination of instance parameters
while for the instances here only 10 instances per combination were generated. That’s why we have
twice more instances in our paper experiments. The results are quite similar to what obtained in the
body of the paper. We only note that LISTFIT manages to make the best median normalized makespan
for non-uniform instances in Figure 20 while it was only ranked 6 with our set of instances as shown in
Figure 8.

13In the section named "Library of Instances on the P||Cmax Problem". The instances are located in the archived linked here
https://site.unibo.it/operations-research/en/research/library-of-codes-and-instances-1/cmax.

zip/@@download/file/cmax.zip.
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Figure 20: Benchmark on DCU and DCNU instances from University of Bologna (see table 2)
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Nevertheless it doesn’t change its rank in "Per-rank instance counts" bar chart which is 7 both in
Figure 20 and Figure 8.

Figure 21: MBBLS versus LDM on DCU instances from University of Bologna (see table 2)

D Results on Gera and PIMSGen instances

Gera and PIMSGen are generators of P||Cmax instances provided by CommaLAB, University of Pisa 14.

Gera generates 10 random instances for each valid combination of (m,n)∈{5,10,25}×{10,50,100,500,1000}.
The p j’s are drawn in [a = 1,b] according to different distribution:

• A uniform law for which b = 10000 (geraun program).

• A normal law for which b = 10000 (geran program).

• An exponential law for which b = 1000 (gerae program).

It provides a total of 390 instances per run (130 per distribution). We performed the same experiment
as defined in 5.3.1 using these instances. We grouped the results on all instances in the Figure 22.

Although the benchmark gives results that differ from what obtained in 5.3.2 and 6 we can see
that MBBLS N = 17 manages to be at the top of all heuristics. Indeed, the number of first ranks

14At time of writing, the generators are downloaded here: https://commalab.di.unipi.it/datasets/MS/
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Figure 22: All Gera instances (normal, exponential and uniform laws) are grouped in this figure to show
the overall performance of our branching heuristics relatively to well-known algorithms. The exact
instances used to produce this figure are available online [Hadj-Djilani, 2023c].

obtained on instances is the greatest of all tested algorithms. Besides, even if LDM has the smallest
median normalized makespan, the spanning of its makespans is much larger than that of MBBLS N = 17
and other configurations of our heuristics. Finally, that performance is made possible in a reasonable
execution time. Notably we see in the computation time boxplot that MBBLS is faster than LISTFIT
according to the median time.

PIMSGen generates 10 random instances for each of the 39 valid combinations (m,n,b)∈{5,10,25}×
{10,50,100,500,1000}×{100,1000,10000}. It gives a total of 390 instances. The p j’s of an instance
are integers drawn uniformly in [0.9(b− a), b] for 99% of them while the remaining ones (1% of the
instances) are picked in [a, 0.2(b− a)] according to a uniform distribution too. Note that this instance
generation law is almost the same as the one defined for DCNU instances from the table 2 (the only
difference is that only 98% of the p j’s are picked in the largest subinterval for DCNU instances and not
99% as PIMSGen does). Hence Figure 23 is a quite good confirmation of the results shown in Figure 8.
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Figure 23: Benchmark including all PIMSGen instances. Exact instances used to produce this figure are
available online [Hadj-Djilani, 2023e]
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Tel: (33 3) 63 08 24 00 – e-mail: contact@femto-st.fr

FEMTO-ST — AS2M: TEMIS, 24 rue Alain Savary, F-25000 Besançon France
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