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Abstract 20 

Urbanisation is a growing phenomenon causing the decline of wild bees globally. Yet, bees 21 

manage to persist in the urban matrix thanks to islands of vegetation in public parks and 22 

private gardens. While we begin to comprehend the impact of urbanisation on bees’ diversity 23 

and abundance, our understanding of its impact on the functional diversity of wild bees is 24 

limited. Here, we use an integrative approach to investigate the response of wild bees to 25 

urbanisation at the community, species, and individual levels. To do so, we sampled wild bees 26 

in 24 public parks along an urbanisation gradient in the Mediterranean city of Marseille. We 27 

found that species richness and abundance decreased in more urbanised areas, but increased in 28 

larger city parks. Moreover, larger individuals within species, but not larger species, were 29 

found in larger city parks, suggesting that park size is crucial for the persistence of bees in 30 

cities. Interestingly, we show that brighter species were found in parks surrounded by a large 31 

amount of impervious surface, highlighting the importance of colour traits in the response to 32 

environmental changes. Finally, our results revealed that larger species, but not larger 33 

individuals, were also more colourful. In summary, our study not only confirmed that 34 

urbanisation negatively impacts community-level traits, but that it also affects species’ 35 

coloration and individuals’ body size, thus improving our understanding of the functional 36 

response of wild bees to urbanisation. We suggest that increasing park size may compensate 37 

for the negative effects of urbanisation on wild bees. 38 

 39 
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Introduction 42 

Bees constitute one of the major groups of pollinators of wild plants and crops worldwide 43 

(Potts et al. 2016; Hung et al. 2018; Zattara and Aizen 2021). Over the past sixty years, bees 44 

experienced a sharp decline globally (Zattara and Aizen 2021). Several anthropogenic factors 45 

are responsible for this decline, including urbanisation and agricultural intensification causing 46 

habitat and floral resource loss, the use of pesticides, parasites, the introduction of invasive 47 

species and climate change (Potts et al. 2010; Goulson et al. 2015; Sánchez-Bayo and 48 

Wyckhuys 2019). Among these causes, urbanisation is especially preoccupying because urban 49 

areas are growing at an unprecedented rate (United Nations, 2018), transforming semi-natural 50 

and agricultural habitats into impervious surfaces (McKinney 2002) detrimental to bees 51 

(Cardoso and Gonçalves 2018; Baldock 2020). Yet, islands of vegetation subsist in urban 52 

landscapes, such as private gardens, allotments, and public parks, allowing bees to persist in 53 

these environments (Baldock et al. 2015, 2019; Geslin et al. 2015; Theodorou et al. 2020). 54 

The urban matrix therefore acts as an environmental filter and its permeability, which can be 55 

highly variable among cities, depends on the amount, extent, quality, and degree of isolation 56 

of these islands of vegetation (Mcintyre and Hostetler 2001; Braaker et al. 2014; Fattorini 57 

2016; Banaszak-Cibicka et al. 2018). When city parks are managed so as to offer favourable 58 

conditions for bee assemblages, urban environments can harbour a bee species diversity and 59 

abundance comparable to what is found in natural habitats, but not necessarily in terms of 60 

functional diversity (Hall et al. 2017; Banaszak-Cibicka et al. 2018). An increasing amount of 61 

work focuses on the functional aspects of urban impacts on bees, examining the 62 

morphological and life-history traits allowing or preventing bees to cope with urban 63 

environments (e.g. Geslin et al. 2013, 2016; Zaninotto et al. 2021) and references therein).  64 

 Several functional traits have been found to promote the presence of bees in large 65 

cities. Indeed, social behaviour, broad dietary niche (i.e., polylectism), cavity-nesting habits, 66 
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and early spring phenology seem to be favoured in urban landscapes whereas solitary and 67 

parasitic behaviours, narrow dietary niche (i.e., oligolectism), ground-nesting habits, and late 68 

spring phenology appear to be unsuccessful traits in cities (Zanette et al. 2005; Hernandez et 69 

al. 2009; Banaszak-Cibicka et al. 2018; Buchholz et al. 2020; Ayers and Rehan 2021; 70 

Zaninotto et al. 2021). Regarding body size, however, evidence is more contrasted. On one 71 

hand, some studies found that large-sized species decreased in abundance and diversity in 72 

urban environments (Banaszak-Cibicka and Żmihorski 2012; Geslin et al. 2016; Banaszak-73 

Cibicka et al. 2018) possibly because large body size correlates with extinction risk in insects 74 

(e.g., Nolte et al. 2019). On the other hand, other studies found that small species were less 75 

common in urban centres because of their reduced dispersal abilities whereas large-sized 76 

species were less affected by urbanisation as they have good flight abilities allowing them to 77 

penetrate the urban matrix and hop from a suitable patch to another (Gathmann and 78 

Tscharntke 2002; Ahrné et al. 2009). Reduced flight abilities generally make smaller bees less 79 

mobile and more sensitive to habitat fragmentation in general than larger bee species (e.g., 80 

Steffan-Dewenter and Tscharntke 1999; Greenleaf et al. 2007; Warzecha et al. 2016; Gérard 81 

et al. 2021). Interestingly, body size correlates with several phenotypic traits fulfilling 82 

important ecological functions. For instance, small-sized bees usually have small mouthparts, 83 

which associates with a narrower dietary niche because they cannot exploit some types of 84 

flowers (e.g., tubular - Stang et al. 2006) whereas the reverse is true for larger species. It is 85 

therefore pertinent to use body size when assessing the effect of urbanisation on the functional 86 

diversity of bees (Theodorou et al. 2021). 87 

 Urbanisation may also affect other traits that play important functions in bees, such as 88 

coloration. Bees indeed display a great variety of colours. Some species are entirely black or 89 

darkly coloured, while others display bright colours including yellow, orange, red, green, 90 

blue, violet, and white (Michez et al. 2019). These colour traits play various functions. Bright 91 
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colours often act as Mullerian and Batesian aposematic signals in bees (Badejo et al. 2020), 92 

especially when black coloration associates with bright stripes (Mappes et al. 2005; Caro and 93 

Ruxton 2019). Melanin pigments responsible for the dark coloration can also contribute to 94 

defence functions by encapsulating pathogens (Siva-Jothy et al. 2005) and protecting against 95 

UV radiations (Badejo et al. 2020). Body coloration can also serve as camouflage (Williams 96 

2007) and play a role in thermoregulation processes, for example via the thermal melanism 97 

hypothesis (Clusella Trullas et al. 2007) stating that darker colours should be favoured in 98 

colder environments. Hence, given the functional importance of body coloration in bees, 99 

urbanisation can affect bee coloration via its impact on the multiple processes involving 100 

colour traits. For instance, urbanisation reduces predation pressures (Lagucki et al. 2017; 101 

Eötvös et al. 2018, 2020), which in turn may affect aposematic signals (Valkonen et al. 2012). 102 

Moreover, the urban heat-island effect in cities (Memon et al. 2008) impacts water balance 103 

and thermoregulation processes of bees (Hamblin et al. 2017) such that bee species are close 104 

to their critical thermal limit and/or their critical water content (Burdine and McCluney 105 

2019a). Thus, we could hypothesise that darker species reach their critical thermal limit faster 106 

than brighter ones, which would make them less successful in cities, especially in cities 107 

located in warm regions. Finally, urban landscapes have a different background colour than 108 

surrounding natural habitats due to buildings and impervious surfaces, and this may alter 109 

camouflage and colour signal efficacy (Delhey and Peters 2017). Because the selective forces 110 

affecting coloration detailed above have conflicting effects, it is challenging to predict how 111 

urbanisation will affect bee coloration. Thus, exploring whether urban environments promote 112 

or hinder colourful traits in bees will bring new insights into the ecological impacts of 113 

urbanisation processes.  114 

In this study, we aimed to assess the impact of urbanisation on wild bee assemblages 115 

in the Mediterranean city of Marseille, France. While the Mediterranean region is a hotspot 116 
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for bee diversity (Nielsen et al. 2011; Ropars et al. 2020a), it also suffers from anthropogenic 117 

pressures including increasing urbanisation (García-Nieto et al. 2018), enhancing the need to 118 

improve our understanding of the response of bees to urbanisation. Our study focuses on wild 119 

bees only and excludes the honey bee (Apis mellifera) because the latter is a non-native, 120 

managed species with possible negative impacts on wild bee communities (Ropars et al. 2019, 121 

2020b). We sampled urban parks along an urbanisation gradient in Marseille in order to 122 

investigate the extent to which landscape variables related to urbanisation affect wild bees at 123 

the community level (i.e. species diversity and abundance), at the species level (i.e. mean 124 

specific body size and coloration), and at the individual level (i.e. within species variation in 125 

body size and coloration). This study design allows us to assess the impact of urbanisation at 126 

three biological scales so that we can improve our understanding of the response of wild bees, 127 

and other species, to urbanisation. In addition, we also explored the relationship between 128 

body size and coloration in wild bees, both at the inter- and intra-specific level, as it has never 129 

been empirically studied in the past.  130 

 131 

Material and Methods 132 

Study sites 133 

The study was conducted in the Mediterranean city of Marseille (France) during the spring 134 

and summer of 2016 (April to July) for fieldwork and during the spring of 2020 for laboratory 135 

analyses. With 240 km2 and 871,103 inhabitants (INSEE, 2020), Marseille is the second-136 

largest and one of the oldest cities of France. The region is characterised by a Mediterranean 137 

climate with cool winters and hot summers accompanied by irregular precipitations in spring 138 

and autumn and pronounced summer drought. In contrast to most European cities, Marseille 139 

is not surrounded by agricultural crops but by calcareous massifs dominated by biodiversity-140 

rich areas such as shrublands. This configuration thus offers interesting gradients from natural 141 
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habitats to highly urbanised areas (Lizée et al. 2012; Lizee et al. 2016), which is ideal to study 142 

how animals cope with urbanisation. 143 

We selected 22 city parks and 2 university campus (similarly managed) covering an 144 

urbanisation gradient within the city of Marseille, from the highly urbanised city centre to less 145 

urbanised areas on the periphery (Figure 1). These parks vary in size (range 1-31 ha, mean = 9 146 

ha), and offer various land-use contexts, with various amounts of surrounding vegetation and 147 

impervious surface, and various degrees of isolation from natural areas, as the distance from a 148 

park to the closest natural areas ranges from 0.5 km to 7.5 km. One urban park was excluded 149 

from the following analyses because no native bees were found foraging in the park (only 150 

Apis mellifera). 151 

152 

Figure 1 153 

Location of the 24 urban parks (in black) sampled within the city of Marseille with their 500m 154 

buffer-zone (white dotted lines).  155 
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 156 

Landscape variables 157 

To characterize landscape variables, we used the land cover map from Lizée et al. (2012) built 158 

with SPOT and IGN data (SPOT5 - 2004; BD1000-2006; BD Carto® IGN - 2004). We 159 

combined these data using QGIS software on a 10 m-resolution raster map and contains 5 160 

classes: impervious surface, rocky habitat, sparsely vegetated area, herbaceous stratum, tree 161 

stratum.  162 

First, we calculated the distance from each park to the closest natural area by drawing a 163 

straight line between the park and the closest natural area, which in Marseille corresponds 164 

mostly to the closest mountain range. Then, we created a polygon around each of the 24 parks 165 

and calculated their area. We also drew a buffer-zone of 500 m around each of the 24 urban 166 

parks in order to calculate the area of each land cover class, and made sure to exclude the area 167 

within the parks. We chose a 500-m buffer because it encompasses the mean foraging range 168 

of most wild bee species we observed as mentioned in Wright et al. (2015). We counted the 169 

number of pixels of each class in the 500-m band around each urban park. Then, we combined 170 

rocky habitats and impervious surfaces as one class and three vegetation classes (i.e., grasses, 171 

scarce vegetations, and trees) all together to only have two classes: impervious surfaces and 172 

vegetation surfaces. 173 

 174 

Bee sampling and pollination network description 175 

In each of the 24 parks, we surveyed 16 transects of 10 m during five minutes at a pace of one 176 

meter every 30 seconds. To maximize the bee species richness, we placed eight transects along 177 

a linear of shrub or bush, and eight transects within a lawn totalizing 384 transects. We 178 

prospected each transect three times during the period April to July 2016 for a total of 1152 179 

transect visits. 180 
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We captured with a net all wild bees observed foraging within 2 meters on both sides of each 181 

transect. We identified each plant species on which bees were foraging. Bee specimens 182 

collected were pinned and dried prior to identification by professional taxonomists (E. Dufrêne 183 

for cuckoo bee species, D. Genoud for Andrenidae, Anthophorinii, Colletes sp. and Halictidae 184 

and M. Aubert for Megachilidae, Ceratinii and Hylaeus sp.). 185 

To evaluate the completeness of our samplings and estimate the potential maximum bee 186 

species richness in the city of Marseille, we used the Chao and jackknife indexes including 187 

captures and observations on plant species (Gotelli and Colwell 2011). We calculated these 188 

indexes using the function ChaoSpecies within the Spade-R package in R version 3.6 software 189 

(Chao et al. 2016). 190 

 191 

Body size and colour variables 192 

We took calibrated photographs of the dorsal part of each captured bee using a DSLR Nikon 193 

D500 mounted with a Tokina 100-mm macro lens. For each photograph, we placed a 194 

millimetric scale and a colour chart with a grey scale (i.e., SpyderCheckr, Datacolor Inc.). 195 

Then, we imported the pictures in raw format in the software ImageJ (Schneider et al. 2012) 196 

and used the ‘line’ tool to measure the intertegular span of each individual, which is a reliable 197 

proxy of body size in bees (Cane 1987).  198 

To objectively assess bee coloration, we used the Quantitative Colour Pattern Analysis 199 

(QCPA) framework (van den Berg et al. 2020) implemented in the Multispectral Image 200 

Analysis and Calibration (MICA) Toolbox (Troscianko and Stevens 2015), an ImageJ plugin. 201 

First of all, we created a cone-catch model for our camera setup using a colour chart (X-Rite 202 

colorCheckr passport) of known reflectance. This step allows us to convert the RGB values 203 

recorded by our photography setup into the standardised colorimetric values of the CIELAB 204 

colour space. We used the CIELAB, a colour space based on human vision, because we did 205 
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not have access to the UV range, and since bees are capable of UV vision, we could not use 206 

the bee visual system (Menzel and Blakers 1976; Peitsch et al. 1992). CIELAB is a three-207 

dimensional colour space in which each colour is defined by three chromatic variables or 208 

coordinates: L*, a* and b*. Lightness (L*) is the percentage of light reflected from a surface 209 

and goes from black (0) to white (100). The coordinate a* corresponds to a green-to-red 210 

colour variation and coordinate b* corresponds to a blue-to-yellow colour variation. Then, we 211 

generated a multispectral image from RAW photographs using the MICA Toolbox and 212 

adjusted the white balance with the 96% white standard from the colour chart. We then 213 

selected two body regions of interest to be measured, namely the thorax and the abdomen, by 214 

surrounding these body parts, excluding wings and artefacts such as the entomological pin. 215 

After having converted our multispectral image into the CIELAB cone-catch model, we 216 

obtained the mean L*a*b* values for the whole thorax and the whole abdomen of each 217 

individual. Finally, we calculated the L*a*b* values of the entire body by taking the averaged 218 

values between the thorax and the abdomen, therefore characterising the body coloration of 219 

each individual. 220 

 221 

Statistical analyses 222 

To better understand the impact of urbanisation on wild bee communities, we explored the 223 

relationships between urbanisation variables, community-level variables (i.e., species 224 

diversity, abundance) and individual-level variables (i.e., body size, coloration) using a 225 

piecewise structural equation modelling (SEM) in combination with (generalised) linear 226 

(mixed-effects) models. To do so, we used R v.3.6.2 (R Core Team 2019) with the R 227 

packages piecewiseSEM v2.1 package (Lefcheck 2016) and nlme (Pinheiro et al. 2019). SEM 228 

is a suitable tool to evaluate direct and indirect effects in descriptive analyses of ecological 229 

systems (Grace et al. 2010). In addition, piecewise SEM tests for missing paths between 230 
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variables using Shipley’s test of d-separation (Shipley 2013), allowing us to adjust our initial 231 

model to improve its fit and biological significance. Adequate model goodness-of-fit is first 232 

indicated by a non-significant p-value based on the Chi-squared test (Shipley 2009). Then, 233 

goodness-of-fit can be improved using a combination of indices, including Akaike’s 234 

Information Criterion corrected for small sample size (AICc) obtained from Fisher’s C 235 

statistic, and the Bayes-Schwarz Information Criterion (BIC), the latter being the most 236 

reliable for model selection using piecewise SEM (Hertzog 2018). 237 

 We built two similar models that differ in the way individual-level variables are 238 

accounted for. Indeed, when assessing the impact of urbanisation on body size and colour, 239 

two variables that are measured on each individual, we are actually mixing two different 240 

questions. The first one (i.e. Model A) tests the effect of urbanisation on the bee traits at the 241 

species level (how do larger or smaller species respond to urbanisation?) whereas the second 242 

one (i.e. Model B) deals with within-species trait variation (how do larger or smaller 243 

individuals within each species respond to urbanisation?). In order to disentangle these two 244 

questions, we transformed the individual-level variables so as to obtain two different sets to 245 

include in two different versions of the same model. First, we took the average specific values 246 

of body size and the three colour variables (L*a*b*) and assigned it to each individual from a 247 

given species. Thus, all individuals from the same species had the same value for these four 248 

individual-levels variables, and we could account only for inter-specific differences in our 249 

model. In the second version of these variables, we subtracted the mean specific value of each 250 

individual variable such that the mean specific value of each species is equal to 0. This allows 251 

us to control for inter-specific variation and to account only for within-species variation in 252 

these variables. 253 

Here, we built an initial model (model list detailed in Supp. Info. S1) with the distance 254 

to the closest natural habitat and park area having direct effects on the four individual-level 255 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.09.519739doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.09.519739
http://creativecommons.org/licenses/by-nc-nd/4.0/


variables (i.e., three colour variables and body size), on both community-level variables (i.e., 256 

species richness and abundance), and on the amount of impervious surface in a 500-m buffer. 257 

In addition, we added a direct effect of the amount of impervious surface in a 500-m buffer on 258 

all community- and individual-level variables. We also added body size as a direct predictor 259 

of the three colour components. Moreover, we specified correlated errors between our three 260 

colour variables, and between species richness and abundance. This step allows the residual 261 

errors of two variables to be correlated for a reason not explained by our model when a direct 262 

causal effect is not ecologically relevant, for example when two variables correlate with a 263 

third unknown variable. We used a linear model (LM) for the amount of impervious surface 264 

in a 500-m buffer, a generalised linear model for species richness and abundance since these 265 

variables follow a Poisson distribution, and a linear mixed-effects model (LMM) for the four 266 

individual-level variables with park ID as random intercept factor. We did not include the 267 

amount of vegetation in a 500-m buffer in our model because this variable induced a high 268 

level of collinearity in the model (VIF = 14.57). As explained above, this model was built in 269 

two versions: Model A included the mean specific values of body size and the three colour 270 

variables while Model B included the species-centred values of these same variables. This 271 

initial model therefore allows us to test the direct and indirect effects of urbanisation features 272 

on both community- and individual-level traits as well as the relationship between coloration 273 

and body size in wild bees. We then discarded the non-significant terms until we obtained the 274 

lowest values of BIC. We checked model performance using the R package Performance 275 

(Lüdecke et al. 2020), and we calculated marginal (fixed effect) and conditional (fixed and 276 

random effects) R2 for each model (Nakagawa and Schielzeth 2013). 277 

 278 

Results 279 
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From April to July 2016, we sampled a total of 435 wild bees belonging to 121 species, 280 

30 genera, and 5 families, and we recorded the presence of 994 honeybees (Apis mellifera). We 281 

were able to successfully capture only 373 of the 435 wild bees observed. According to the 282 

Chao1 method to estimate the total species richness, observed wild bee species richness 283 

represented 52.8% of the potential maximum richness. Using Jackknife 1 and 2 indexes, the 284 

observed richness represented from 55.8% (Jackknife 2) to 68.7% (Jackknife 1) of the potential 285 

maximum richness. Finally, 55 species (45.4%) were represented by only one individual 286 

(singleton). We provide a more detailed description of bees’ ecological traits in Supp. Info. S2, 287 

and the structure of their interaction network with flowering plants in Supp. Info. S3. 288 

Our two final models resulting from the piecewise SEM approach are presented in Figure 2 289 

and statistics are fully summarised in Supp. Info S4. Model A, including mean specific values 290 

of individual-level variables, has a Fisher’s C statistics of 26.81 with a p-value of 0.867 and 291 

36 degrees of freedom. Similarly, Model B, including species-centred values of individual-292 

level variables, has a Fisher’s C statistics of 22.75 with a p-value of 0.958 and 36 degrees of 293 

freedom, implying that both our models provide a good fit to our data.  294 

We found in both our models that species richness increased in larger parks (b = 0.342 ± 295 

0.477, p = 0.004), but decreased in parks located further away from natural habitat (b = -0.196 296 

± 0.477, p < 0.001), and in parks surrounded by more impervious surfaces (b = -0.173 ± 297 

0.414, p < 0.001). Abundance also increased in larger parks (b = 0.289 ± 0.541, p < 0.001) 298 

and decreased when the amount of impervious surface surrounding the park increased (b = -299 

0.343 ± 0.541, p < 0.001).  300 

In addition, Model A indicated no significant relationship between average specific body size 301 

and the distance to the closest natural habitat (p = 0.075). We found that average specific 302 

lightness (L*) increased with the amount of impervious surface (b = 0.232 ± 0.110, p = 303 

0.046). Moreover, larger bee species (average specific body size) were brighter (L*; b = 0.228 304 
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± 0.048 p < 0.001), redder (a*; b = 0.191 ± 0.051 p = 0.001) and yellower (b*; b = 0.513 ± 305 

0.043 p < 0.001) than smaller bee species.  306 

In contrast, Model B showed that individuals were larger (species-centred value of body size) 307 

in larger parks (b = 0.168 ± 0.071 p = 0.028). However, we found that none of the three 308 

colour variables (species-centred values) were correlated to species-centred values of body 309 

size.  310 

Finally, we found positively correlated errors between all three colour components for mean 311 

specific values (L* ~ a*: b = 0.313, p < 0.001; L* ~ b*: b = 0.774, p < 0.001; a* ~ b*: b = 312 

0.708, p < 0.001), but only between L* and b* (b = 0.422, p < 0.001), and a* and b* (b = 313 

0.341, p < 0.001) for species-centred values as L* and a* were negatively correlated (b = -314 

0.133, p = 0.005). We also found correlated errors between species richness and abundance (b 315 

= 0.937, p < 0.001). 316 

 317 

 318 

Figure 2 319 

Best selected path diagrams representing the direct effects of urbanisation-related variables 320 
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on the species richness, the abundance, the body size and the coloration of wild bees in the 321 

city of Marseille. Each arrow represents a statistically significant effect, which can be either 322 

negative (grey arrows) or positive (black arrows), and arrows thickness is proportional to 323 

their effect size. We provide effect size ± standard error along with the p-value. Model A (A) 324 

represents the model in which body size and the three colour variables were included as mean 325 

specific values. Model B (B) represents the same model but the values of body size and the 326 

three colour variables correspond to species-centred values (between-species variation has 327 

been eliminated by subtracting the mean specific values each time). 328 

 329 

Discussion 330 

We investigated the extent to which urbanisation impacts wild bees in the Mediterranean city 331 

of Marseille, and found that wild bees responded to urbanisation variables at the community, 332 

species, or individual level. As we detailed below, our study across biological scales provides 333 

invaluable insights into the multifaceted impacts that urbanisation has on wildlife. This 334 

integrative approach allows us to capture subtle effect variations, mainly between the inter- 335 

and intra-specific level, that would be otherwise undetectable when comparing separate 336 

studies, because of confounding factors specific to each study. We therefore encourage the 337 

use of holistic approaches across biological scales to precisely assess the impact of 338 

environmental change on animals. 339 

 The negative impact of urbanisation on bee diversity has been documented in the past 340 

(Schochet et al. 2016; Cardoso and Gonçalves 2018). Yet, some studies found no or little 341 

reduction in terms of species richness and abundance in cities (Buchholz et al. 2020; 342 

Theodorou et al. 2020). Several factors may explain these differences. For example, habitat 343 

connectivity can be highly variable among cities (Beninde et al. 2015) and may explain why 344 

some cities are more or less permeable to wildlife and bees in particular (Steffan-Dewenter 345 
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and Tscharntke 1999; Buchholz et al. 2020). Furthermore, the nature and quality of the less 346 

urbanised end of the gradient can also vary. Many cities are surrounded by a more or less 347 

extended suburb and further by agricultural fields, which can have a negative impact on bee 348 

diversity depending on how crops are managed (e.g., Le Féon et al. 2010).  The city of 349 

Marseille is ideal to study urbanisation gradient because it is directly surrounded by natural 350 

massifs and diversified scrubland, one of which being highly protected by the Calanques 351 

National Park, a protected area with little anthropogenic impact for bees (Ropars et al. 2020a). 352 

Therefore, we could estimate directly the extent to which wild bee assemblages penetrate into 353 

and respond to the urban matrix. More specifically, we found that the amount of impervious 354 

surface in a 500-m buffer around a park had a negative impact on both species’ richness and 355 

abundance. As impervious surfaces reduce the availability of resources and nesting sites for 356 

bees, measuring the amount of impervious surface around a park reflects its degree of 357 

isolation and its lack of connectivity with vegetation patches. This result corroborates 358 

previous findings showing that the amount of impervious surface in a 500-m buffer correlated 359 

with reduced species richness and abundance of bees (Geslin et al. 2016; Burdine and 360 

McCluney 2019b). Furthermore, our results revealed that higher species richness and 361 

abundance were found in larger city parks. This is consistent with previous studies identifying 362 

large patches of habitat as the most important factor to maintain high levels of biodiversity 363 

within cities (Beninde et al. 2015; Baldock et al. 2015; Quistberg et al. 2016). Our study thus 364 

highlights the need to create larger city parks and denser corridor networks between these 365 

parks so as to make the city of Marseille more permeable to wild bees.  366 

 Urbanisation variables did not affect the body size of bees in our study, except park 367 

size, as larger parks harboured larger individuals within species but not larger species. This 368 

effect, albeit weak based on the marginal R2 of the model, may reflect a higher resource 369 

availability both in terms of quality and quantity in larger parks (strong, positive correlation 370 
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between park size and the amount of vegetation within parks in our data, r2 = 0.78), thus 371 

allowing individuals to grow larger than in smaller parks, where resources may be scarcer. 372 

This further strengthens the idea that larger parks are beneficial to bees, not only in terms of 373 

species richness and abundance, but also in terms of individual quality (Quistberg et al. 2016). 374 

With this finding, we also emphasise the need to use individual-level variables such as body 375 

size (Buchholz and Egerer 2020) to precisely assess the health of a given community of 376 

species because one can disentangle the observed effects occurring at the species level from 377 

those occurring at the individual level within species. Assessing the amount and quality of 378 

resources within parks could also improve how parks should be managed to reduce the impact 379 

of urbanisation. 380 

 In our study, we characterised the coloration of each individual we captured to assess 381 

how colour traits respond to urbanisation on one hand, and to explore the relationships 382 

between coloration and body size in bees on the other. The effect of urbanisation on animal 383 

coloration has been relatively overlooked, and although most studies focussed on birds, 384 

current evidence suggest that diurnal animals in urban areas are darker due to thermal 385 

melanism, protection against pollution, or camouflage, and display duller colour signals than 386 

their rural counterparts (e.g., Chatelain et al. 2014; Biard et al. 2017; Leveau 2021). Our 387 

results indicate that brighter (i.e., high lightness values) species are more successful than 388 

darker ones in parks surrounded by a greater amount of impervious surface. In other words, 389 

darker species are under-represented in highly urbanised areas. This is consistent with the 390 

thermal melanism hypothesis (Clusella Trullas et al. 2007) stating that darker ectotherms 391 

should be favoured in colder habitats because they heat their body up faster than bright 392 

individuals, since dark colours are more efficient at absorbing external heat. Urban 393 

environments, especially in a hot Mediterranean city such as Marseille, are particularly warm 394 

and bees are forced to live near their critical thermal maximum (Burdine and McCluney 395 
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2019a). Therefore, a possible interpretation of our results is that in the most urbanised areas, 396 

which are presumably warmer, thermoregulation is more challenging for dark species than for 397 

bright ones because they reach their critical limit too fast (Pereboom and Biesmeijer 2003). In 398 

addition, even though we cannot completely rule them out, alternative hypotheses relative to 399 

camouflage or aposematism are unlikely. First, urban-induced colour change related to 400 

camouflage usually has an opposite effect, driving urban animals towards darker coloration 401 

(Bishop and Cook 1980; Leveau 2019). Second, in the context of aposematism, having more 402 

brightly coloured species in more urbanised areas would mean that darker species are more 403 

predated in these parks. This hypothesis either implies that predation pressures in urbanised 404 

city parks is higher for darker species or lower for brighter ones compared with less urbanised 405 

city parks. Although this is plausible, this explanation is far from parsimonious and would 406 

involve too many layers of presumptions. In any case, we advocate future studies to further 407 

investigate the relationship between urbanisation and coloration in bees taking into account all 408 

ecological determinants of body coloration. 409 

 Interestingly, we found positive correlations between species body size and species 410 

coloration. More specifically, larger species are brighter, redder, and yellower while smaller 411 

species are darker, greener, and bluer. In simple terms, large species often have conspicuous 412 

colours while smaller species are much darker (Figure 3). Surprisingly perhaps, bee coloration 413 

has received relatively little attention compared with other traits but their bright coloration 414 

seems to have an aposematic function (Badejo et al. 2020). If so, our results suggest that 415 

aposematic colours are much more present in large than in small species. Two non-exclusive 416 

hypotheses could explain why larger species are more brightly coloured than smaller ones. 417 

First, aposematism signals are more efficient in large preys because predators can detect them 418 

and identify them more easily than small preys (Gamberale and Tullberg 1996 but see 419 

Remmel and Tammaru 2009). Second, larger species of bees may suffer from a higher 420 
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predation pressure from birds than smaller species which are only a few millimetres in body 421 

length since birds prefer larger insect preys (Remmel and Tammaru 2009). Thus, the cost-422 

benefit balance of producing conspicuous colours may be more advantageous for larger 423 

species than for smaller ones. Caution should be given with these possible interpretations 424 

since dark coloration can also have an aposematic function, especially when iridescent 425 

colours are involved, as demonstrated in carpenter bees from the genus Xylocopa (Blaimer et 426 

al. 2018).  427 

 428 

 429 

Figure 3 430 

Linear regressions between colour components, i.e. lightness (A), chroma (B), and contrast 431 

against a black colour (C), and body size at the species level (mean specific values). Chroma 432 

was calculated as C = (a*2 + b*2)1/2 and corresponds to colour saturation. Contrasts vs. 433 

black corresponds to the distance between each colour point and a black point within the 434 

CIELAB colour space, with higher values corresponding to more colourful species. Contrast 435 

vs. black was calculated as Dblack = ((L* – L*black)2 + (a* – a*black)2 + (b* – b*black)2)1/2. 436 

Shaded area represents the 95% confidence interval and dashed lines the 95% prediction 437 

interval. We also provide r2 and p-value associated with each linear regression. 438 

 439 

 To conclude, our study shows that urbanisation has a negative impact on wild bees 440 

across biological scales, with distinct responses at the community, species, and individual 441 
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levels. Species richness and abundance of wild bees decrease along an urbanization in the 442 

Mediterranean city of Marseille, mainly because of the amount of impervious surface around 443 

the city parks. We also identified the size of city parks as a key factor positively affecting the 444 

wild bee community, in terms of species richness and abundance on one hand, and in the 445 

body size of individuals within species on the other. This strongly advocates for the inclusion 446 

of larger parks in city centres to maintain acceptable levels of biodiversity. Brighter species 447 

are also more successful in urbanised areas, perhaps due to the thermal advantage that their 448 

bright colours confer them, suggesting that coloration is an important trait to consider when 449 

assessing the impact of environmental change of functional diversity. Finally, we uncovered a 450 

positive correlation between species size and colour in wild bees and urge future studies to 451 

explore the details and ecological function of these relationships.   452 
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