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A NEW DEFINITION OF THE FUZZY CARDINALITY OF FINITE FUZZY SETS

PRESERVING THE CLASSICAL ADDITIVITY PROPERTY

Didier DUBOIS

CERT/DERA, B.P. 4025, 31055 TOULOUSE Cedex

Background

A previous note /2/ had investigated the definition of the
fuzzy cardinality of a finite fuzzy set, as proposed by Zadeh /6/. It was
noticed that the classical additivity property of cardinality is no longer
valid under such a definition.

More precisely, let U be a finite universe, A be a fuzzy set
on U; its cardinality }A| is defined according to Zadeh as a fuzzy set of
the set of natural integers [N , such that: :

Vnen, hA‘(n)=sup{ o(éJO,IJ’ }A‘d =ni (1)
where A = {UGUJ}K(u))C’(B is the o -cut of A.

Denoting ® the addition extended to fuzzy integers by means

of the sup-min extension principle, the following equality generally does not

hold:
A} @] 8] = )ayB| 8]a4 /B! 2)
where A and B are fuzzy sets on U..
SN »
If jAl denotes the fuzzy set of IN defined by means of the
following equalities:
‘0[ neN, )1 (n) = sup flo{E]O Ijl [Ad\)/n.’; = )L (x) (3)
x./ 1A]
then : a7 o357 - (\wﬁu\ Tl e 137 @)
N. Blanchard /1/ suggested using (3) as a definition of the
fuzzy cardinality, so as to avoid the lack of convexity of lA' in |N.
However, if A is a crisp subset of U, with cardinality nAélN,
it is easy to check that
Y el , 0<ngng = g = |
i.e.IAI is not the usual cardinality but the interval (of integers) [0,quﬂh

This remark prevents (3) fram hoineg econsidered any lonrer.



£
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N.B.:|A] is erroneously called "enveloppe convexe" in /2/.

A new representation of fuzzy sets

A suitable definition of fuzzy cardinality requires an extension
of the familiar representation of fuzzy sets in terms of e -cuts. Such an exten-
sion has been proposed iﬁ a recent paper /3/ and was motivated by some counter-
intuitive behavior of a definition of Yager /5/, regarding fuzzy probabilities
of fuzzy events. This anomalie stemmed from the use of & -cuts in the definition.
It could be suppressed through representing a fuzzy set A by a set of crisp sets
each of which is rated by a scalar value. Namely, A is representediby:

{ sy, | scu, c, () ¢10,1) |
where

cA(S) = inf fh(u) if S includes Al {the l-cut or "peak" of A)

= 0 : otherwise

cA(S) is clearly a worst-case matching rate between $ and A. It is simple to

h :
check that \/ a, )&A(u) = supg CA(S) (6)
ug s
(6} generalizes the classical identity:
)“*A(u) = sup {o( ] ueA, } (7
since CA(AD‘) =& and CA(S) < ) VS'.'JA(’<
N.B.:For all subsets § containing A1 .y coincides with the "commonality"

function of the possibility distribution FA (see Prade's paper in this issue).

A new definition of fuzzy cardinality

Let us now define the fuzzy cardinality of the fuzzy set A
!
denoted || Alj , by its membership function:
V nelN , }A”AH (n) = supg 1nfu rk(u)

SDA, UuE€S

|
{s] =n

i.e. )AHAH (n) = SUPECA(S) I [SI = n}

The following propositions or equalities are then valid:
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-) If A is a crisp set with cardinality n, , then [JA|l =|A\ = {nA%

A
DY s s pyay @ =0
=) 1f n =| Al then [JAH(n) = &= Py @
~) If 4 u,v ¢ Ay st )&A(u) = p,v) = and if n=|a,)

then}*“A” (n-1) =& {while )AIM {(n-1} =0 )

=) JAll is convex on N and its membership function is non-increasing on
the set of integers { n )n‘?]A]]}% i.e.(}hA“ (n» is a non-~increasing se-
quence for/EG;|A]| n

- lalh = a7 pfo, Va1 -1]

=) JAltis the convex hull (Lowén /4/) of | Al
-) Il *§| satisfies the additivity rule :

il all & ) Bl =|\AnB” o llamll
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