
HAL Id: hal-04563880
https://hal.science/hal-04563880

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Evaluation of An Indoor Localization Engine
Christophe Villien, Anne Frassati, Bruno Flament

To cite this version:
Christophe Villien, Anne Frassati, Bruno Flament. Evaluation of An Indoor Localization Engine.
2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sep 2019, Pise
(Italia), Italy. �hal-04563880�

https://hal.science/hal-04563880
https://hal.archives-ouvertes.fr


Evaluation of An Indoor Localization Engine 

Christophe Villien, Anne Frassati 

CEA, LETI 

17 avenue des Martyrs, France 

Christophe.villien@cea.fr 

Bruno Flament,  

MOVEA-INVENSENSE 

22 AVENUE DOYEN LOUIS WEIL  

 

 
Abstract—Pedestrian Indoor localization based on modalities 

available in modern smartphones have been widely studied in 

literature and many of the specific challenges have been addressed. 

However, very few approaches consider the whole problem and 

proposed solutions are very often evaluated under very limited 

scenarios. We propose a fusion engine for localization that makes 

use of various data provided by a smartphone (Inertial sensors, 

pressure sensors, Wi-Fi, BLE, GNSS, map etc.) to provide a fused 

localization that is robust under harsh conditions (poor RSS 

coverage, device position change etc.). Moreover, our solution has 

been evaluated for hardware integration and tested over a large 

database including more than 250 experiments representing 

different scenarios, showing feasibility of lightweight 

implementation and good results over various conditions. 

Keywords: Indoor pedestrian localisation, Map matching, 

Particle Filter, Fused location provider  

I.  INTRODUCTION  

Indoor localization encompasses a wide variety of scenarios 
and technologies, each of them facing very different challenges. 
This paper focuses on smartphones based localization for 
pedestrians, which is one of the most pervasive and studied 
technology. Indeed, smartphones have several key advantages 
over other platforms: they are almost everywhere, concentrate 
dozens of sensors, come with high processing power, 
connectivity and display to share or retrieve useful information 
like maps, and generally host the client application that will 
exploit position data. However, they lack the killer technology 
that provides high positioning accuracy (e.g. <1m) in any 
environment. Integration of a localization engine, which we will 
refer to as Fused Localization Provider (FLP) by analogy with 
the Android terminology, is also challenging since it should run 
in an always-on, low-power processor generally called sensor 
hub (SH) and access high level data like e.g. map or beacons’ 
positions. 

Beyond those general aspects, technical challenges are: 

 Continuity of service: FLP should provide seamless 
positioning while user is moving between places where 
some sensors could be unavailable. For instance, GNSS 
is unavailable indoor, some areas have poor Wi-Fi 
coverage, map is useless in large open spaces etc. 

 Robustness: FLP should deliver a reliable position in 
real time for a wide variety of users, devices and venues. 

 Device position change (DPC): smartphones are 
frequently moving from one position on the body to 
another, for instance from the pocket (while walking) to 

the hand (for texting). Hence, system should handle those 
transitions by tracking the misalignment angle (MA) 
between the device orientation and the user heading. 

 Map representation: Map representation should 
support very different types of venues (mall, offices, 
underground parking lot etc.) and it also have a 
significant impact on processing complexity. Some 
"positive" maps (PM) describe all possible motions or 
positions which could induce some errors due to 
quantization of state space, increase computational 
burden and memory requirements. Whereas "negative" 
maps (NM) that describes forbidden transitions (e.g. 
walls) are more compact but less informative as they do 
not help to find possible next states using privileged 
directions for instance. 

 Floor changes: floor changes are commonly detected 
using fast pressure changes or based on radio signals (e.g. 
Wi-Fi, BLE). However, beyond floor changes detection 
itself, localization during transition phase is rarely 
handled specifically. Indeed, walk in stairways for 
instance defeats classical Pedestrian Dead Reckoning 
(PDR) algorithms due to different gait models and is also 
critical for map matching algorithms as they correspond 
to large displacements in very small areas. Moreover, 
typical processing of pressure sensors involves a filtering 
stage that introduces a delay regarding the floor detection 
which can shift back the position. 

Most of those issues have been widely investigated in 
literature. Continuity of service if handled in various different 
ways, some approaches fuse map and inertial measurements 
only [1]-[5], others integrate also RSSI measurements 
[8],[10],[9] very few consider  GNSS [7].  Map representation is 
mainly based on PM [2],[3],[6],[10],[11], but could also be 
based on graphs [8],[9] or grids [4],[5]. DPC is considered in [8] 
using a dedicated algorithm whereas it is processed at the fusion 
stage in [7]. Several authors have also developed algorithms that 
support multi-floor maps [6][8][3][9][11]. 

However, very few authors have proposed an extensive 
evaluation of their solution. Results are often given for a limited 
set of experiments - if not a single experiment - and generally 
tested under the same conditions (e.g. smartphone in hand, no 
DPC etc.). Another key aspect that is generally missing is the 
hardware footprint of the proposed solution (CPU burden, 
memory requirements) which may be unaffordable for real-time 
implementation in some cases. 



Our contribution is mainly the evaluation of a FLP that 
merges together disparate solutions to address the various 
aforementioned problems.  This evaluation includes extensive 
testing (257 experiments) under very different conditions, and 
hardware footprint characterization.  

Paper is organized as follow, section II will describe the 
environment (Sensor Hub) and the architecture for FLP 
integration, whereas section III will give details about the FLP 
design. Section IV is devoted to the evaluation of our solution 
and a conclusion will be given in section V. 

II. SENSOR HUB DESCRIPTION 

A. Architecture 

In this study, we assume that the target device has the 
architecture depicted in Fig. 1. According to this architecture, 
which shows only sensors and functions involved in 
localization, all algorithms are running in the SH, in order to 
reduce the overall power consumption by offloading some 
computations from the application processor and enabling this 
latter to sleep for longer periods while maintaining real time 
tracking. SH is connected to motion sensors (accelerometer, 
magnetometer and gyro), pressure sensors, GNSS receiver and 
also to Received Signal Strength (RSS) measurements from Wi-
Fi and BLE. FLP can receive high level data like e.g. map, user 
size or beacons’ positions from the application processor.  

 
 

Fig. 1. Typical architecure for FLP implementation 

 SH also implements some motion processing functions 
which are part of PDR and which we describe hereafter shortly. 

B. Steps detection and step length 

Our steps detection algorithm uses the norm of the 
accelerometer readings [1] which is invariant to device 
orientation. This signal is then bandpass filtered in the [1Hz-
2Hz] band to extract the fundamental frequency of the walk and 
remove all spurious harmonics. At this stage the signal is 
essentially a sinewave and it is quite straightforward to detect 
steps using max detection.  Main limitation of this algorithm are 
the false alarms (FA) caused by the device manipulation which 
could be misinterpreted as steps. Thus, steps detection is 

invalidated when the DPC module indicates that a manipulation 
is in progress. However, this introduces a new issue when the 
user is manipulating its smartphone while he is walking. Some 
heuristics based on the regularity of the walking signal could 
then be used to decide if the DPC invalidation applies or not.  

Steps detection is further converted into displacement using 
the following step length formula [12] 

L=a.F + b.H + c ( II-1) 

Where L is the step length (m), F the step frequency (Hz), H 
is the user’s height (m), a, b and c three constants which we 
determined using our database and least squares fitting. Values 
we found are a=0.339, b=0.585 and c=-0.923. 

C. Orientation 

Orientation of the device is generally obtained by fusion of 
accelerometer and gyro (AG) sensors, and eventually includes 
magnetometer (AGM). Using magnetometer is necessary to 
compute an absolute orientation with respect to geomagnetic 
north, however it introduces several difficulties. First, absolute 
orientation of interest is the one of the user which is related to 
the one of the device through MA that represents the way the 
device is carried by the user. Some techniques based on principal 
component analysis (PCA) [8] of the accelerometer signal can 
be used for that purpose but those are not always reliable and 
cost some additional CPU power. Second, magnetometers or 
their environment (i.e. the device) are subject to magnetization 
which results in sudden changes of bias and/or scale values. 
Hence, proper calibration of the sensor should be maintained 
either through specific procedure on the user side which is 
limiting, or through autocalibration algorithms but those are not 
very reliable. Finally, indoors magnetic fields are known [13] to 
be strongly disturbed. Several algorithms could be used to 
perform AG or AGM fusion [14], choice being dependent on the 
tradeoff between performance and CPU cost. A critical point 
regarding performance is the estimation of the gyro bias, 
especially the startup bias, which can be very high for MEMs 
sensors (i.e. typ. 5deg/s) and causes important drifts. This latter 
could be included within the state vector and estimated along 
with the orientation, or estimated separately using static phase 
of the device where the gyro readings correspond directly to the 
biases.  

 After comparing several algorithms (e.g. MEKF [14], 
QUEST [14], Magdwick [15]) we found that best performances 
were obtained with an Additive Extended Kalman Filter 
(AEKF) [14], and a separate gyro bias estimator making use of 
static phases. Although discussions about the orientation 
algorithm itself are beyond the scope of this paper, we may just 
say that AEKF is a straightforward implementation of an EKF 
having a four-dimensional quaternion state vector updated by 
adding a quaternion error, quaternion being forced to unit norm 
afterwards. We also choose to compute the orientation of the 
device based on AG measurements only, to circumvent 
aforementioned issues of magnetometer. Hence, our orientation 
module delivers relative orientation, absolute orientation which 
include the MA being solved at the FLP stage.  



D. Device Position Change  

Architecture of Fig. 1 shows that our FLP makes use of a 
DPC flag indicating any change of the device position with 
respect to the user.  This information is very useful for the FLP 
which is responsible for tracking the MA, and also for step 
detection to remove FA caused by manipulations. Main 
challenge regarding this function is to discriminate between 
motions that are inherent to user’s trip (i.e. turns) and those that 
are specific to DPC.  Our approach [16] detects variations of the 
average vertical direction within the body frame. Indeed, this 
principle is based on the following two basic observations: first, 
vertical direction remains constant when user makes a turn or 
goes straight, second, it is unlikely that the vertical directions 
does not change, at least temporarily, when a smartphone is 
moved from one position to another on the body (e.g. from 
pocket to phone call). Vertical direction in the body frame can 
be obtained easily by averaging accelerometer measurements 
(e.g. over 1 second) to remove walk components. Any variation 
between a previously recorded vertical direction zref and the 

current direction zk can be detected by monitoring the angle k 
between the two vectors 

𝛼𝑘 = 𝑠𝑖𝑛−1(‖𝑧𝑟𝑒𝑓⨂𝑧𝑘‖) ( II-2) 

where  is the cross product. If  exceeds a certain threshold 
(e.g. 20deg) then a DPC is flagged up until the vertical direction 
stabilize and a new vertical direction zref is recorded.  

E. Altitude 

Floor level transitions are detected by a separate algorithm 
that exploits the pressure sensor. Pressure is first converted into 
altitude and then band-pass filtered to extract altitude variation 
only. Indeed, it is known [8] that pressure is subject to long time 
drifts due to meteorological changes, that is why low frequencies 
components (< 1 minute) have to be removed. When a transition 
is detected, elevation is compared with floor’s heights available 
within map data, and the floor number is updated.  

III. FLP 

A. Map representation 

Introduction of map is a key aspect of the algorithm design. 
Hence, map-matching requires estimators supporting hard 
constraints as well as multi-modal distributions, and the choice 
of map representation among PM or NM will influence the type 
of algorithm used to process it.  

PM are generally described as grids ([4][5]) or graphs ([8]). 
Main issues with such a representation are (i) the quantization of 
space which can introduces some errors that accumulates over 
time, and (ii) the map compactness since description occurs at 
cell’s scale, which is typically inferior to 1m (i.e. for instance, a 
typical office building at CEA has 440 walls on a 6000m² floor, 
which gives a ratio above 10 between storing cells of 1m² or 
storing walls). Moreover, when maps are associated with grid 
based filtering ([4]) or Hidden-Markov Models (HMM, [5]), 
where the entire map is processed at each time step, 
computational load could become intractable in real-time, 
especially if state space includes additional parameters beyond 

the position itself like (e.g MA), as complexity grows 
exponentially with the state space dimension. Advantage is that 
constraints are applied inherently which can save significant 
processing power with respect to NM where constraints 
checking is the heaviest part of the algorithm.  

 

Fig. 2. Overview of the map structure 

NM typically describes positions of walls represented by 
segments and each update of the current state (e.g. particle’s 
position) must be checked against walls crossing. This task is 
computationally intensive because the complexity is of order 
Nparticles.Nwalls. Advantage of such a representation is that there is 
no quantization of space and maps are of small size and easy to 
generate. 

Our approach is based on a NM with a particular structure to 
optimize the constraints checking task and limit the memory 
usage (see IV.A). Map is organized into 3 levels: map level 
contains the list of all floors,   floor level describes (i) positions 
of the stairways (ii) position, ID and power of the Wi-Fi / BLE 
beacons and (iii) a list of partitions which corresponds to small 
subdivision  (typ. 10 to 1000m²) of the floor and aims at reducing 
both memory usage and overall complexity. Partition level 
comprises a list of all walls/constraints belonging to the 
partition, and a list of zones which could be used to describe 
areas with particular properties (e.g. high accessibility, different 
step models for moving walkway etc.) 

B. Models 

1) State model 
Our FLP design is somewhat PDR centric (i.e. sensors are 

the only modality that is always available), and based on an 
important observation illustrated on Fig. 3. This example shows 
a typical PDR trajectory along with ground truth (and estimated 
FLP trajectory). It is worthwhile noting that the true trajectory 
could be obtained from PDR trajectory by applying a rotation 
(i.e. corresponding to MA) and scaling factor. Obviously, some 
situations could be much more complex (e.g. Fig. 8), 
nevertheless this assumption is central in our approach. As a 
consequence, our problem is to estimate the posterior 



distribution of the random variable xk=[xk, yk, k, k]T at time tk 
where 

 xk,yk  are the 2D coordinates 

 k is a scaling factor which represents a step length model 
mismatch and remains almost constant for a given user. 
Typical values are in range [-0.2 0.2] (i.e. -20% to +20%) 

 kcorresponds to MA and is also constant until the 
device position is changed, or slowly varying because of 
the gyro drift. 

  

 

Fig. 3. Example of PDR trajectory  

2) Transition model 
When FLP receives a displacement Lk and a relative heading 

k from PDR, state is updated through the transition equation: 

𝑥𝑘+1 = 𝑥𝑘 + (1 + 𝜀𝑘)(𝐿𝑘 + 𝜂𝑘)𝑐𝑜𝑠(𝛼𝑘 + 𝜂𝛼 + 𝛽𝑘) 

𝑦𝑘+1 = 𝑦𝑘 + (1 + 𝜀𝑘)(𝐿𝑘 + 𝜂𝑘)𝑠𝑖𝑛(𝛼𝑘 + 𝜂𝛼 + 𝛽𝑘) 

𝜀𝑘+1 = 𝜀𝑘 + 𝜂𝜀 

𝛽𝑘+1 = 𝛽𝑘 + 𝜂𝛽 

( III-1) 

Where  and, correspond to process noise of the scaling 

and MA variables, d and correspond to measurement noise 

of the PDR, all of them being very small (e.g. = 0.01, = 

0.5deg, d= 0.1m, and = 1deg) according to our previous 
assumption, independent, centered and normally distributed.

3) GNSS measurement 
GNSS measurements are described by a very straightforward 

model assuming Gaussian distribution 

𝑝(𝐳𝑘
𝐺𝑁𝑆𝑆|𝐱𝐤) = 𝒩(𝐳𝑘

𝐺𝑁𝑆𝑆 − ℎ𝐺𝑁𝑆𝑆(𝐱𝐤), 𝚺𝑮𝑵𝑺𝑺), ( III-2)  

with 

ℎ𝐺𝑁𝑆𝑆(𝐱𝐤) = [𝑥𝑘 𝑦𝑘]𝑻       𝚺𝑮𝑵𝑺𝑺 = 𝜎𝐺𝑁𝑆𝑆
2 I2×2  ,  (III-3) 

where 𝑝(𝐳𝑘
𝐺𝑁𝑆𝑆|𝐱𝐤) refers to the likelihood function of GNSS 

measurement, 𝒩(𝐦, Σ) normal distribution with mean m and 

covariance  and I2x2, identity matrix of size 2x2.  

4) RSS measurement 
Pathloss models, when measurement is expressed in dBm, 

are generally of the form 𝑧𝑅𝑆𝑆 = 𝐾 − 10𝛼log (𝑑), where d 
stands for the distance between  receiver and the transmitting 

beacon, is a path loss exponent typically in the range1  3] for 

indoors environment (i.e. 2 in free space) and log function comes 
from the unit (i.e. dBm) in which receivers usually express the 
RSS value. Since we have a large database at our disposal, 
comprising up to 257 experiments representing more than 
100000 RSS values, we post-processed it to plot the empirical 
relation between measured RSS versus distance. Objective was 
to calibrate the log model, but the result (Fig. 4) was very 
different from our expectations and showed a surprising 
piecewise linear relation.  The flat part of the model, 
corresponding to distances above 35m can be explained easily 
by the sensitivity floor-level of the receiver. Indeed, it is likely 
that RSS measurement bloc of the receiver’s front end has 
limited dynamic (e.g. 40dB) and values below -85dBm are 
almost saturated. However, regarding the mismatch of  the first 
part of the curve (d<35m), we do not have any good explanation 
so far, our best assumption is that android devices that have been 
tested (see IV.B) do not return true dBm, but maybe a rescaled 
version of a linear power. 

 

Fig. 4. Experimental curve of rss value vs distance 

Our piecewise linear model is  

ℎ𝑅𝑆𝑆(𝐱𝐤, 𝒃𝒊) = {
−0.94𝑑(𝐱𝐤, 𝒃𝒊) − 54      𝑑 < 35𝑚

−0.058𝑑(𝐱𝐤, 𝒃𝒊) − 84     𝑑 > 35𝑚
, (III-4)  

where 𝑑(𝐱𝐤, 𝒃𝒊) is the distance with beacon bi. 

We only use scalar measurement for update (only one RSS 

value per time step) and the likelihood function is given by 

𝑝(z𝑘
𝑅𝑆𝑆|𝐱𝐤) = 𝒩(z𝑘

𝑅𝑆𝑆 − ℎ𝑅𝑆𝑆(𝐱𝐤), 𝜎𝑅𝑆𝑆
2 ), (III-5)  

with 𝜎𝑅𝑆𝑆 =10dBm. 

C. Particle Filter 

Estimation of the posterior distribution 𝑝(𝐱𝐤|𝒛𝟏 … 𝒛𝒌) is 
performed by a Sequential Importance Resampling (SIR) [17] 
particle filter (PF), with the difference that only a subset of 
particles are resampled at each time step. Architecture of the PF 
is given Fig. 5. Processing is triggered either by a new step (L>0) 
or by a sufficient number of RSS measurements with high 
values. Then, for each particles, we have the classical prediction 
step which implements ( III-1), followed by the measurement 
step (eq. ( III-2) &(III-5) ) and then the collision detection is 
performed. The prediction step is altered if a DPC has been 
detected (see II.D).  In such a situation, a subset of the particles 
will resample their MA from a uniform distribution in the range 

[0 2], whereas others particles will update their MA value 
deterministically to preserve the same user heading. In addition, 
if a particle gets killed during a high-level RSS update, then it 
gets resampled around the position of the corresponding beacon. 



 

Fig. 5. Overview of the PF’s architecture 

Collision detection checks if the particle’s displacement 
intersect with walls of the partition the particle belongs to. 
Objective of map partitioning is to reduce the number of walls 
that have to be tested. For some collisions (i.e. grazing or head-
on collisions) a deterministic correction can be applied to 
prevent particle from being killed. If a collision is detected and 

cannot be avoided through correction, then the weight 𝜔𝑘
𝑖  is set 

to zero and the particle will be resampled.  

When a floor change is detected by a separate algorithm (see 
§II.E), particles which are not within a stairway zone gets killed, 
and resampled around a randomly selected stairway exit point, 
with a probability that depends on the distance between the 
considered stairway and particle.  

Zones are used to indicate high accessibility areas [11], to 
change the step length model for a particle belonging to a 
stairway zone or to deactivate GNSS measurements. Indeed, 
when walking in stairways, length of human steps are equal to 
the length of stairways’ steps and the equation ( II-1) is simply 
replaced by 𝐿 = 𝐿𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦. Also, when user is at the entrance of 

a building GNSS may be unreliable because of strong multipath 
or poor satellite visibility. Zones can be used to indicate such 
bad GNSS conditions. 

After each particle has been processed, weights are 
normalized to sum to unity, and all particles having a weight   
below a threshold will be resampled.  

Because resampling does not preserve the particle’s weight, 
a second normalization stage is necessary. Finally, clustering of 
the particle’s cloud is performed. Indeed, because PF can track 
multimodal distributions (i.e. several assumptions), averaging 
over the entire cloud result in solutions that do not make sense 
A simple example is when the user start in the middle of a 
straight corridor, because initial heading is unknown, half of the 
particles will go forth and the other half will go back. Simply 
averaging over all particles will let the estimated position at the 
starting point since the center of mass is not moving. 

Clustering is based on the famous k-means algorithm [18], 
where the number of clusters (e.g. 5) is set in advance. Normally, 
k-means is an iterative algorithm but here, only one iteration is 
performed at each time step to reduce computational burden, and 
we observed in practice that clusters converge to the correct 

solution since the particle’s cloud is stable enough along time. 
Finally, mean and covariance are computed cluster-wise, and the 
cluster having the highest weight is outputted as the position 
estimation.  

IV. EVALUATION 

A. Implementation 

Algorithms have been developed under Matlab™ 
environment and generated in C code using Matlab™ Embedded 
Coder.  They have been embedded in an Android™ App called 
GuideMe that has been developed for testing, experiment and 
demonstration purposes. Fig. 6 shows GuideMe in Experiment 
mode: the green button on the left is pressed each time the user 
reaches a landmark defined along a known reference trajectory 
to construct the ground truth while the device is collecting data. 
Other items on the bottom serves to define some events, like 
device position changes. All those annotations can be done 
remotely by a supervisor through a BLE connection, which is 
very useful when the device under test is carried in the pocket 
for instance. At the end of the experiment, a test file is generated 
automatically that includes both ground truth and collected data 
(sensors, RSS etc.) to feed a database without any further post-
processing. This very simple process allowed us to build a 
significant database described hereafter.   

 
Fig. 6. : Android App called GuideMe developped for testing, data acquisition 

and demonstration purposes 

Algorithms have also been integrated into an automated 
benchmark tool developed in Matlab™ environment that runs 
the algorithms over the entire database. This tool has also been 
used for Monte-Carlo optimization of the many parameters to 
tune, but this is a very heavy process as single trial (over the 
entire database) takes around 50 minutes on a 12 cores Xeon 
computer. Nevertheless this optimization has resulted in 
significant improvement of performances. 

Hardware footprint of the FLP has been evaluated on a 
BlackFin 32bits fixed-point platform from Analog Devices™. 
Although it is not very representative of recent architectures 
which are much more efficient (e.g. support floating point, 
multi-core etc.) this choice allows us to have a better control of 
code execution and accurate cycles count for each part of the 
algorithm. Results are given in TABLE 1 which indicates that this 
solution is very light and suitable even for integration in an 
always-on, low power processor, especially if we consider the 
large number of particles (1000) and that algorithms are written 
in non-optimized generated C-code. 

 



TABLE 1. HARDWARE FOOTPRINT OF FLP FOR 1000PARTICLES 

Code Size 42.9kB 

Data Size 110kB 

CPU 45.59MIPS 

Baseline version of the same algorithm had much higher 
requirements (i.e. 320 MIPS and 861kB of data) but some 
optimizations helped to reduce them significantly. A first 
significant gain has been obtained by reducing the update 
frequency by replacing several small steps by one large steps. A 
short term, PDR based prediction algorithm, help to compensate 
for the delay introduced by reducing the update frequency. Then, 
a more detailed analysis has shown that more demanding parts 
of the processing were the collision detection stage (180MIPS) 
and the resampling steps (60MIPS). Resampling step has been 
optimized by replacing Matlab's random number generator 
(RNG) based on Merene-Twister algorithm by a linear 
congruential generator, which is 7.2 times faster. Collision 
detection computes Nparticles x Nwalls intersections search between 
two segments (i.e. particle's displacement and wall) involving 
complex computations (square root and divisions). Basic idea to 
speed-up the process is to perform a preliminary test that check 
if (i) a wall lies within the cluster bounds and then (ii) if 
horizontal or vertical range of the wall overlaps the horizontal or 
vertical range of the particle's displacement. Those simple tests, 
in addition to the partitioning of the map, are based on simple 
min/max tests and save many more complex intersection search.  

Considering data size, main usage is for the map storage. 
Idea here, is to store locally (i.e. in the SH) only partitions that 
are not particles empty, whereas the entire map is stored either 
in the application processor or even remotely. A cache manager 
system has been implemented to feed the PF with partitions 
based on particle's positions: when a particle does not belong to 
any local partitions, a request is send to the application processor 
(or network) to load new partitions in place of a local partitions 
that have been marked as empty. If all local partitions contain 
particles (cache full) then the partition with fewer particles will 
be replaced and corresponding particles resampled. In practice, 
cache manager stores only 5 partitions and each partition is sized 
to a maximum of 100 walls. 

B. Experiments 

Experiments have been conducted over 3 years divided into 
8 campaigns of acquisition, resulting 580 files, 240km of walk, 
about 100 users and 7 different devices. However first 
campaigns were focusing on PDR envelopments and are not 
suitable for FLP testing, because they are mainly outdoor with 
very simple trajectories. 

Considering only subset of the database that is relevant for 
FLP testing we still have 257 files corresponding to 4 
campaigns, 117km and 60 users described in Table 2. Those 
experiments took place in 4 different sites: 3 office type in 
France and in the US with many rooms and narrow corridors, 1 
mall type (mix of corridors and large open spaces). One site 
(CEA Grenoble, France) comprises 4 floors connected with both 
stairways and elevators. We used Nexus 4, Nexus 5, Galaxy 
Note 3 and one proprietary platform equipped with consumer 
grade sensors.  

One typical experiment last about 10 minutes or more and 
the user is asked to follow a predefined path and, for some 
experiments, he is also asked to do some additional stuff like 
making a phone call, changing the smartphone position, or find 
a specific information on a poster (i.e. to have some trampling 
behavior). All the classical device positions have been tested 
(portrait, landscape, call, pocket, chest, waist, backpack and 
swinging in hand). Typical density of radio beacons (when 
present) is 1 per 300m², placed at positions that are independent 
of algorithm’s performances.  

User is followed by a supervisor that indicates directions and 
also annotates when user passes a reference landmark which are 
typically located at each turn. Fig. 7 shows a typical example of 
experiment at CEA (campaign #7), with several floors, various 
sensors availability (zones with GNSS, zones with Wi-Fi, 
stairways and elevator), a duration of about 13 minutes and a 
length of 575m. FLP's trajectory starts in blue and ends in red, 
Ground truth is displayed in green.  

C. Metric 

The metric that has been used for performance evaluation is 
the percent of time when error is inferior to 5m or 10m (D5 or 
D10 resp.) in addition to root-mean-square error (RMSE). 
Reason for this choice is related to the behavior of PF : when a 
wrong solution is chosen by the algorithm (e.g. wrong corridor) 
it can result in very large errors that could grow RMSE value 
significantly whereas user experience would be mostly affected 
by how often the FLP get lost. 

In practice, it is seldom that algorithms achieve D5=100%, 
even when the result looks perfect, for several reasons : linear 
interpolation between two reference landmarks is not very 
accurate, user can walk far from the predefined path especially 
outdoor, ground truth is not well defined in stairways or because 
position output is slightly delayed wrt ground truth. We 
arbitrarily choose to classify experiments according to their D5 
value as : perfect  ( 80% < D5), Good (60%< D5 < 80%) , Middle  
(40% < D5 < 60%) and  Bad (D5 < 40%). 

D. Results 

Results are summarized in Table 2. Worst results are 
obtained for campaign #6 (denoted as C6) where no Wi-Fi 
access point (AP) have been used. Hence, entire trajectory 
estimation relies on PDR and map only which is a very tough 
use case considering the duration (about 17mn) and the number 
of floors. If, at a certain point, FLP get lost, it has no chance to 
recover and will remain in this state for the rest of the trajectory. 
C7/UC1 is almost the same as C6 except that six Wi-Fi APs have 
been added on a small part of the trajectory (see Fig. 7). This 
improves significantly the D5 performance from 23% without 
AP to 50% when using a few beacons, because FLP can be reset 
to a good position when he enters the Wi-Fi zone. It should be 
noted that performances for this campaign are a little bit better 
than it seems, because this campaign concentrates all metric 
issues mentioned previously, especially the outdoor section and 
numerous floor changes. For instance, D5 performance of 
example given in Fig. 7 is 63% only, whereas estimated 
trajectory looks close to the ground truth almost everywhere. 
Only outdoor zone is bad, but this is mainly due to GNSS 
performance at the foot of a five floors building.   C8/UC1 is 



somewhat similar to C7/UC1 but with different trajectory, no 
outdoor zone, more APs and with device position change during 
the trajectory. Increasing the  number of beacons improves D5 
from 58% to 73% despite a more difficult scenario due to the 
DPC, and almost all experiments are good (56.7%) or perfect 
(30%). 

 

Fig. 8. Example of FLP trajectory from C8/UC2, with single floor, good 

WI-Fi / BLE coverage and DPC 

When trajectories are single floor, with good Wi-Fi/BLE 
coverage in office type environments (corresponding to 
C8/UC2, C9/all use cases) then performances are very good with 
around 73% of experiments falling into the perfect category with 
an average RMS error of 4.3m even with DPC. Fig. 8 gives an 
example of such a trajectory and also the associated (input) PDR 
trajectory which is strongly affected by DPC. However, FLP is 
only slightly disturbed by DPC, and manages to find quickly the 
correct path thanks to map and RSS information.    

 

Fig. 9. Exemple of difficult use case (C8 / UC3) with a difficult map 

topology having large open spaces and long stairways 

Assuming a standard Wi-Fi/BLE coverage (1 beacon per 
300m²), limitations of our approach are observed for maps 
having a complex topology as shown on Fig. 9.  This venue has 
large open spaces on first floor and long stairways which are 
poorly handled by our algorithms. In addition, the 2nd floor is a 
mezzanine and it has been observed that some beacons can be 
received at high levels at the opposite side of the building thanks 
to a very good, free space propagation. For this kind of complex 
scenario (C8 / UC3) D5 performance drop to 48.7%, and 
majority of experiments (70%) are classified as middle. 

Finally, the overall performance computed on the entire 
database gives D5 of 70% with large disparities depending on 
the use case that is considered. FLP is not working for about 10% 
of the experiments, mainly represented by C6 where positioning 
relies on map and sensors only, and where no absolute reset is 
possible (e.g. using RSS or GNSS). Systems is working very 
well for 40% of the use cases, which typically correspond to 
single floor and standard Wi-Fi / BLE coverage (1 beacon per 
300m²), even with DPC while the user is walking. Performances 
start to decrease when the path goes through different floors 

 

Fig. 7. Example of typical trajectory with severeal floors, outdoor and Wi-Fi zone 



(23% of good) because the stairways transitions are not well 
modeled and pressure sensor introduces some delays. If, in 
addition, the venue has a complex map with large open spaces 
for instance, then performances are middle (around 25%). 

 

V. CONCLUSION 

A positioning algorithm that makes use of various data 
available in a smartphone has been presented. This algorithm 
addresses some of the most challenging use cases (e.g. DPC) and 
is intended for a lightweight, always-on, hardware integration. 
Implementation on a 32bits, fixed-point platform (i.e. BlackFin 
processor) has shown a hardware footprint requiring processing 
power of 45MIPS, and memory size of 150kB (code+data), 
which is suitable for SH integration. Extensive testing over more 
than 250 experiments representing various conditions, gives an 
overall accuracy of 9m RMSE, which improves to 4.3m for 
favorable scenarios. Analysis of those two figures reveals that 
algorithm is working very well for some environments (e.g. 
narrow corridors, good Wi-Fi / BLE coverage) even with DPC, 
but deteriorates under one or several of these factors : (i) without 
any RSS measurements,  (ii) in large open spaces, (iii)  in 
stairways transitions.  
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 TABLE 2. DATABASE SUMMARY AND RESULTS 

Camp. Use 

Case 

Place # 

files 

Dur. 

(mn) 

Dist. 

m 

Out

doo

r 

# 

floors 

Wifi / 

BLE 

DPC D5 

(%) 

D10 

(%) 

RMS 

(m) 

Bad 

(%) 

Middle 

(%) 

Good 

(%) 

Perfect 

(%) 

#6 UC1 CEA 10 17 972 no 4 0 no 23,76 33,24 39,96 90,0 10,0 0,0 0,0 

  UC1 CEA 40 13 575 yes 4 6 no 50,68 71,24 13,74 15,0 72,5 12,5 0,0 

#7 UC2a CEA 20 10 841 no 1 6 no 83,75 96,65 7,60 0,0 0,0 25,0 75,0 

  UC2b CEA 20 10 841 no 1 6 yes 77,04 89,91 10,82 5,0 5,0 55,0 35,0 

  UC1 CEA 30 13 476 no 4 20 yes 72,89 86,89 7,40 0,0 13,3 56,7 30,0 

#8 UC2 IFR 30 10 384 no 1 10 yes 82,04 95,20 4,68 0,0 0,0 26,7 73,3 

  UC3 WTC 30 10 347 no 3 14 yes 48,75 75,76 10,56 16,7 70,0 13,3 0,0 

  UC1 CEA 35 13 254 no 1 35 Yes 84,42 91,57 5,19 5,7 5,7 17,1 71,4 

#9 UC2 IFR 25 3 130 no 1 21 Yes 87,20 96,85 3,29 0,0 16,0 8,0 76,0 

  UC3 ISJ 17 3 147 no 1 30 yes 81,29 90,79 4,20 5,9 11,8 11,8 70,6 

Total    257 44h20 117km         70,46 84,90 9,07 9,3 24,9 23,3 42,4 


