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Abstract

Numerical methods for the simulation of cavitation processes have been devel-
oped for more than 50 years. The rich variety of physical phenomena triggered by
the collapse of a bubble has several applications in medicine and environmental
science but requires the development of sophisticated numerical methods able to
capture the presence of sharp interfaces between fluids and solid/elastic materi-
als, the generation of shock waves and the development of non-spherical modes.
One important challenge faced by numerical methods is the important tempo-
ral and scale separation inherent to the process of bubble collapse, where many
effects become predominant during very short time lapses around the instant of
minimum radius when the simulations are hardly resolved. In this manuscript
we provide a detailed discussion of the parameters controlling the accuracy of
Direct Numerical Simulation in general non-spherical cases, where a new theoret-
ical analysis is presented to generalize existing theories on the prediction of the
peak pressures reached inside the bubble during the bubble collapse. We show
that the ratio between the gridsize and the minimum radius allow us to scale
the numerical errors introduced by the numerical method in the estimation of
different relevant quantities for a variety of initial conditions.

Keywords: Cavitation, bubble collapse, numerical methods, compressible multiphase
solver



1 Introduction

Bubbles have attracted the interest of biologists since long ago. One significant area
of study emerged during world war, where the absence of pressurized air chambers in
aircraft posed a risk of decompression sickness among aviators [1, 2]. Decompression
sickness, also known as ’the bends’, occurs when dissolved gases, like nitrogen, form
bubbles in the bloodstream during rapid decompression, leading to tissue damage
and other symptoms. Over the years scientists have learnt to use bubbles in various
applications. These include drug delivery, where bubbles serve as carriers for med-
ications, lithotripsy and histotripsy for breaking down kidney stones and for tissue
ablation respectively, High-Intensity Focused Ultrasound (HIFU) treatment for non-
invasive treatment, needle-free injection methods, high-contrast ultrasound imaging
for medical diagnostics, thrombolysis and many more [3-12]. In order to gain better
control over these biological applications, it is essential to understand the response
of these bubbles to the changes in their surroundings. Often in these systems, the
bubbles experience a strong pressure difference with respect to their surroundings
which leads to a sudden collapse of these bubble [13-15]. This complex process
involves several intricate mechanisms such as high speed liquid jetting, emission of
shock waves, light emission [16-21]. Additionally, the collapse process is associated
with small length and time scales features which makes experimental measurements
of several quantities unreliable. To access these quantities and improve understanding
of cavitation bubbles, we have to develop reliable numerical codes that are capable of
accurately capturing the non-linear response of the bubbles and the consequences of
it in its surroundings.

We begin by presenting a brief synopsis of historic developments of the numerical
methods for studying cavitation. Early development of numerical codes developed to
study the cavitation processes are based on the resolution of a Rayleigh—Plesset like
equation coupled with a very simple model for the bubble content [22-26]. Because
an important limitation of these methods is their inability to capture non-spherical
effects, Boundary Integral Methods (BIM) were developed in the 70s and 80s as a class
of numerical methods capable of simulating non-spherical collapse of bubbles [27-30].
Conventionally in BIM methods, the velocity potential is integrated thereby assuming
an inviscid and incompressible flows and the pressure at the bubble interface is treated
as a stress free boundary condition where the pressure is imposed as

_ Vg,O K
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with Vg the bubble volume at some reference pressure pgo. This method can be
extended to a weakly compressible regimes [31, 32] being still extensively used for
studying the bubble collapse phenomenon [33-37]. Other initial alternatives to BIM
include few methods proposed to solve the Euler equations for both phases [38, 39]
and a family of viscous solvers that still treated the interface as a free surface bound-
ary condition [40-42].




Currently active areas of research involve the development of accurate three
dimensional numerical methods with viscous and surface-tension effects while con-
sidering evolution of both liquid and gas phase to be able to predict the conditions
generated inside the bubble and its surroundings. A very popular class of compressible
multiphase codes are based on solving the Riemann problem in each cell face [43-48],
which typically resort to the use of Diffuse Interface Methods (DIM) based on the
smearing of the interface over several cells. One source of error in these methods is
the artificial diffusion of the interface which needs to be limited by special techniques.
Johnsen and Colonius [45] solved for the compressible Euler’s equations for the bubble
and liquid. The results showed grid converged results' for the major part of a bubble
collapse cycle, the bubble displacement velocity and the wall pressure for several
standoff distances and for a relatively intense collapse. However, these results already
highlighted the difficulties to obtain converged results close to minimum volume.
Tiwari et al. [48] also developed a similar method while considering non-equilibrium
effects of pressure and velocity across the phases. The results obtained converged to
Keller-Miksis model for spherically symmetric collapse. The convergence of the kinetic
energy for a non-spherical collapse was also briefly discussed. Shukla [47] developed
an interface sharpening procedure that improved the convergence of spherically sym-
metric under-water explosion problem. Phan et al. [49] developed a homogeneous
mixture model for understanding the bubbles in underwater explosion. For validation
the comparison of the bubble temporal radius evolution for the first bubble cycle was
compared with the experimental observations. Schmidmayer et al. [46, 50, 51] discuss
the effect of different models and numerical schemes showing that non-spherical effects
can develop during the collapse of bubble in bulk, close to the instant of minimum
volume. Interestingly, these effects are shown to be sensitive to the numerical model
and advection scheme. For validation they also show radius evolution for different
grids and present RMS errors as compared to the Keller-Miksis model. Panchal et al.
[52] described a 7 equation model with diffused interface for compressible multiphase
flows. Paula et al. [53] described a higher order method for interface capturing and
discrete equation method for solving multiphase flow equations. They discussed the
grid convergence of a spherically symmetric detonation problem.

Another class of methods which have recently gained popularity are based on the
extensions of the classical projection methods? of incompressible flows to compressible
regimes. A common theme of these methods is the solution of a Poisson-Helmholtz
equation for evolution of pressure. Miller et al. [54] developed a pressure based
method for numerical simulations of bubbles showing the predicted radius evolution
for meter sized bubbles for different grids and comparing their results with experi-
ments. Koch et al. [55] developed a pressure based solver using OpenFoam where they
showed very good grid convergence for several quantities like collapse time, rebound
radius etc. They have used enormous mesh compression near the minimum volume
in order to correctly resolve the interface near the minimum volume. Denner et al.
[56] have also proposed a slightly different pressure based solver where a large system

Lwhen the numerical solution obtained is shown not to depend on the size of the grid elements
2A method to obtain a numerical solution of incompressible Navier Stokes equations which imposes the
divergence free condition at the discrete level



of linear equations is solved simultaneously for pressure and velocity and where the
interface between the two fluids is represented with algebraic volume of fluid method.
They showed that the bubble evolution converges to Gilmore model for pressure ratio
of 25 between the ambient and bubble pressures. They also present results for two
different time steps and revealed that the results might deviate from Gilmore model
if the time step is not small enough. This method has been able to reproduce well
the experimentally measured wall pressure during the collapse a nearby bubble [57].
Fuster and Popinet [58] developed a consistent and conservative all-Mach method
for bubble dynamic problems in the Basilisk code where the interface is represented
with a geometric Volume Of Fluid method (VOF). They discussed several spherical
and non-spherical bubble collapse problems and show that the results converge to the
Keller-Miksis solution for the spherical case. Recently, this method is also extended
to include the heat transfer effects across the interface [59].

In this article, we use the all-Mach method of Fuster and Popinet [58] to discuss
the influence of numerical errors on the prediction of relevant quantities associated to
the bubble collapse. For that, the Rayleigh collapse problem will be simulated under
different initial configurations with variable intensity. The influence of various effects
(viscosity, surface tension, non-spherical effects) on the quantities of interest will be
discussed from a theoretical point of view, clarifying the length scales that one needs
to resolve, in order to ensure accurate results of the Direct Numerical Simulation of
the process of bubble collapse.

2 Classical models and numerical methods for DNS
of bubble dynamics

In this manuscript we discuss methods able to solve for the compressible Navier—Stokes
equations in both gas and liquid phase, which require the resolution of an advection
equation to track the position of the interface (for example the fraction of a reference
fluid f)

of
- . -0
and a set of conservative equations
oY,
V-F;=0 1
o (1)

where Y; = (p; fi, pi fiw, fipier.;)T denotes the conservative variables (density, momen-
tum and total energy) associated to the gas and liquid phase and F; is its
corresponding flux

fipiw;
F; = fipiwiw; — 75 ;
fipieriwi — fi(Ti - u; — q;)



with 7 the stress tensor and g, = —k;VT; the diffusive heat flux. The system above is
closed by adding an Equation Of State (EOS). Different methods have been proposed
for the solution of the system of equations above [60]. Some methods reformulate the
system of equations above using non-conservative primitive variables. For example, it
is possible to obtain an evolution equation for pressure from the basic conservation
equations as [58]

1 D P
. 7p76T v:7v.u’ (2)
pczg Dt PCp
2
where ®,, denotes the viscous dissipation and p—iQ = p% — ﬁp ch is a thermodynamic

€
property which is equal to p% for perfect gases (8r = 1/T; v = C,/C,) and also
weakly compressible liquids (8r = 0, v = 1). In addition, we can use the internal

energy equation to write an explicit equation for the fluid temperature evolution as

DT, Dpi
iCpi—; = Bili—, +®,—V - gq,.
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The choice of the primitive variables is arbitrary but has an important impact on
the conservation properties of the method and therefore how the numerical errors are
going to impact the numerical results. .

Various challenges are faced when solving the multiphase compressible equations
in the context of bubble collapse. First, for very violent collapses the solver must
be able to capture the appearance of shock waves in the liquid that are eventually
responsible of a significant energy exchange of the bubble with its surroundings. At
the same time, the amplitude of the wave quickly decays and the propagation of
waves responsible for noise emission become linear. Thus, numerical methods need
to reduce the damping introduced on the propagation of acoustic waves (low Mach
number) while being able to correctly capture the emission of shock waves during the
bubble collapse.

Another problem associated to solvers based on the coupled solution of the
equations both inside and outside the bubble is how to deal with the discontinuity of
pressure across the interface imposed by the Laplace equation

P1L =pP2 —OK — IMQQHDQTL + u12nD1n, r=2Xg. (4)

The ability of the method to handle discontinuities on the pressure field poses various
technical difficulties. Spurious parasitic currents due to curvature error computation
are typically discussed in static configurations [61], but these test do not provide
information about capability of the method to capture the normal stress viscous
jump. The errors introduced in the discretization of interfacial cells usually have an
important impact on the development of physically meaningful interfacial instabilities
which can be eventually damped by physical but also numerical diffusion effects. This



complicates the discussion about the appearance of non-spherical modes when com-
paring two numerical methods in unstable configurations, as an optimal numerical
method should minimize the generation of spurious numerical effects while keeping a
relatively small viscous dissipation. The problems associated with the discretization
of the interface typically appear for very refined grids, when the viscous dissipation
is not sufficient to damp the artificial discretization errors introduced. Thus, a naive
analysis of multidimensional solvers based on the capability of the solver to repro-
duce an spherically symmetric collapse is misleading, as very dissipative methods
can provide the wrong impression that they are accurate just because they damp
non-spherical modes.

A less common issue discussed with the methods mentioned above is the problem of
entropy conservation. In many models, the bubble response is assumed to be adiabatic
and therefore the entropy generation should be zero. From the theorem of Zhong and
Marden [62], a numerical scheme cannot simultaneously preserve momentum, energy,
and symplecticity but only two out of the three [63, 64]. For numerical methods solving
for the discretized pressure equation 2 this effect can be easily seen for an ideal gas

by computing the term p%% as
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and the right hand size as
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where we have used that pc? = yp and p* and p* denotes the gas pressure and density
at t, of the fluid particle following a Lagrangian trajectory. While in the continuum
limit we naturally obtain that the quantity

pn—i-l p*

(et (p*)
remains constant for a Lagrangian fluid particle, this condition is not respected at
the discrete level. Thus, the classical discretization of the left hand side of eq. 2 is

obtained using Taylor series to develop the logarithmic term. Neglecting the viscous
contribution we obtain

n41 00 k+1 n+1 w\ K n+1 ®
P (-1) (p —p > ptt—p 2
In = § = + O(At

p* = k p* p* (AF)

while the right hand size is discretized as
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with

p* =p" — (u-Vp)"At + O(At?),

u* =u" — V- (uu))"At + O(At?).
We can realize that standard discretization schemes drop At? terms introducing
errors on the discrete entropy conservation due to temporal discretization errors.
Entropy production issues are associated with the solvers ensuring mass, momentum
and energy conservation and in general to any unconditionally stable solver, where
entropy production is needed to ensure stability. This fact implies that even in
discretely conserving methods, the numerical errors are translated into an effective
dissipation that break the isoentropic condition usually adopted to simulate the col-
lapse of bubbles. The necessity of quantifying the influence of numerical errors on the
artificial production of entropy by the numerical method is of crucial importance to
accurately predict the peak pressures during the collapse and the strength of emitted
waves, but it is an aspect that remains practically unexplored in the current literature.

3 Measurable quantities, reference solutions and
convergence analyses for code validation

The evolution of Computational Fluid Dynamics (CFD) codes requires the validation
of the correct treatment of the various terms included. A classical benchmarking test
case is the Rayleigh collapse problem?, in which a bubble at some initial pressure pg o
is initialized in a liquid at rest and at a higher ambient pressure p.,. The general-
ization of this test to systems where the bubble is initially close or in contact to a
solid wall [66] or bubble clusters [67] is interesting because it captures all the physical
effects typically encountered in cavitation phenomena in real applications including
the emission of shock waves, the appearance of liquid jets, etc. In the following, we
will discuss the reference solutions used to compare the numerical results obtained in
order to validate a numerical code.

In the spherically symmetric case, viscous and surface tension effects are trivially
added in the Rayleigh-Plesset equation to provide an accurate solution that can be
used as reference for code validation. In turn, compressibility effects can be only
partly accounted for using different modifications of the original Rayleigh—Plesset
model which assume that the acoustic wave emitted is linear, restricting the applica-
bility of such models to small Mach number regimes [26, 68, 69]. The introduction of
compressibility effects in the full problem introduces an extra degree of freedom when
specifying the initial conditions for the liquid pressure and density fields. Several
initial conditions including that of a sudden jump of pressure at the interface are in
principle admissible. However, because the models proposed in [26, 68, 69] are just
first order corrections of the incompressible solution it is convenient to initialize the

3This problem, posed by Rayleigh in 1917, consists in determining the temporal evolution of the bubble
volume of a bubble collapsing in a liquid bulk by the difference between the bubble and the ambient
pressure[65]



pressure field from the solution limit of an incompressible liquid if one wants to com-
pare the solutions of the solver with these simplified models. The spatial structure
of the initial pressure field has analytical solution in the case of an spherical bubble,
while in the case of bubbles that are not initially spherical or where the domain is
not infinite it is required to obtain it numerically. Assuming that the liquid is an
incompressible substance, we can solve a Laplace equation for the pressure in the
liquid domain with Dirichlet boundary conditions at the interface determined by the
Laplace equation [66]. This will be the procedure to obtain the initial condition in
the simulations shown along this manuscript.

The Rayleigh collapse problem is a challenging test case when looking at instants
near the minimum bubble volume. Especially for strong collapse intensities, the
bubble interface near the minimum volume is often hard to resolve as the bubble can
shrink by at least one order of magnitude in size. In addition, the axi-symmetric and
fully three-dimensional problem is unstable and external non-spherical perturbations
are amplified due to the presence of physically meaningful Rayleigh—Taylor instabili-
ties leading to length scales which are much smaller than the minimum bubble radius.

The large scale dynamics of the bubble can be described using the inherent char-
acteristic velocity of the problem U, = /pso/p; and the initial bubble radius Ry.

te

g;,l for an spherical bubble found by

thc 1 pg 0
L —0.915, /1 - 222, 5
RO Poo ( )

which becomes an O(1) quantity for sufficiently large values of ps/pg,0. Based on
these scalings, the relevance of viscous and surface tension effects are expected to scale
with the following definitions of the Reynolds and Weber number

R v/ R
Weg = poi; 07 Reg = $~

For example, the dimensionless collapse time
Rayleigh can be written as

(6)

These dimensionless quantities naturally appear in the solution of a linear (weak)
oscillation of a bubble in a free liquid [70, 71]. The importance of liquid compressibil-
ity effects deserves particular attention in strongly nonlinear regimes. For sufficiently
intense collapses U, is not representative of the flow velocity at the instant close to
the collapse, when liquid compressibility effects become important. Instead, we need to
use the expression for the peak pressure and minimum volume reached by the collapse
of a gas bubble in an inviscid liquid [72]

~
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Table 1 Estimation of the maximum values of the ratio between
the minimum radius and the minimum gridsize R in/AZmin
used in different convergence studies reported in the literature
for the Rayleigh collapse problem and for underwater explosions.
No convergence study on the peak pressures genereated has been
found for the shock/bubble interaction problem [39, 45, 53, 74] .

Reference (year) Rayleigh collapse  Underwater explosion

[73] (2003) 847
[74] (2006) 12.8
[45] (2009) 2
[54] (2013) 33
[47] (2014) 80
[55] (2016) 6
[58] (2018) 40
[75] (2018) 73
[76] (2020) 20
[56] (2020) 54
[51] (2020) 15
[36] (2021) 1000
[77] (2022) 3
[78] (2022) 10
[53] (2023) 65
[79] (2023) 20
[80] (2023) 2

to introduce a characteristic velocity tmaz = \/Pmaz/pi Which defines a Mach, Weber
and Reynolds number as

2
Umax plumamein plumamein
Mamax = 5 Wemax = 5 Remax = . (8)
C1 a M1

It is interesting to note that the maximum values of the Mach, Weber and Reynolds
number increases with Zﬁ’ﬁ, which implies that liquid compressibility effects become
increasingly important as the intensity of the collapse increases while liquid viscosity
and surface tension effects are negligible for very strong collapses despite the fact
that the bubble becomes small.

Schmidmayer et al [51] clearly shows that the errors introduced in the simulation
are especially important at the instant of minimum radius, where the peak pressures
are reached, the errors being also sensitive to the numerical method chosen. An esti-
mation of how the minimum radius depends on the pressure ratio can be obtained

as )
Rinin ~ 9 (M) o
Ry Po '
Thus, simulations for large values of the ratio ;’g% are very challenging if one requires
to solve the physical phenomena taking place at the collapse. Table 1 shows a list of
numerical works where the influence of the grid size on the accuracy of the numerical
predictions is discussed. In addition to the Rayleigh collapse problem, we also include



two related tests: the underwater explosion test and the problem of shock/bubble
interaction. The problem of underwater explosion is indeed analogous to the Rayleigh
collapse problem except that the simulation is initialized at the instant of minimum
radius (maximum pressure) and therefore the initial spatial discretization controls
the maximum errors introduced in the simulation. In the problem of shock/bubble
interaction, the ratio between the pre-shock and post-shock pressure can be taken as
a measurement of the bubble collapse strength. We can clearly see that in the case of
underwater explosions all the authors reporting convergence studies use at least 10
points per radius in order to limit the sensitivity of the numerical predictions to the
grid size. In the case of the Rayleigh collapse problem, most of the authors reporting
convergence studies also use at least 10 points per radius at the instant of minimum
volume, although it is possible to find studies with lower resolutions where the
authors limit themselves to showing the temporal evolution of the bubble volume and
not the peak pressures reached at the collapse. Finally, although it is possible to find
many numerical studies of the shock/bubble interaction problem [39, 45, 53, 74] (just
to mention few), to the best of our knowledge no grid convergence studies have been
reported for this problem up to date. One possible reason for this is that most authors
use this test to validate the codes by reproducing experimental conditions where the
pressure ratios are extremely large (typically of the order of 103). Thus, although
simulations are well resolved during the first instants when the shockwave deforms
the bubble and the methods capture well the patterns experimentally observed, the
capability of numerical simulations to resolve the peak pressures reached during the
collapse is beyond currently available computational resources.

In the following, we discuss the influence of grid resolution on different quantities
associated to the collapse of a bubble using the solver proposed in [58] as a representa-
tive example to discuss the importance of numerical errors. In addition to simulations
where we enforce spherical symmetry, the solution of three different axisymmetric
problems will be considered: (i) the Rayleigh collapse of a spherical bubble that can
be near a solid no-slip wall (figure 1), (ii) the Rayleigh collapse of a spherical cap bub-
ble in contact with a slip wall with some initial contact angle a (figure 2) and (iii)
the Rayleigh collapse of a prolate bubble defined by the initial sphericity ¥ of the
spheroid defined as

7.(.1/3 (6 %70)2/3
Sr,0

with St is the interfacial area at t=0 (figure 3). In each case, the relative error e(u)
for a given quantity u will be computed as

U — Upe
e(u) = LT Yref
Uref

where w is the solution obtained with a given resolution and u,.s will be the reference
solution obtained with the finest possible grid.

10



Fig. 1 (a) Interface isocontour and kinetic energy distribution for collapse of 0.5 mm bubble under
the influence of peo/pg,0 = 10 at distance d = 2R( from the no-slip wall for Reg = 5000 and
Wep = 695, Mamax = 0.085. (b) Zoomed in view of the grid size distribution at the instant of liquid
jet development near the fourth frame from left in the top panel.

(d)

Fig. 2 The DNS results for collapse of spherical cap bubbles attached to a slip wall with different
contact angle a and for peo/pg,0 = 8, Reg = 0o, Weg = co. The evolution of bubble shapes contours
for (a) a=0 ) a=7n/3(c) a=7/2 (d) o =2/3m.

3.1 Rayleigh collapse time

Generally, equation 5 is a very good estimate of the collapse time as the corrections
due to various factors including viscous effects and liquid compressibility are fairly
small. Figure 4 shows that in spherically symmetric models the collapse time does
not vary significantly when using different models irrespective whether the liquid is
considered incompressible or compressible. As shown in figure 5 the errors in this
quantity introduced by the Direct Numerical Simulations (DNS) of the Navier—Stokes

11



sphericity

L 0.93

-15-1-05 0 05 1 15
z

Fig. 3 (a) Initial shape of the prolate bubbles used to investigate the influence of non-spherical bub-
ble collapses. (b) Interface isocontours of the collapse and rebound of a prolate bubble for pso /pg,0 = 6,
Rep = 10% and Weg = co.

1.0 A1
0.8 A
— pm/pg,0=°°, Mamax =0
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o
0.4 A —— PwlPg,0 =64, Mamay =2
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Fig. 4 The evolution of bubble radius given by the Rayleigh model pos/pg,0 = 00, Mamax = 0,
the Rayleigh-Plesset model poo/pg,0 = 64, Mamax = 0, and the Keller-Miksis model poo/pg,0 =
64, Mamax = 2. In all cases Reg = oo and Weg = oo.

equations reach small relative errors of the order 10~2 when we have around 10 grid
points across the minimum bubble radius irrespective whether spherical symmetry is
imposed or not, the accuracy of the results being acceptable even for relatively poor
resolutions at the instant of minimum radius. The estimate of the errors on the esti-
mation of the collapse time of other works in the literature showing grid convergence
results are consistent with the errors reported.

Many studies have shown converged results for the collapse time for a spherical
bubble and also for non-spherical bubbles [55, 56, 78]. In this later case, the presence
of nearby walls can induce a shielding effect which leads to a prolongation of the
collapse time [81]. In figure 6a, we show the evolution of non-dimensional equivalent
bubble radius for spherical cap bubbles initially in contact with a slip wall. The initial
curvature is Ry = 1 and poo/pg,0 = 8 and the initial contact angle o varies between 0
and 27/3. The minimum of the bubble volume is only weakly linked with the bubble

12
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Fig. 5 Convergence test on the collapse time as a function of the dimensionless grid size defined with
the minimum bubble radius. The results are reported for different problems: a spherically symmetric
bubble for three different collapse intensities, two different prolate bubble for peo/pg,0 = 12 and
the axi-symmetric collapse of a 0.5mm air bubble in water near a no-slip wall for pes/pg,0 = 10,
Rep = 5000 and Weg = 695, Mamax = 0.085. An estimation of convergence errors from references
[45, 51, 75, 77| are also shown with black symbols.

(b)
(a) 1.00 1.5
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Fig. 6 Axi-symmetric DNS results for bubbles attached to a slip wall peo/pg,0 = 8Reg = oo,
Weg = oo and varying contact angle. (a) Evolution of dimensionless equivalent radius of the bubble.
(b) The dimensionless collapse time is plotted as function of a.

shape whereas the non-dimensional time of bubble collapse depends significantly on
a. The bubble collapse time (see figure 6b) for hemispherical bubble compares well
with the Rayleigh collapse time: for bubbles with o < 7/2, it is relatively constant
and around 1.25tg, and for o > 7/2 it decreases sharply. The prolongation in the
bubble collapse time compared to the Rayleigh collapse time is discussed in detail by
Reuter et. al. [81] for laser generated bubbles. Interestingly, they also report similar
factor of around 1.2 for 0.5 < d/Ry4. < 1 (where d is standoff distance for laser
focus and R4z is the maximum bubble radius), even though the setup and shapes
of bubbles are very different. The influence of the contact angle on the collapse time
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can be estimated from the impulse t