
HAL Id: hal-04563704
https://hal.science/hal-04563704v1

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Review of the Accuracy of Direct Numerical
Simulation Tools for the Simulation of Non-Spherical

Bubble Collapses
Mandeep Saini, Lucas Prouvost, Stephane Popinet, Daniel Fuster

To cite this version:
Mandeep Saini, Lucas Prouvost, Stephane Popinet, Daniel Fuster. A Review of the Accuracy of
Direct Numerical Simulation Tools for the Simulation of Non-Spherical Bubble Collapses. Journal of
the Indian Institute of Science, In press, �10.1007/s41745-024-00427-7�. �hal-04563704�

https://hal.science/hal-04563704v1
https://hal.archives-ouvertes.fr


A review of the accuracy of Direct Numerical

Simulation tools for the simulation of

non-spherical bubble collapses

Mandeep Saini1, Lucas Prouvost1, Stephane Popinet1,
Daniel Fuster1*

1*Sorbonne University, CNRS, Institute Jean Le Rond d’Alembert,
F-75005 Paris, France.

*Corresponding author(s). E-mail(s):
daniel.fuster@sorbonne-universite.fr;

Contributing authors: manndeepsainni@gmail.com;
lucas.prouvost@gmail.com; popinet@basilisk.fr;

Abstract

Numerical methods for the simulation of cavitation processes have been devel-
oped for more than 50 years. The rich variety of physical phenomena triggered by
the collapse of a bubble has several applications in medicine and environmental
science but requires the development of sophisticated numerical methods able to
capture the presence of sharp interfaces between fluids and solid/elastic materi-
als, the generation of shock waves and the development of non-spherical modes.
One important challenge faced by numerical methods is the important tempo-
ral and scale separation inherent to the process of bubble collapse, where many
effects become predominant during very short time lapses around the instant of
minimum radius when the simulations are hardly resolved. In this manuscript
we provide a detailed discussion of the parameters controlling the accuracy of
Direct Numerical Simulation in general non-spherical cases, where a new theoret-
ical analysis is presented to generalize existing theories on the prediction of the
peak pressures reached inside the bubble during the bubble collapse. We show
that the ratio between the gridsize and the minimum radius allow us to scale
the numerical errors introduced by the numerical method in the estimation of
different relevant quantities for a variety of initial conditions.

Keywords: Cavitation, bubble collapse, numerical methods, compressible multiphase
solver
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1 Introduction

Bubbles have attracted the interest of biologists since long ago. One significant area
of study emerged during world war, where the absence of pressurized air chambers in
aircraft posed a risk of decompression sickness among aviators [1, 2]. Decompression
sickness, also known as ’the bends’, occurs when dissolved gases, like nitrogen, form
bubbles in the bloodstream during rapid decompression, leading to tissue damage
and other symptoms. Over the years scientists have learnt to use bubbles in various
applications. These include drug delivery, where bubbles serve as carriers for med-
ications, lithotripsy and histotripsy for breaking down kidney stones and for tissue
ablation respectively, High-Intensity Focused Ultrasound (HIFU) treatment for non-
invasive treatment, needle-free injection methods, high-contrast ultrasound imaging
for medical diagnostics, thrombolysis and many more [3–12]. In order to gain better
control over these biological applications, it is essential to understand the response
of these bubbles to the changes in their surroundings. Often in these systems, the
bubbles experience a strong pressure difference with respect to their surroundings
which leads to a sudden collapse of these bubble [13–15]. This complex process
involves several intricate mechanisms such as high speed liquid jetting, emission of
shock waves, light emission [16–21]. Additionally, the collapse process is associated
with small length and time scales features which makes experimental measurements
of several quantities unreliable. To access these quantities and improve understanding
of cavitation bubbles, we have to develop reliable numerical codes that are capable of
accurately capturing the non-linear response of the bubbles and the consequences of
it in its surroundings.

We begin by presenting a brief synopsis of historic developments of the numerical
methods for studying cavitation. Early development of numerical codes developed to
study the cavitation processes are based on the resolution of a Rayleigh–Plesset like
equation coupled with a very simple model for the bubble content [22–26]. Because
an important limitation of these methods is their inability to capture non-spherical
effects, Boundary Integral Methods (BIM) were developed in the 70s and 80s as a class
of numerical methods capable of simulating non-spherical collapse of bubbles [27–30].
Conventionally in BIM methods, the velocity potential is integrated thereby assuming
an inviscid and incompressible flows and the pressure at the bubble interface is treated
as a stress free boundary condition where the pressure is imposed as

pb = pg,0

(
Vg,0

Vg

)γ

,

with Vg,0 the bubble volume at some reference pressure pg,0. This method can be
extended to a weakly compressible regimes [31, 32] being still extensively used for
studying the bubble collapse phenomenon [33–37]. Other initial alternatives to BIM
include few methods proposed to solve the Euler equations for both phases [38, 39]
and a family of viscous solvers that still treated the interface as a free surface bound-
ary condition [40–42].
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Currently active areas of research involve the development of accurate three
dimensional numerical methods with viscous and surface-tension effects while con-
sidering evolution of both liquid and gas phase to be able to predict the conditions
generated inside the bubble and its surroundings. A very popular class of compressible
multiphase codes are based on solving the Riemann problem in each cell face [43–48],
which typically resort to the use of Diffuse Interface Methods (DIM) based on the
smearing of the interface over several cells. One source of error in these methods is
the artificial diffusion of the interface which needs to be limited by special techniques.
Johnsen and Colonius [45] solved for the compressible Euler’s equations for the bubble
and liquid. The results showed grid converged results1 for the major part of a bubble
collapse cycle, the bubble displacement velocity and the wall pressure for several
standoff distances and for a relatively intense collapse. However, these results already
highlighted the difficulties to obtain converged results close to minimum volume.
Tiwari et al. [48] also developed a similar method while considering non-equilibrium
effects of pressure and velocity across the phases. The results obtained converged to
Keller-Miksis model for spherically symmetric collapse. The convergence of the kinetic
energy for a non-spherical collapse was also briefly discussed. Shukla [47] developed
an interface sharpening procedure that improved the convergence of spherically sym-
metric under-water explosion problem. Phan et al. [49] developed a homogeneous
mixture model for understanding the bubbles in underwater explosion. For validation
the comparison of the bubble temporal radius evolution for the first bubble cycle was
compared with the experimental observations. Schmidmayer et al. [46, 50, 51] discuss
the effect of different models and numerical schemes showing that non-spherical effects
can develop during the collapse of bubble in bulk, close to the instant of minimum
volume. Interestingly, these effects are shown to be sensitive to the numerical model
and advection scheme. For validation they also show radius evolution for different
grids and present RMS errors as compared to the Keller-Miksis model. Panchal et al.
[52] described a 7 equation model with diffused interface for compressible multiphase
flows. Paula et al. [53] described a higher order method for interface capturing and
discrete equation method for solving multiphase flow equations. They discussed the
grid convergence of a spherically symmetric detonation problem.

Another class of methods which have recently gained popularity are based on the
extensions of the classical projection methods2 of incompressible flows to compressible
regimes. A common theme of these methods is the solution of a Poisson-Helmholtz
equation for evolution of pressure. Miller et al. [54] developed a pressure based
method for numerical simulations of bubbles showing the predicted radius evolution
for meter sized bubbles for different grids and comparing their results with experi-
ments. Koch et al. [55] developed a pressure based solver using OpenFoam where they
showed very good grid convergence for several quantities like collapse time, rebound
radius etc. They have used enormous mesh compression near the minimum volume
in order to correctly resolve the interface near the minimum volume. Denner et al.
[56] have also proposed a slightly different pressure based solver where a large system

1when the numerical solution obtained is shown not to depend on the size of the grid elements
2A method to obtain a numerical solution of incompressible Navier Stokes equations which imposes the

divergence free condition at the discrete level
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of linear equations is solved simultaneously for pressure and velocity and where the
interface between the two fluids is represented with algebraic volume of fluid method.
They showed that the bubble evolution converges to Gilmore model for pressure ratio
of 25 between the ambient and bubble pressures. They also present results for two
different time steps and revealed that the results might deviate from Gilmore model
if the time step is not small enough. This method has been able to reproduce well
the experimentally measured wall pressure during the collapse a nearby bubble [57].
Fuster and Popinet [58] developed a consistent and conservative all-Mach method
for bubble dynamic problems in the Basilisk code where the interface is represented
with a geometric Volume Of Fluid method (VOF). They discussed several spherical
and non-spherical bubble collapse problems and show that the results converge to the
Keller–Miksis solution for the spherical case. Recently, this method is also extended
to include the heat transfer effects across the interface [59].

In this article, we use the all-Mach method of Fuster and Popinet [58] to discuss
the influence of numerical errors on the prediction of relevant quantities associated to
the bubble collapse. For that, the Rayleigh collapse problem will be simulated under
different initial configurations with variable intensity. The influence of various effects
(viscosity, surface tension, non-spherical effects) on the quantities of interest will be
discussed from a theoretical point of view, clarifying the length scales that one needs
to resolve, in order to ensure accurate results of the Direct Numerical Simulation of
the process of bubble collapse.

2 Classical models and numerical methods for DNS
of bubble dynamics

In this manuscript we discuss methods able to solve for the compressible Navier–Stokes
equations in both gas and liquid phase, which require the resolution of an advection
equation to track the position of the interface (for example the fraction of a reference
fluid f)

∂f

∂t
+ u · ∇f = 0,

and a set of conservative equations

∂Yi

∂t
+∇ · F i = 0 (1)

where Yi = (ρifi, ρifiu, fiρieT,i)
T denotes the conservative variables (density, momen-

tum and total energy) associated to the gas and liquid phase and F i is its
corresponding flux

F i =

 fiρiui

fiρiuiui − τi
fiρieT,iui − fi(τ i · ui − qi)

 ,
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with τ the stress tensor and qi = −κi∇Ti the diffusive heat flux. The system above is
closed by adding an Equation Of State (EOS). Different methods have been proposed
for the solution of the system of equations above [60]. Some methods reformulate the
system of equations above using non-conservative primitive variables. For example, it
is possible to obtain an evolution equation for pressure from the basic conservation
equations as [58]

1

ρc2eff

Dp

Dt
− βTΦv

ρcp
= −∇ · u, (2)

where Φv denotes the viscous dissipation and 1
ρc2

∣∣∣∣
eff

= γ
ρc2 −

β2
TT
ρcp

is a thermodynamic

property which is equal to 1
ρc2 for perfect gases (βT = 1/T ; γ = Cp/Cv) and also

weakly compressible liquids (βT = 0, γ = 1). In addition, we can use the internal
energy equation to write an explicit equation for the fluid temperature evolution as

ρicp,i
DTi

Dt
= βiTi

Dpi
Dt

+Φv −∇ · qi. (3)

The choice of the primitive variables is arbitrary but has an important impact on
the conservation properties of the method and therefore how the numerical errors are
going to impact the numerical results. .

Various challenges are faced when solving the multiphase compressible equations
in the context of bubble collapse. First, for very violent collapses the solver must
be able to capture the appearance of shock waves in the liquid that are eventually
responsible of a significant energy exchange of the bubble with its surroundings. At
the same time, the amplitude of the wave quickly decays and the propagation of
waves responsible for noise emission become linear. Thus, numerical methods need
to reduce the damping introduced on the propagation of acoustic waves (low Mach
number) while being able to correctly capture the emission of shock waves during the
bubble collapse.

Another problem associated to solvers based on the coupled solution of the
equations both inside and outside the bubble is how to deal with the discontinuity of
pressure across the interface imposed by the Laplace equation

p1 = p2 − σκ− µ22nD2n+ µ12nD1n, x = xI . (4)

The ability of the method to handle discontinuities on the pressure field poses various
technical difficulties. Spurious parasitic currents due to curvature error computation
are typically discussed in static configurations [61], but these test do not provide
information about capability of the method to capture the normal stress viscous
jump. The errors introduced in the discretization of interfacial cells usually have an
important impact on the development of physically meaningful interfacial instabilities
which can be eventually damped by physical but also numerical diffusion effects. This
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complicates the discussion about the appearance of non-spherical modes when com-
paring two numerical methods in unstable configurations, as an optimal numerical
method should minimize the generation of spurious numerical effects while keeping a
relatively small viscous dissipation. The problems associated with the discretization
of the interface typically appear for very refined grids, when the viscous dissipation
is not sufficient to damp the artificial discretization errors introduced. Thus, a naive
analysis of multidimensional solvers based on the capability of the solver to repro-
duce an spherically symmetric collapse is misleading, as very dissipative methods
can provide the wrong impression that they are accurate just because they damp
non-spherical modes.

A less common issue discussed with the methods mentioned above is the problem of
entropy conservation. In many models, the bubble response is assumed to be adiabatic
and therefore the entropy generation should be zero. From the theorem of Zhong and
Marden [62], a numerical scheme cannot simultaneously preserve momentum, energy,
and symplecticity but only two out of the three [63, 64]. For numerical methods solving
for the discretized pressure equation 2 this effect can be easily seen for an ideal gas
by computing the term 1

ρc2
Dp
Dt as

1

ρc2
Dp

Dt
=

1

γ

D

Dt
(ln (γp)) =

1

γ

ln
(
γpn+1

)
− ln (γp∗)

∆t
=

1

∆tγ
ln

pn+1

p∗

and the right hand size as

∇ · u = −1

ρ

Dρ

Dt
= − D

Dt
(ln(ρ)) =

−1

∆t
ln

(
ρn+1

ρ∗

)
where we have used that ρc2 = γp and p∗ and ρ∗ denotes the gas pressure and density
at tn of the fluid particle following a Lagrangian trajectory. While in the continuum
limit we naturally obtain that the quantity

pn+1

(ρn+1)γ
=

p∗

(ρ∗)γ

remains constant for a Lagrangian fluid particle, this condition is not respected at
the discrete level. Thus, the classical discretization of the left hand side of eq. 2 is
obtained using Taylor series to develop the logarithmic term. Neglecting the viscous
contribution we obtain

ln
pn+1

p∗
=

∞∑
k=1

(−1)k+1

k

(
pn+1 − p∗

p∗

)k

=
pn+1 − p∗

p∗
+O(∆t2)

while the right hand size is discretized as

∇ · u = ∇ · u∗ −∇ ·
(
∆t

ρ
∇p

)
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with
p∗ = pn − (u · ∇p)n∆t+O(∆t2),

u∗ = un −∇ · (uu))n∆t+O(∆t2).

We can realize that standard discretization schemes drop ∆t2 terms introducing
errors on the discrete entropy conservation due to temporal discretization errors.
Entropy production issues are associated with the solvers ensuring mass, momentum
and energy conservation and in general to any unconditionally stable solver, where
entropy production is needed to ensure stability. This fact implies that even in
discretely conserving methods, the numerical errors are translated into an effective
dissipation that break the isoentropic condition usually adopted to simulate the col-
lapse of bubbles. The necessity of quantifying the influence of numerical errors on the
artificial production of entropy by the numerical method is of crucial importance to
accurately predict the peak pressures during the collapse and the strength of emitted
waves, but it is an aspect that remains practically unexplored in the current literature.

3 Measurable quantities, reference solutions and
convergence analyses for code validation

The evolution of Computational Fluid Dynamics (CFD) codes requires the validation
of the correct treatment of the various terms included. A classical benchmarking test
case is the Rayleigh collapse problem3, in which a bubble at some initial pressure pg,0
is initialized in a liquid at rest and at a higher ambient pressure p∞. The general-
ization of this test to systems where the bubble is initially close or in contact to a
solid wall [66] or bubble clusters [67] is interesting because it captures all the physical
effects typically encountered in cavitation phenomena in real applications including
the emission of shock waves, the appearance of liquid jets, etc. In the following, we
will discuss the reference solutions used to compare the numerical results obtained in
order to validate a numerical code.

In the spherically symmetric case, viscous and surface tension effects are trivially
added in the Rayleigh-Plesset equation to provide an accurate solution that can be
used as reference for code validation. In turn, compressibility effects can be only
partly accounted for using different modifications of the original Rayleigh–Plesset
model which assume that the acoustic wave emitted is linear, restricting the applica-
bility of such models to small Mach number regimes [26, 68, 69]. The introduction of
compressibility effects in the full problem introduces an extra degree of freedom when
specifying the initial conditions for the liquid pressure and density fields. Several
initial conditions including that of a sudden jump of pressure at the interface are in
principle admissible. However, because the models proposed in [26, 68, 69] are just
first order corrections of the incompressible solution it is convenient to initialize the

3This problem, posed by Rayleigh in 1917, consists in determining the temporal evolution of the bubble
volume of a bubble collapsing in a liquid bulk by the difference between the bubble and the ambient
pressure[65]
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pressure field from the solution limit of an incompressible liquid if one wants to com-
pare the solutions of the solver with these simplified models. The spatial structure
of the initial pressure field has analytical solution in the case of an spherical bubble,
while in the case of bubbles that are not initially spherical or where the domain is
not infinite it is required to obtain it numerically. Assuming that the liquid is an
incompressible substance, we can solve a Laplace equation for the pressure in the
liquid domain with Dirichlet boundary conditions at the interface determined by the
Laplace equation [66]. This will be the procedure to obtain the initial condition in
the simulations shown along this manuscript.

The Rayleigh collapse problem is a challenging test case when looking at instants
near the minimum bubble volume. Especially for strong collapse intensities, the
bubble interface near the minimum volume is often hard to resolve as the bubble can
shrink by at least one order of magnitude in size. In addition, the axi-symmetric and
fully three-dimensional problem is unstable and external non-spherical perturbations
are amplified due to the presence of physically meaningful Rayleigh–Taylor instabili-
ties leading to length scales which are much smaller than the minimum bubble radius.

The large scale dynamics of the bubble can be described using the inherent char-
acteristic velocity of the problem Uc,1 =

√
p∞/ρl and the initial bubble radius R0.

For example, the dimensionless collapse time
tcUc,1

R0
for an spherical bubble found by

Rayleigh can be written as

tcUc,1

R0
= 0.915

√
1− pg,0

p∞
, (5)

which becomes an O(1) quantity for sufficiently large values of p∞/pg,0. Based on
these scalings, the relevance of viscous and surface tension effects are expected to scale
with the following definitions of the Reynolds and Weber number

We0 =
p∞R0

σ
, Re0 =

√
p∞ρlR0

µl
. (6)

These dimensionless quantities naturally appear in the solution of a linear (weak)
oscillation of a bubble in a free liquid [70, 71]. The importance of liquid compressibil-
ity effects deserves particular attention in strongly nonlinear regimes. For sufficiently
intense collapses Uc,1 is not representative of the flow velocity at the instant close to
the collapse, when liquid compressibility effects become important. Instead, we need to
use the expression for the peak pressure and minimum volume reached by the collapse
of a gas bubble in an inviscid liquid [72]

pmax

pg,0
≈
(
(γ − 1)

p∞
pg,0

) γ
γ−1

,
Rmin

R0
=

(
pg,0
pmax

) 1
3γ

, (7)
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Table 1 Estimation of the maximum values of the ratio between
the minimum radius and the minimum gridsize Rmin/∆xmin

used in different convergence studies reported in the literature
for the Rayleigh collapse problem and for underwater explosions.
No convergence study on the peak pressures genereated has been
found for the shock/bubble interaction problem [39, 45, 53, 74] .

Reference (year) Rayleigh collapse Underwater explosion

[73] (2003) 847
[74] (2006) 12.8
[45] (2009) 2
[54] (2013) 33
[47] (2014) 80
[55] (2016) 6
[58] (2018) 40
[75] (2018) 73
[76] (2020) 20
[56] (2020) 54
[51] (2020) 15
[36] (2021) 1000
[77] (2022) 3
[78] (2022) 10
[53] (2023) 65
[79] (2023) 20
[80] (2023) 2

to introduce a characteristic velocity umax =
√

pmax/ρl which defines a Mach, Weber
and Reynolds number as

Mamax =
umax

cl
, Wemax =

ρlu
2
maxRmin

σ
, Remax =

ρlumaxRmin

µl
. (8)

It is interesting to note that the maximum values of the Mach, Weber and Reynolds
number increases with p∞

pg,0
, which implies that liquid compressibility effects become

increasingly important as the intensity of the collapse increases while liquid viscosity
and surface tension effects are negligible for very strong collapses despite the fact
that the bubble becomes small.

Schmidmayer et al [51] clearly shows that the errors introduced in the simulation
are especially important at the instant of minimum radius, where the peak pressures
are reached, the errors being also sensitive to the numerical method chosen. An esti-
mation of how the minimum radius depends on the pressure ratio can be obtained
as

Rmin

R0
≈ 2

(
pg,0
p∞

) 1
3(γ−1)

.

Thus, simulations for large values of the ratio p∞
pg,0

are very challenging if one requires

to solve the physical phenomena taking place at the collapse. Table 1 shows a list of
numerical works where the influence of the grid size on the accuracy of the numerical
predictions is discussed. In addition to the Rayleigh collapse problem, we also include
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two related tests: the underwater explosion test and the problem of shock/bubble
interaction. The problem of underwater explosion is indeed analogous to the Rayleigh
collapse problem except that the simulation is initialized at the instant of minimum
radius (maximum pressure) and therefore the initial spatial discretization controls
the maximum errors introduced in the simulation. In the problem of shock/bubble
interaction, the ratio between the pre-shock and post-shock pressure can be taken as
a measurement of the bubble collapse strength. We can clearly see that in the case of
underwater explosions all the authors reporting convergence studies use at least 10
points per radius in order to limit the sensitivity of the numerical predictions to the
grid size. In the case of the Rayleigh collapse problem, most of the authors reporting
convergence studies also use at least 10 points per radius at the instant of minimum
volume, although it is possible to find studies with lower resolutions where the
authors limit themselves to showing the temporal evolution of the bubble volume and
not the peak pressures reached at the collapse. Finally, although it is possible to find
many numerical studies of the shock/bubble interaction problem [39, 45, 53, 74] (just
to mention few), to the best of our knowledge no grid convergence studies have been
reported for this problem up to date. One possible reason for this is that most authors
use this test to validate the codes by reproducing experimental conditions where the
pressure ratios are extremely large (typically of the order of 103). Thus, although
simulations are well resolved during the first instants when the shockwave deforms
the bubble and the methods capture well the patterns experimentally observed, the
capability of numerical simulations to resolve the peak pressures reached during the
collapse is beyond currently available computational resources.

In the following, we discuss the influence of grid resolution on different quantities
associated to the collapse of a bubble using the solver proposed in [58] as a representa-
tive example to discuss the importance of numerical errors. In addition to simulations
where we enforce spherical symmetry, the solution of three different axisymmetric
problems will be considered: (i) the Rayleigh collapse of a spherical bubble that can
be near a solid no-slip wall (figure 1), (ii) the Rayleigh collapse of a spherical cap bub-
ble in contact with a slip wall with some initial contact angle α (figure 2) and (iii)
the Rayleigh collapse of a prolate bubble defined by the initial sphericity Ψ of the
spheroid defined as

Ψ =
π1/3 (6Vb,0)

2/3

SI,0

with SI,0 is the interfacial area at t=0 (figure 3). In each case, the relative error ϵ(u)
for a given quantity u will be computed as

ϵ(u) =
u− uref

uref

where u is the solution obtained with a given resolution and uref will be the reference
solution obtained with the finest possible grid.
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Fig. 1 (a) Interface isocontour and kinetic energy distribution for collapse of 0.5 mm bubble under
the influence of p∞/pg,0 = 10 at distance d = 2R0 from the no-slip wall for Re0 = 5000 and
We0 = 695, Mamax = 0.085. (b) Zoomed in view of the grid size distribution at the instant of liquid
jet development near the fourth frame from left in the top panel.

Fig. 2 The DNS results for collapse of spherical cap bubbles attached to a slip wall with different
contact angle α and for p∞/pg,0 = 8, Re0 = ∞, We0 = ∞. The evolution of bubble shapes contours
for (a) α = 0 (b) α = π/3 (c) α = π/2 (d) α = 2/3π.

3.1 Rayleigh collapse time

Generally, equation 5 is a very good estimate of the collapse time as the corrections
due to various factors including viscous effects and liquid compressibility are fairly
small. Figure 4 shows that in spherically symmetric models the collapse time does
not vary significantly when using different models irrespective whether the liquid is
considered incompressible or compressible. As shown in figure 5 the errors in this
quantity introduced by the Direct Numerical Simulations (DNS) of the Navier–Stokes
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Fig. 3 (a) Initial shape of the prolate bubbles used to investigate the influence of non-spherical bub-
ble collapses. (b) Interface isocontours of the collapse and rebound of a prolate bubble for p∞/pg,0 = 6,
Re0 = 104 and We0 = ∞.
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Fig. 4 The evolution of bubble radius given by the Rayleigh model p∞/pg,0 = ∞,Mamax = 0,
the Rayleigh-Plesset model p∞/pg,0 = 64,Mamax = 0, and the Keller-Miksis model p∞/pg,0 =
64,Mamax = 2. In all cases Re0 = ∞ and We0 = ∞.

equations reach small relative errors of the order 10−3 when we have around 10 grid
points across the minimum bubble radius irrespective whether spherical symmetry is
imposed or not, the accuracy of the results being acceptable even for relatively poor
resolutions at the instant of minimum radius. The estimate of the errors on the esti-
mation of the collapse time of other works in the literature showing grid convergence
results are consistent with the errors reported.

Many studies have shown converged results for the collapse time for a spherical
bubble and also for non-spherical bubbles [55, 56, 78]. In this later case, the presence
of nearby walls can induce a shielding effect which leads to a prolongation of the
collapse time [81]. In figure 6a, we show the evolution of non-dimensional equivalent
bubble radius for spherical cap bubbles initially in contact with a slip wall. The initial
curvature is R0 = 1 and p∞/pg,0 = 8 and the initial contact angle α varies between 0
and 2π/3. The minimum of the bubble volume is only weakly linked with the bubble
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Fig. 5 Convergence test on the collapse time as a function of the dimensionless grid size defined with
the minimum bubble radius. The results are reported for different problems: a spherically symmetric
bubble for three different collapse intensities, two different prolate bubble for p∞/pg,0 = 12 and
the axi-symmetric collapse of a 0.5mm air bubble in water near a no-slip wall for p∞/pg,0 = 10,
Re0 = 5000 and We0 = 695, Mamax = 0.085. An estimation of convergence errors from references
[45, 51, 75, 77] are also shown with black symbols.

Fig. 6 Axi-symmetric DNS results for bubbles attached to a slip wall p∞/pg,0 = 8,Re0 = ∞,
We0 = ∞ and varying contact angle. (a) Evolution of dimensionless equivalent radius of the bubble.
(b) The dimensionless collapse time is plotted as function of α.

shape whereas the non-dimensional time of bubble collapse depends significantly on
α. The bubble collapse time (see figure 6b) for hemispherical bubble compares well
with the Rayleigh collapse time: for bubbles with α < π/2, it is relatively constant
and around 1.25tR, and for α > π/2 it decreases sharply. The prolongation in the
bubble collapse time compared to the Rayleigh collapse time is discussed in detail by
Reuter et. al. [81] for laser generated bubbles. Interestingly, they also report similar
factor of around 1.2 for 0.5 < d/Rmax < 1 (where d is standoff distance for laser
focus and Rmax is the maximum bubble radius), even though the setup and shapes
of bubbles are very different. The influence of the contact angle on the collapse time
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can be estimated from the impulse theory, which provides the initial acceleration
field. The averaged acceleration along the interface eventually provides an estimation
of the changes of the collapse time with respect to the spherical case [82].

It is remarkable to see in figure 5 that the errors introduced in different config-
urations for different collapse intensities and initial sphericity scale well with the
minimum radius and not the initial bubble radius irrespective of the initial shape of
the bubble.

3.2 Peak pressures inside the bubble

The collapse time tc depends very little on the details of the model and it does not
provide important information about the correctness of the method to capture the peak
gas pressures. In the limit of an adiabatic compression, the maximum bubble pressure
is reached at the instant of minimum volume, determining the peak gas pressures
reached during the bubble collapse. Unfortunately, this quantity is not measurable
from experiments so the validation of codes relies on the capability to obtain theoretical
estimates. As explained before, an estimation of the peak pressures reached by the
collapse of a bubble in an incompressible and inviscid liquid have been reported by
Brennen [72]. In order to evaluate the sensitivity of this quantity to parameters such
as the liquid compressibility, viscosity, or bubble deformation, we can resort to energy
conservation principles to relate the net rate of change of total system energy (E),
which is equal to summation of the rate of work done (Ẇext), heat transfer (Q̇in), and
energy dissipation (Ėdis) due to irreversible processes

dE

dt
= Ẇext + Q̇ext − Ėdis, (9)

where Edis is always a positive quantity. Among the various energies in the system we
can identify the kinetic energy Ek =

∫
V

1
2ρu

2dV, the internal energy associated to the

liquid compressibility [83] Ee,l =
∫
Vl

1
2
(pl−p0)

2

ρl,0c2l
dV, the internal energy of the gas phase∫

Vg
ρgegdV = pbVb

γ−1 , the surface energy Es = σ(Sg − Sg,0) and, if present, the energy

associated to the contact line. Following the developments indicated in Appendix A,
energy conservation principles can be used to obtain an equation that relates the liquid
elastic energy, the surface energy and viscous dissipation through the definition of a
potential energy that depends on the bubble volume

Ek,l + Es

p∞Vg,0
=

1

γ − 1

pg,0
p∞

(
1−

(
Vg

Vg,0

)1−γ
)

+

(
1− Vg

Vg,0

)
− Deff

p∞Vg,0
, (10)

where Deff > 0 gathers all the mechanisms introducing an effective damping in the
bubble oscillation. These effects include viscous dissipation, thermal difussion effects
and the emission of outgoing pressure waves which act as an effective source of dis-
sipation for open problems where the waves are not reflected back into the bubble.
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Fig. 7 Sketch of the control volumes chosen for the energy analysis of the Rayleigh collapse problem.

This equation, applicable at every instant during the collapse and rebound process,
can be further simplified during the instants of minimum radius. In the limit of large
initial pressure differences p∞/pg,0 ≫ 1, the collapse is intense and the bubble volume
is much smaller than the initial volume Vg ≪ Vg,0 while the bubble pressure is much
higher than the initial bubble pressure pmax ≫ pg,0. This allows us to simplify the
equation above as

pmax

pg,0
≈
[
1 + (γ − 1)

p∞
pg,0

(
1− Ek,min + Es,min +Deff,c

p∞Vg,0

)] γ
γ−1

(11)

where Ek,min and Es,min are the kinetic and surface energy at the instant of minimum
volume and Deff,c is the sum of the energy dissipated by viscosity, the energy lost
by heat diffusion and the energy emitted as an outgoing wave, all of them acting as
penalization terms on the peak pressure reached during the collapse.

It is interesting to mention that the equation above is applicable for any arbi-
trary dimension and for any problem where the liquid pressure far from the bubble
can be represented as constant, as in the case of shock/bubble interaction tests and
underwater explosion simulations which are also widely reported in the literature.
In the shock-wave/bubble interaction problem the bubble collapse large deforma-
tions are usually observed, which reduces the peak pressures while the minimum
volume attained at the bubble collapse with respect to the idealized situation of a
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spherically symmetric Rayleigh collapse problem becomes larger. In addition, some
shockwave/bubble interaction tests are performed in 2D, which introduces a correction
factor on the determination of the minimum radius reached at the bubble collapse.

3.2.1 Spherically symmetric limit

It can be easily checked that for spherical bubbles in absence of dissipation eq. 11
recovers the estimation provided by eq. 7 by imposing that, for a spherical bubble in
an incompressible liquid, the kinetic energy is null at the instant of minimum radius
Ek,min = 0 and the surface energy negligible (

σSI,0

p∞Vb,0
≪ 1). Only when compressible

effects are accounted for, the energy associated to the outgoing wave emitted during
the collapse is not null, acting as an effective energy lost included in Deff . Thus, for suf-
ficiently intense collapses (e.g. Re → ∞ and We → ∞) the preponderant mechanism
introducing a correction on the peak pressures predicted by eq. 7 is liquid compress-
ibility, reducing the peak pressures reached in the gas phase during the collapse.

Figure 8(a,b,c) shows the bubble radius evolution predicted from both Rayleigh–
Plesset and Keller–Miksis models together with the DNS of the compressible Euler
equations in both phases, while figure 8(d) represents the maximum gas pressure
during the collapse from these models along with equation 7. As proposed by Saade
et al. [59], using the Mach number defined in equation 8, significant deviations with
respect to the predictions for an incompressible liquid are observed for Mamax > 0.1.
The results of the DNS solver is in very good agreement with the predictions of
the Keller–Miksis equation, which is consistent with other works contained in the
literature for spherically symmetric bubble collapses [48, 51, 56, 84].

The behavior of the numerical errors as a function of the grid resolution is shown
in figure 9. Figure 9a shows the relative change in pV γ during the collapse of spher-
ical bubble in a spherically symmetric simulation for various grid resolution rescaled
with minimum bubble radius Rmin/∆xmin and for a constant value of the pressure
ratio (p∞/pg,0 = 20). As explained before, for an adiabatic collapse the errors on the
prediction of the maximum gas pressure depend on the capability of the numerical
method to guarantee isentropic compression. The spurious non-isentropic behaviour
is persistent near the minimum volume and these errors decrease very slowly with
grid refinement. One requires as large as 50 grid points per minimum radius to get
relative errors in the peak pressures down to O(10−1). The errors obtained for three
different collapse intensities are shown to scale well with the minimum radius of the
bubble (figure 9(b)), which for a uniform grid imposes the coarser resolution of the
simulation. Remarkably, second order convergence is shown to be achieved only when
more than 10 grid points per radius are used at the instant of minimum radius. We
can then conclude that reaching convergence is increasingly challenging as the inten-
sity of the collapse increases as it requires the accurate resolution of the bubble at
the instants of minimum radius in order to obtain a correct estimation of the peak
pressures generated at the bubble collapse.
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Fig. 8 The bubble radius evolution as predicted from (a) Rayleigh-Plesset model, (b) Keller-Miksis
model and (c) Spherically-symmetric numerical simulation using Basilisk. Pressure ratio p∞/pg,0 is
varied to obtain different curves at p∞/pg,0 for pg,0 = 1atm, cl = 1500m/s while neglecting effect of
viscosity and surface tension (Re0 → ∞,We0 → ∞). (d) The maximum gas pressure predicted from
the Rayleigh-Plesset model, Keller-Miksis model, spherically symmetric numerical simulations and
Equation 7.

3.2.2 Non-spherical effects

The validation of the predictions of the peak pressures reached in axisymmetric or
full three dimensional simulations is not simple. Even for bubbles initially spherical
surrounded by a relative large amount of liquid, Rayleigh-Taylor instabilities during
the collapse phase can result in a physically meaningful splitting and fragmentation
of the bubble [72, 85, 86]. The development of these instabilities are intrinsic to
the problem and should not be artificially damped by the numerical diffusion of
the numerical method, which at the same time must be accurate enough to avoid
introduction of spurious non-spherical modes.
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Fig. 9 Spherically symmetric simulations. (a) Temporal evolution of the relative error of pV γ for
the collapse of a spherical bubble and different grid sizes (color scale). p∞/pg,0 = 20. (b) Convergence
analysis of the relative errors obtained in the prediction of the peak pressures reached at the collapse
for different intensities. The errors scale well with the minimum radius reached for different collapse
intensities.

The influence of non-spherical deformations is evident in cases where the bubble
is initially not spherical or in problems where an external asymmetry is responsible of
the appearance of liquid jets [17, 45, 87, 88]. A clear example is the investigation of
the bubble collapse near a solid boundary [66] or a free surface [29, 89] which induce
non-uniform perturbations around the bubble that can result in high speed liquid
jets. As mentioned earlier, another related problem is the shock/bubble interaction
problem where the shockwave is responsible of a significant deformation of the bubble
during the collapse [90]. In some cases, these jets can be very thin and extremely fast
and hence require huge computational resources for proper resolution [91, 92]. The
bubbles can also often take elliptic shapes too due to flow etc. [76, 93, 94].

Fig. 10 Snapshots of the bubble in contact with a wall at the instant of minimum volume for
different initial values of initial contact angle α. The interface is shown with black curve ,the kinetic
energy in liquid phase is shown with linear color map in right half and the scaled velocity vectors in
left half. The initial contact angle is (a) α = 0 (b) α = π/3 (c) α = π/3 (d) α = 2/3π
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Fig. 11 Axi-symmetric direct numerical simulations of the collapse of spherical cap bubbles in
contact with a slip wall at p∞/pg,0 = 8,Re0 = ∞, We0 = ∞, Mamax = 0.117 and varying contact
angle. Peak pressure is shown as a function of contact angle from DNS (red curve), solution of equation
11 (solid black line) and the result of eq. 11 introducing the kinetic energy obtained from DNS at
the instant of minimum radius (blue curve). The dotted black line indicates the predictions obtained
from the KM model.

From equation 11 we can see that in the limiting case where Re0 = ∞, We0 = ∞
the peak pressures reached during the collapse are penalized by liquid compressibility
effects (already discussed in the spherically symmetric case) and also by the presence
of a residual kinetic energy at the instant of minimum radius. The residual kinetic
energy is directly attributed to the presence of vorticity in the flow, which, in the
case of infinite Reynolds number, is represented as a vortex sheet at the interface.
Figure 10 shows snapshots at the instant of minimum volume for the simulations of
bubble collapses for different spherical cap bubbles in contact with a slip wall and in
absence of viscous and surface tension effects. The snapshots clearly show that the
liquid is indeed not at rest at the instant of minimum radius, the magnitude of the
kinetic energy being concentrated in the regions where liquid jets develop. The peak
pressures reached during the bubble collapse for p∞/pg,0 = 8 and different values of
the initial contact angle α (red curve in figure 11 ) reveal that the highest pressure
is reached for the 90 degree angle case in which the bubble remains nearly spherical
and EK,R ≈ 0. In this case the peak pressure is close to the upper bound of the peak
pressure predicted by eq. 10 (horizontal black line). The peak pressures predicted
from subtracting the residual kinetic energy obtained numerically at the instant of
minimum radius (blue line) predicts well the trend in pressure reduction due to the
liquid kinetic energy. The consistent shift between the red and blue curves is a direct
consequence of the damping due to liquid compressibility as confirmed in the case of
spherically symmetric simulations, where the peak pressures are in agreement with
Keller–Miksis predictions. As expected, the influence of the contact angle on the
peak pressures is increasingly important as the pressure ratio increases (figure 12),
the peak pressures reached being significantly lower when the collapse is very intense
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(note that the plot is shown in log-scale) due to effects mentioned above.

Fig. 12 DNS results for the collapse of spherical cap bubbles varying p∞/pg,0 and the contact angle
α at Re0 = ∞, We0 = ∞. (a) Residual liquid kinetic energy at the instant of minimum volume. (b)
Peak pressures. The black curve corresponds to the upper bound of pressure predicted by equation 7.
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Fig. 13 Axi-symmetric simulations of Rayleigh collapse of a bubble close to a no-slip wall. Influence
of the grid resolution on the temporal evolution of (a) bubble volume, (b) liquid kinetic energy
Ek,l and (c) the maximum gas pressure pmax. For this simulation, initial bubble size R0 = 0.5mm,
p∞/pg,0 = 10, and distance from the wall is d = 2R0. For reference, the solution for a spherically
symmetric bubble is also included.

The response of bubbles developing jets is similar for the collapse of a initially
spherical bubble near a no-slip wall and some kinetic energy is present at the instant
of minimum radius (figure 1). The grid convergence study for the evolution of kinetic
energy integrated over the liquid control volume and the average bubble pressure for
a representative case of p∞/pg,0 = 10 is shown in figures 13-14, where we can see that
the peak pressures and the amplitude of the rebound obtained from the convergence
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initial sphericity at p∞/p0 = 12 and a 0.5mm air bubble in water collapsing at a distance 2R0 from
a slip wall at p∞/p0 = 10. An estimate of the relative error from references [45, 51, 75, 78] is also
shown with black symbols.

study differ significantly from the predictions of simplified spherically symmetric
models. The overall convergence for these quantities is especially challenging at the
instant of minimum kinetic energy and maximum pressure (minimum volume). We
can see that the errors introduced in multidimensional simulations are consistent with
those of spherically symmetric simulations despite the appearance of thin structures
during the instants close to minimum volume which are poorly resolved in the case of
axi-symmetric simulations as well as with the few studies available in the literature
reporting the convergence of the peak pressures (e.g. minimum radius).

Finally, it is worth mentioning that secondary shock waves can be generated in
non-spherical cases due to the impingement of the jet when piercing the bubble. The
convergence of these secondary effects is controlled by the correct resolution of the
peak jet velocities and has been shown to be sensitive to the viscous and surface
tension effects that will be discussed next.

3.3 Viscous and surface tension effects

The importance of viscous and surface tension effects depends on the quantity of
interest considered. Even for micron-sized bubbles, if the bubble pressure at the
instant of maximum radius is sufficiently close to the vapor pressure, large Reynolds
and Weber numbers – of the order of O(103) or larger – have a negligible influence on
the peak pressures and the damping observed in spherically symmetric simulations as
compared to the influence of compressibility effects (figure 15).

But viscous and surface tension can have an important impact on the selection
of additional length scales associated to the bubble collapse. One example is the
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Fig. 15 Evolution of bubble radius numerically obtained for a axi-symmetric collapse under
p∞/pg,0 = 5 and varying (a) Weber We0 at Re0 → ∞ (b) Reynolds Re0 at We0 → ∞.

aforementioned Rayleigh Taylor instabilities. Because the heavier fluid is accelerated
towards lighter gas (Ṙ < 0, R̈ > 0), the collapse of a bubble is typically unstable
and the interface develops non-spherical shapes [72]. At relatively large Reynolds
numbers, the development and growth of the RT instabilities is coupled with the
numerical errors and non-spherical effects become sensitive to the interface-capturing
and advection scheme [51]. In this regime, the minimum grid size controls the spheric-
ity of the interface. When using more diffusive schemes or lower refinements, the
non-spherical modes can be suppressed artificially which can be easily misunderstood
as an improved result.

Viscous effects can be also relevant during the collapse of non-spherical bubbles.
Particularly, the viscous effects may govern the dynamics of jet formation. The maxi-
mum velocity obtained during the collapse sharply decays for small Reynolds numbers
due to the suppression of the jet formation [42, 66].

3.4 Rebound amplitude and damping

The amplitude of the rebound is a quantity easily measurable experimentally. This
quantity provides us information about the importance of the various mechanisms
controlling the total effective damping which mainly act at extremely short lapses of
time during the bubble collapse, when the bubble is poorly resolved. From equation
10 and if we neglect the change of the surface energy with respect to the initial state,
we obtain that

Vb,reb

Vb,0
≈
(
1− (γ − 1)

Ek,reb +Deff,reb

pg,0Vg,0

) 1
1−γ

, (12)

which implies that the rebound amplitude is a direct measurement of the residual
energy contained in the liquid at the instant of maximum radius during the rebound
and the total energy effectively dissipated during the collapse, this later quantity
being controlled by the capability of the numerical method to capture the physics
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during the instant of minimum radius. Figure 16 shows the amplitude of the rebound
predicted by numerical simulations of the spherically symmetric case along with
Keller-Miksis model predictions at Re → ∞ and We → ∞. Good agreement between
DNS and Keller-Miksis predictions is observed confirming that liquid compressibility
is the main damping mechanism influencing the amplitude of the rebound in this
theoretical scenario. However, this observation is in complete contradiction with
recent experimental measurements reported by Preso et al [95], who have shown
that the emission of a shock wave is not sufficient to explain the effective damping
observed experimentally. This represents a major challenge for numerical simulations
and models as these result reveal that liquid compressibility effects are not the only
relevant mechanism controlling the amplitude of the rebound, the disagreement being
especially relevant in the case of bubbles collapsing in water. Note that many authors
have reproduced the experimental evolution of the bubble radius using pg,0 as a fitting
parameter. However this procedure may hide fundamental problems of the model and
numerical method used as the value of pg,0, which in reality is not a constant, cannot
be measured experimentally. Only a careful experimental and numerical analysis
about the sources of the damping can provide insights about the correctness of the
modelling equations and the numerical methods to predict the bubble response. Thus,
the validation of a model and a numerical method requires to reproduce both the
evolution of the bubble volume and the energy released as an outgoing wave in order
to ensure the accuracy of DNS predictions. The disagreement between experimental
observations and spherically symmetric models observed by Preso et al [95] can be
attributed to bubble fragmentation, phase change, or dissociation. These mechanisms,
typically neglected in numerical models used to reproduce experimental observations,
may play a significant role on the effective damping observed experimentally.
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Fig. 17 Relative convergence of the rebound volume for non-spherical collpase of 0.5 mm bubble
under the influence of p∞/pg,0 = 10 at a distance d = 2R0 from the no-slip wall.

Finally, it is worth mentioning that similarly to the case of the peak pressures, the
amplitude of the rebound also depends on the amount of kinetic energy in the liquid
at the instant of the maximum radius. This effect introduces additional effective
damping compared to the spherically symmetric case which is translated into a lower
amplitude of the rebound. This is clear in the cases of the collapse of a bubble close
to a wall where the amplitude of the rebound is lower than in the case of spherically
symmetric models (figure 13). The convergence of this quantity is challenging and
only first order convergence is achieved for the case considered even for a relatively
high resolution of the interface (figure 17).

3.5 Other relevant quantities

The collapse time, the peak pressures reached in the gas phase and the rebound
amplitude are examples of relevant quantities that are shown to scale well with the
minimum volume reached by the bubble during the last instants of the bubble col-
lapse. However, in real problem applications, other quantities may be relevant. For
instance the adiabatic limit considered in many numerical models holds for large bub-
bles when the time scales associated with the diffusion of heat across the interface are
much larger than bubble collapse times. This regime corresponds to the limit of large
Peclet numbers Pe = R0Uc

DT
b

≫ 1 where DT
b is the thermal diffusion coefficient in the

bubble. In situations where the Peclet numbers is not sufficiently large, heat transfer
effects can influence the bubble response and need to be accounted for. Thermal
effects are also important to predict the ionization of gas inside the bubbles and the
emission of light [18, 96]. The interface’s temperature is usually very small compared
to that of the bubble core, leading to the recombination of radicals produced at
the bubble center that diffuse towards the cooled interface [97]. There are very few
solvers capable of direct numerical simulations with thermal effects [59, 98–100]. An
aditional important difficulty for the consideration of thermal effects is the absence
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of reliable Equation of States for both high pressure and temperature gases, which
can reach plasma states. Apart from the use of a Nobel Abel stiffened gas equation
of state, there are some models that are capable of using the thermodynamic tables
for more accurate prediciton of thermal effects in bubble collapse [101]. The correct
treatment of thermal effects is also the first step towards the correct implementation
of phase change models [98, 102], given that in many situations the heat diffusion in
the thermal boundary layer around the bubble controls the total vaporization/con-
densation rate.

Fig. 18 (a) Evolution of maximum shear stress at the wall during the collapse of air bubble of initial
radius R0 = 0.5mm in water at distance d = 2R0 from the wall for pressure ratio p∞/pg,0 = 10,
Re0 = 5000 and We0 = 695, Mamax = 0.085. (b) A zoom out of the bubble interface and region near
the wall which is zoomed in panel c is highlighted with black square. (c) Velocity magnitude field near
the no-slip wall close to the instant when the liquid jet reaches the wall and in the region highlighted
in panel b.

Another relevant quantity for biomedical applications is the shear stresses induced
on the solid during the collapse of a bubble nearby [94, 103]. The interest of DNS is
that it is not possible to access the values of shear stresses from experiments using
conventional measurements techniques because the time scales associated are very
fast. In figure 18, we show the maximum shear stress during the collapse of 0.5 mm air
bubble in water at distance d = 2R0 from the wall. The convergence of maximum shear
stress is difficult to achieve due to the presence of poorly resolved jets in the coarse grid.
As shown in figure 19, for this particular case the relative errors for the shear stresses
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are significantly larger than those obtained for any of the other quantities discussed
previously, proving that in fully three-dimensional test cases length-scales smaller than
the minimum bubble radius control the accuracy of the numerical predictions. The use
of Adaptive Mesh Refinement techniques certainly helps reducing the computational
effort required to resolve the appearance of thin structures during the collapse (figure
1), but most of currently available codes do not allow for dynamic mesh adaptation
which limits the capability of obtaining reliable predictions for strong bubble collapses.
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Fig. 19 Grid convergence analysis for the collapse of 0.5mm air bubble in water at a distance
d = 2R0 from wall. The relative errors are shown for the collapse time tc, kinetic energy at minimum
volume Ek,min, maximum gas pressure pmax and maximum wall shear stress τw,max. The numerical
results from reference [94] are also added.

4 Conclusion

The development of robust and accurate numerical methods for the Direct Numerical
Simulation of bubble collapse processes depend on the capability of quantifying the
numerical errors introduced in the solution through numerical test cases. Here we
show that the minimum bubble volume, which can be used as a measurement of the
collapse strength, controls the errors introduced in a numerical solution. The dimen-
sionless grid size obtained using the minimum length scale associated to the bubble
collapse controls the errors of different relevant variables including the collapse time,
the peak pressures reached in the gas phase and the effective damping mechanisms
acting during the last instants of the bubble collapse process. A review of the exist-
ing grid convergence studies in the context of bubble collapse problems show that
currently available numerical methods require of at least 10 grid points per minimum
radius to obtain relatively accurate results of the peak pressures reached during the
collapse. This fact limits the conditions that DNS can accurately reproduce with cur-
rently available computational resources. The lack of grid convergence studies for the
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shockwave/bubble interaction problem confirms that the large pressure ratios used
experimentally in these problems prevent of an accurate numerical representation of
the physical phenomena taking place inside the bubble at the instant of minimum
radius.

An energy analysis for the problem of the Rayleigh collapse for a bubble of arbi-
trary shape shows that in addition to the acoustic radiation of waves outwards of
the bubble, the presence of kinetic energy in the liquid effectively acts as a source of
damping that reduces the peak pressures reached during the collapse of the bubble
and the amplitude of the rebound. These three dimensional effects cannot be cap-
tured by spherically symmetric models and simulations and require the resolution
of the axi-symmetric or fully three dimensional problem. Some variables such as
the viscous stresses exerted by the bubble collapse on the wall or the development
of Rayleigh–Taylor instabilities during the last instants of the bubble collapse may
require additional efforts to resolve the flow in characteristic length-scales that are
smaller than the minimum equivalent bubble radius. The use of AMR techniques
have been shown to be an effective method to reduce the errors on the prediction of
these quantities.
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Appendix A Energy conservation equation for a
bubble in a liquid

For a gas bubble with arbitrary initial shape inside a liquid bulk (figure 7) we can
consider a control volume for the bubble and another one for the liquid moving with
the local flow velocities. Let Vg & Vl be the volume of bubble and liquid control volumes
respectively, Sg & Sl represent the surface area enclosing these control volumes and
ng & nl shows the unit normal to these surfaces pointing outward from the control
volume. The total energy equation for either of the control volumes represented by
the subscript i ∈ (l, g) is [104]

dEe,i

dt
+

dEk,i

dt
= −

∫
Si

piui · nidS +

∫
Si

τ ′
in · uidS −

∫
Si

qi · ndS, (A1)

where the internal energy is defined as

Ee,i =

∫
Vi

ρieidV.
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Imposing that (i) the bubble expansion and collapse process is adiabatic and mass
transfer effects are negligible, (ii) the effect of body force terms (eg. gravity) is neg-
ligible and (iii) that the bubble pressure is uniform and well represented by an ideal
gas law, the total energy conservation for the bubble can be expressed as

pg,0V
γ
g,0

γ − 1

dV 1−γ
g

dt
+

dEk,g

dt
= −pb

dVg

dt
− dDg

dt
. (A2)

where Dg captures all viscous and heat transfer processes across the interface,
both of which can be eventually considered as energy lost mechanisms. For the liquid
phase, equation (A1) is expressed assuming that the velocity field is well represented
by an incompressible velocity field plus a small correction due to liquid compressibility
effects that effectively act as a damping mechanism included in Dl

dEk,l

dt
= −

∫
I

σκuI · nIdS + (pb − p∞)
dVg

dt
− dDl

dt
− dEe,l

dt
. (A3)

Adding equations (A2) and (A3) we readily obtain the total energy evolution equation
for the system of a gas bubble in a liquid as

dEk

dt
+

pg,0V
γ
g,0

γ − 1

dV 1−γ
g

dt
= −

∫
I

σκuI · nIdS − p∞
dVg

dt
− dDeff

dt
(A4)

where Ek = Ek,l + Ek,g and the effective damping of the system is defined including
the internal energy of the liquid in order to account for the effective energy lost due
to acoustic radiation

dDeff

dt
=

dDg

dt
+

dDl

dt
+

dEe,l

dt
.

If p∞ is constant, we can integrate the equation (A4) in time and obtain

Ek + Es +
pg,0V

γ
g,0

γ − 1

(
V 1−γ
g − V 1−γ

g,0

)
+ p∞ (Vg − Vg,0) = −Deff + E0, (A5)

where E0 is the integration constant which can be computed from the energy at the
reference state and

Es =

∫
t

∫
I

σκuI · nIdSdt

is the surface energy. Using∫
I

κuI · nIdS = −
∫

∇s · udS +

∫
u · pdl

with p = n × t and t the tangent to the surface at the interface contour considered
[105], it is easy to show that in the case of a bubble that is not in contact with the
wall, the surface energy reduces to dEs = σdSI , where SI is the total surface of the
interface. Otherwise, the surface energy cannot be explicitly integrated and we need
to account for the energy associated to the contact of both phases with the solid wall.
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