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We introduce an approach to particle breakage, wherein the particle is modeled as an aggregate
of polyhedral cells with their common surfaces governed by the Griffith criterion of fracture. This
model is implemented within a discrete element code to simulate and analyze the breakage behavior
of a single particle impacting a rigid plane. We find that fracture dynamics involves three distinct
regimes as a function of the normalized impact energy ω. At low values of ω, the particle undergoes
elastic rebound, and no cracks occur inside the particle. In the intermediate range, the particle is
damaged by nucleation and propagation of cracks, and the effective restitution coefficient declines
without breakup of the particle. Finally, for values of ω beyond a well-defined threshold, the
particle breaks into fragments, and the restitution coefficient increases with ω due to kinetic energy
carried away by the fragments. We show that particle damage, restitution coefficient, and fracture
efficiency (the amount of energy input consumed for particle fracture) collapse well as a function of
dimensionless scaling parameters. Our data are also sufficiently accurate to scale fragment size and
shape distributions. It is found that fragment masses (volumes) follow a power-law distribution with
an exponent decreasing with fracture energy. Interestingly, the average elongation and flatness of
fragments are very close to those observed in experiments and lunar samples at the optimal fracture
efficiency.

I. INTRODUCTION

Particle breakage is a commonly observed phenomenon
in natural flows and industrial processes involving pow-
ders and grains [1–5]. Particle breakage is usually unde-
sirable, but it also represents the goal of milling opera-
tions, which are known for their energy intensive nature.
Despite extensive past research, particle breakage mech-
anisms in granular materials remain poorly understood
due to their multiscale nature, involving material sub-
particle scales to particle scales, and up to the packing
and process scales [6–9]. The fragmentation of particles
is controlled by the mechanical properties of the particles
and their contacts, on one hand, and the process opera-
tional factors, on the other hand [10–15]. For instance,
the distribution of fragment sizes during the grinding pro-
cess in ball mills is influenced by the cohesive strength
of single particles, numbers and sizes of grinding balls,
amount of granular material, and other system parame-
ters [14, 15]. The particles can break under various load-
ing modes such as compression, distortion, shear, and
impact. Different fracture modes generally take place si-
multaneously during a comminution process in different
parts of the system [16]. To model particle breakage, an
important issue is therefore to identify physical mech-
anisms at different scales: subparticle processes at the
origin, the strength and potential weaknesses of parti-
cles, single-particle fracture by impact or forces exerted
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by other particles, collective dynamics of particles, and
process-scale mechanisms of energy supply to the parti-
cles.

Experimental studies of single-particle fragmentation
have been carried out to analyze the fragment mass and
size distributions, crack patterns, and failure modes. The
masses in the range of small fragments are often found
to follow a power-law distribution with exponents that
do not always seem to be universal, but depend on the
brittle or ductile nature of fracture and dimensionality
of the object [9, 17–23]. A general observation is that
during impact between two particles, plastic deformation
develops first around the contact point, then cracks ap-
pear and propagate through the particle, and eventually
split the particle [17, 24]. A part of the supplied energy
is consumed in producing new fracture surfaces inside
the particle, while a large amount of the supplied energy
is also taken away in the form of the kinetic energy of
the fragments after collision and dissipated by plastic de-
formations and frictional or inelastic collisions. Impact-
induced fragmentation was found experimentally to gen-
erate elongated shapes characterized by the dimensions
a, b, and c of their bounding box. In several reported
investigations, the ratios were found to be distributed
around the proportions a : b : c ≃ 2 :

√
2 : 1 [25–28].

Due to the inherent complexity of the experimental
measurement of dynamic fracture of a single particle or
the evolution of a collection of particles in real time, par-
ticle dynamics simulations based on the discrete element
method (DEM) have also been developed as an alter-
native approach for the investigation of particle break-
age in granular materials. For example, experimental
findings of fragment size distributions were reproduced
by such simulations [29–32]. Important results were ob-
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tained by DEM simulations, such as crossover from a
damaged state to the fragmented state at a well-defined
value of impact energy [10, 27, 33–35]. The critical point
of this transition was identified as the impact velocity for
which the average fragment mass takes a maximum value
[35, 36]. The effects of material properties such as inter-
face energy on the fracture pattern were also investigated
[37, 38].

A DEM-based model extensively used for particle
fragmentation is known as the bonded particle method
(BPM) that simulates a parent particle as an aggregate of
spherical particles [12, 32, 38, 39]. For primary spheres,
since the external boundary of the aggregate is used to
represent the particle surface and the aggregate is porous,
the volume is not conserved during fragmentation. In
contrast, the primary polyhedra can fill the volume of a
particle with zero porosity and no volume is lost during
particle breakage [36, 40–42]. Furthermore, in a clus-
ter of polyhedra, the bonds coincide with the common
surfaces between polyhedra, so that the breakage of a
bond naturally creates a fracture surface. Particle tessel-
lation into contiguous polyhedra was coined the bonded
cell method (BCM) [40]. In BCM, each face-face interac-
tion represents a potential crack and the fracture energy
is obtained by multiplying the area by surface energy
[40, 42]. The cell-meshed particles, when they are ran-
domly distributed, allow for arbitrary fragment shapes if
the number of primary polyhedra composing the particle
is sufficiently high [40].

Particle fracture by BCM requires a fracture criterion.
Numerical studies reported in the literature are generally
based on force or stress thresholds which lead to brittle
behavior while fracture mechanics requires a model fully
based on energy [12, 27, 32, 36, 40, 41]. In their model of
a thermodynamically consistent breakup model, Orozco
et al. [42] used a criterion based on the fracture en-
ergy in the framework of the contact dynamics method
(nonsmooth DEM), which does not account for elastic
deflections at the contact points [43]. For this reason,
the debonding criterion was based on the amount of en-
ergy absorbed by an interface and it was postulated that
an interface between two adjacent cells breaks if the to-
tal amount of energy exceeds the fracture energy. Using
this criterion, they were able to scale particle breakage
as a function of the impact energy in three-dimensional
(3D) single-particle impact and the evolution of grinding
in ball mills [14, 42].

In this paper, we use BCM with a fracture law that
is based on the Griffith criterion of crack propagation by
accounting for elastic energy release in each interface. In
other words, the initial formulation of this criterion in
terms of the incremental creation of a new fracture area
is coarse grained for application to finite surface creation.
Thus a cell-cell interface breaks only if the total elastic
energy stored per unit interface area exceeds two times
the specific fracture energy. We investigate in detail the
breakage of a single particle impacting a rigid plane by
means of extensive simulations. We analyze particle dam-

age, fracture efficiency, and restitution coefficient as a
function of impact energy. We propose functional forms
that capture well the behavior in each fracture regime
and transition between different regimes and we com-
pare our data with those of Orozco et al. [42]. We also
have enough data to analyze the resulting fragment size
distributions and particle shapes. As we shall see, our
findings are consistent with previous studies, but they
provide a more general picture in the range of weak im-
pact velocities where rebound and damage of the particle
occur without particle fragmentation.
In the following, we first introduce, in Sec. II, the

fracture model, boundary conditions, and parameters of
impact simulations. The fracture regimes are analyzed
in terms of particle damage, fracture efficiency, and ef-
fective restitution coefficient in Sec. III as a function of
impact parameters. In Sec. IV, we show that the frac-
ture variables and regimes scale with the ratio of impact
energy to cohesion energy. In Sec. V, we analyze the
distributions of fragment shapes and sizes. Finally, we
discuss the most salient results of this work in Sec. VI.

II. BONDED CELL METHOD AND RUPTURE
MODEL

A. Voronoi tessellation

We use the bonded cell method (BCM) based on the
division of the particle into polyhedral cells interacting
with their neighboring cells via an interface characterized
by a fracture energy. Each particle is divided into 1728
cells by Voronoi tessellation using the NEPER software
[44]. One possible technique to construct the centroidal
Voronoi tessellation is known as the Lloyd’s method,
which simply alternates between constructing Voronoi
tessellations and mass centroids [41, 45, 46]. An exam-
ple of the particle model composed of polyhedral cells
is shown in Fig. 1. For the sake of geometrical consis-
tency between the shape of the parent particle and its
constitutive polyhedral cells, we use a truncated pentakis
dodecahedron shape composed of 92 faces involving 12
regular pentagons, 20 regular hexagons, and 60 mirror-
symmetric hexagons. The cells (primary particles) have
random sizes and shapes, but they are always convex and
share their faces with their neighboring cells. A key nu-
merical parameter of BCM is the number of cells in the
particles (both the parent particle and its progeny) to en-
sure arbitrary fragment shapes and a meaningful range of
fragment sizes. For instance, several phenomena such as
particle shattering, surface breakage, and damage with-
out breakage are well captured by the simulation, but the
number of cells must be sufficiently high to avoid frag-
ment shapes after shattering that are controlled by initial
Voronoi tessellation [14, 40]. It has also been observed
that the fracture process is influenced by the number of
cells if it is below 100 [14, 41].
Figure 2 displays the size and shape distribution of the
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primary particles generated by Voronoi tessellation. The
aspect ratio of a cell is defined as the ratio of the longest
dimension to the shortest dimension of its bounding box.
The diameter of a cell is defined as the diameter of a
sphere having the same volume as the polyhedral cell.
We see that the aspect ratios of cells range between 1
and 1.3, with a mean value around 1.2. Cell diameters
mostly range from 0.16 to 0.17 mm, so that the cell sizes
are approximately equal. The sizes of the parent particle
and cells are the upper and lower bounds, respectively, of
the size distribution of fragments in the debris generated
by particle fracture. The statistical representativity of
the distribution of fragment sizes in the process of frag-
mentation depends therefore on their ratio. It is also
noteworthy that BCM makes it possible to account for
subparticle defects (pores, precracks, etc.) and other in-
homogeneities (cell size gradients, cell shapes, etc.) by
means of biased tessellation of the particle. In our sim-
ulations, the particle is assumed to be homogeneous and
defectless, with the goal of concentrating on the fracture
regimes.

FIG. 1. Particle model generated by Voronoi tessellation with
1728 polyhedral cells represented by different colors.
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FIG. 2. Distributions of the aspect ratios and sizes of primary
particles.

B. Interactions between polyhedra

In our simulation model, primary polyhedral cells
are smoothed by means of a Minkowski sum with a
sphere of desired radius (Minkowski radius). As a conse-
quence, each polyhedron consists of three subelements,
namely, the vertex which is a small sphere, the edge
which is a cylinder connecting two vertices, and the
face which is a plane connecting at least three vertices.
The contacts between two polyhedra are represented by
the contacts of its subelements, leading to six contact
types such as vertex-face, edge-edge, vertex-edge, vertex-
vertex, edge-face, and face-face interactions. The unilat-
eral constraints associated with these contact types do
not have the same dimension. The vertex-face, vertex-
edge, vertex-vertex, and edge-edge interactions involve a
single contact point, which can be handled in the same
way as contacts between spherical particles. Such simple
contacts represent a single unilateral constraint; see Figs
3a, 3b. In contrast, a face-face contact is a plane that
needs at least three points for its definition. Therefore,
a face-face contact is equivalent to three simple contacts
or unilateral constraints [43, 47, 48]. This implies that
at least three contact points are necessary to represent
a face-face contact between two rigid polyhedra. Note
that the number of contact points can be larger than 3
depending on the number of edges, but the number of
independent constraints is always 3; see Fig. 3d. In a
similar vein, full representation of an edge-face interac-
tion needs at least two contact points; see Fig 3c. Thus
the edge-face and face-face contacts can be described as
“double” and “triple” contacts, respectively.

(a) (b)

(c) (d)

FIG. 3. Different types of contacts between two polyhedra:
(a), (b) simple contact , (c) double (edge-face) contact, and
(d) triple (face-face) contact.

The Voronoi tessellation of the parent particle leads
to a configuration of polyhedral cells that have face-face,
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vertex-vertex, and parallel edge-edge contacts. We con-
sider only the face-face contacts to define cohesive inter-
faces. The edge-edge and vertex-vertex contacts in the
cell configurations are assumed to carry no surface energy
and are neglected since the internal cohesion of the parti-
cle is carried by the interfaces. However, as the interfaces
break and the generated fragments move during particle
fracture, other contact types may appear and they will
be treated as frictional cohesionless contacts due to the
irreversible nature of fracture.

At each contact point between cells, either a linear or
a nonlinear force law can be implemented. For smooth
particle surfaces with well-defined curvatures at the con-
tact point, the Hertz law can be used. However, in this
paper, due to the faceted shapes of the cells, we use the
linear elastic law which is equivalent to a linear spring
acting on the contact point. This means that the behav-
ior of the particle as a whole is linear elastic. Note also
that since the cells are treated as rigid bodies, the parti-
cle volume changes are only due to the overlaps between
cells and the particle has a linear elastic behavior as a
whole.

Let n⃗ and t⃗ be the normal and tangential unit vectors
at a contact point c between particles i and j. The force

f⃗ = fnn⃗ + ftt⃗ acting by particle j on particle i at this
point of the interface is expressed as a function of the
normal relative displacement (overlap) δn and cumula-

tive tangential displacement δ⃗t. The normal force law is
expressed as [49, 50]

fn = −knδn − 2α
√
knm δ̇n, (1)

where kn is the normal stiffness of inter-cell bonds, δn is
the normal displacement (with the sign convention that

δn < 0 is an overlap and δn > 0 is a gap), δ̇n is the
relative normal velocity, m is the reduced mass of the
two particles, and the dimensionless damping number α
takes a value between 0 and 1. The viscous damping
term accounts for normal energy dissipation and α is a
function of the normal restitution coefficient en [51–54],

α =

{ − log en√
(log en)2+π2

for 0 < en ≤ 1,

1 for en = 0.
(2)

It is useful to remember here that the use of viscous
damping does not mean that the real source of dissipa-
tion is the viscous behavior of the particles. In DEM,
the normal restitution coefficient is a convenient physical
parameter that accounts for contact inelasticity. How-
ever, the method used to impose its value between 0 and
1 is not essential as long as it does not produce artifacts
depending on the context. The tangential force is given
by [43, 55, 56]

f⃗t = −ktδ⃗t − 2α
√
knm v⃗t, (3)

where kt is the tangential stiffness, and v⃗t =
˙⃗
δt is the

relative tangential velocity. For internal bonds between

cells, there is no friction unless the interface fails and
transforms into a frictional contact; see below. Hence, as
long as an interface between two cells has not failed, the
only source of dissipation is viscous damping.

C. Rupture criterion

Thermodynamically, the creation of cohesionless sur-
face and crack propagation obeys the Griffith criterion.
According to this criterion, a crack propagates if the rate
of elastic potential energy released by surface creation
is above the fracture energy. The Griffith formulation is
based on a differential criterion with the assumption that
crack growth is a continuous process. Hence, it can not
be applied as such to a cell-cell interface of finite area S
in BCM. For this reason, a “coarse-grained” form of the
energy criterion should be applied by considering a finite
variation ∆Wp of the elastic energy. This condition for
the creation of a surface equal to S can be expressed as
[14, 57]

−∆Wp

2S
= G ≥ Gc, (4)

where Gc is fracture energy per unit surface, the so-called
toughness, and G is the energy release rate.
Since the elastic energy associated with the interface

vanishes when the bond fails, ∆Wp is actually the total
potential elastic energy of the interface. Furthermore,
since the compressive failure threshold is very high com-
pared to the threshold in tension, we set the threshold in
compression to infinity. Hence, ∆Wp must involve only
the forces in tension,

∆Wp =
∑
i∈S

(
f2
ni

2kn
H(δni) +

f2
ti

2kt

)
, (5)

where H(δni) is the Heaviside function defined by

H(δni) =

{
0 if δni ≤ 0,

1 if δni > 0.
(6)

This assumption implies that compressive forces do not
contribute to fracture. Figure 4 shows a strength enve-
lope based on Eqs. (4) and (5). This envelope is simpli-
fied by considering a single contact point belonging to the
interface. Since the interface involves at least three con-
tact points, the strength envelope should be represented
in a six-dimensional space.
Once G ≥ Gc, the cohesive bond fails and all contacts

of this interface become frictional without cohesion. If
the gap created as a result of interface deformation is
nonzero (δn > 0), the normal and tangential forces are
both zero and the newly created contact is open. Other-
wise (δn ≤ 0), the contact remains active and the relation
between the normal force fn and the overlap δn is given
by Eq. (1). Note that when the viscous damping term
makes fn negative, we set fn to zero. This is necessary to
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FIG. 4. Strength envelope of a single contact point belonging
to an interface between polyhedral primary cells.

avoid negative normal forces at cohesionless contacts [58].
In our simulations, we also set the restitution coefficient
en for frictional contacts to a value close to zero, while
the restitution coefficient for internal bonds between cells
is high; see Table I.

The tangential force at frictional contacts is governed
by the Coulomb friction law,

ft = min{|ktδ⃗t|, µsfn}, (7)

where kt is tangential stiffness of the frictional contact,
and µs is the interparticle friction coefficient. The ori-
entation of the tangential force t⃗ is opposite to either

the relative elastic displacement δ⃗t below the Coulomb
threshold or the relative velocity v⃗t at the contact point
when the Coulomb threshold is reached.

D. Impact parameters

We performed 3D impact tests of a single particle with
a rigid plane. The particle is placed close to the horizon-
tal plane and given an initial velocity v0. The impact en-
ergy (kinetic energy before collision) is varied by chang-
ing the impact velocity in the range given in Table I. This
wide variation of v0 allows us to investigate particle frac-
ture as a function of impact energy varying over at least
two orders of magnitude. The parent particle diameter
is 2 mm in all tests. Each impact test was repeated five
times, each with a different and independent tessellation
of the particle into cells. All the data points presented
in this paper correspond therefore to average values over
the five tests, with an error bar representing their stan-
dard deviation. We note that the point of impact with
the plane should be random to allow the particle to fall
on a face, edge, or vertex. To avoid systematic errors
due to this effect, we rotated the particle in a random
direction with a random angle before each impact test.
As we shall see below, the error bars are generally small,
meaning that particle orientation has little effect on the
fragmentation process.

For the parametric study of fracture regimes, we also
changed the value of the fracture energy Gc from 0.2 to 2
Jm−2. This range is broad enough to allow us to analyze
its effect on fracture regimes and the scaling of the frac-
ture data in combination with impact energy. All other
system parameters were kept constant and their values
are shown in Table I. The parameters are different for
cohesive bonds between cells, which encode the internal
mechanical behavior of the particles, and for frictional
contacts between fragments. In particular, the restitu-
tion coefficient en is set to a value (0.999) close to 1
between cells in order to minimize internal dissipation
due to inelasticity, in contrast to previous simulations in
which en between cells was set to zero. It would have
been possible to set en = 1, but we kept the possibil-
ity of a small amount of internal dissipation in order to
see whether it can have a significant effect on the behav-
ior. As we shall see, this is not the case. In contrast, the
restitution coefficient between fragments and between the
fragments and the bottom wall was set to a value (0.001)
very close to zero in order to better identify the source of
the overall restitution coefficient ek of the particle due to
the transfer of kinetic energy to the fragments when the
particle breaks. The effect of the restitution coefficient
at the impact point between the particle and the bottom
walls on the fracture behavior requires an independent
investigation.

The friction coefficient µs was set to 0.3 between frag-
ments. This is a typical value of friction coefficient in
most materials. The friction coefficient between cells be-
fore fracture is not defined since cell-cell interfaces are
governed by elastic interactions. We do not expect µs to
play a significant role in impact tests since we consider
a head-on impact and the generated fragments after im-
pact follow mainly diverging trajectories. The gravity
g is zero. As a result, the kinetic energy of the parti-
cle is fully determined by its initial velocity. The ini-
tial kinetic energy also depends on the particle density
ρ, which was set to 6000 kg m−3 to mimic high-density
metal oxides, although its effect on impact tests is phys-
ically expressed through the impact energy. The normal
stiffness kn was set to a high enough value to avoid large
overlaps between fragments and between the particle and
rigid plane. The largest overlap occurs for the highest
impact energy. We therefore set kn for frictional con-
tacts to 108 Nm−1, which leads to an overlap ≃ 0.0025d
with the rigid plane, where d = 2 mm is the diameter
of the particle. Since the cells inside the particles receive
much lower kinetic energies due to energy dissipation and
their large number inside the particle, we set kn between
cells to a value 10 times lower. The tangential stiffness
was set to kt = 0.8kn for the interface between cells and
for frictional contacts, corresponding to the Poisson ra-
tio ν = 1/3, which is a typical value for many materials
[59]. Note that the effect of kn on fracture is through the
expression of energy release rate G in Eqs. (4) and (5).
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Parameter Symbol Value Unit
No. cells Nc 1728 -
Particle density ρs 6000 kg/m3

Gravity acceleration g 0 m/s2

Impact velocity v0 [0.5;10] m/s
For frictional contacts:
Normal stiffness kn 108 N/m
Tangential stiffness kt 8× 107 N/m
Restitution coefficient e2n 0.001 -
Friction coefficient µs 0.3 -
For cohesive bonds between cells:
Normal stiffness kn 107 N/m
Tangential stiffness kt 0.8× 107 N/m
Restitution coefficient e2n 0.999 -
Fracture energy Gc [0.2;2.0] J/m2

TABLE I. Simulation parameters for impact test of a particle
with a rigid plane.

III. PARTICLE FRACTURE REGIMES

During an impact, part of the initial kinetic energy
W−

k = mv2/2 of the particle is transmitted to the frag-
ments. Note that v is the precollision velocity of the
particle. Since the particle is placed very close to the
rigid plane, we have v ≃ v0. Let W

+
k be the total kinetic

energy of the fragments after collision. The difference,
Wd = W−

k − W+
k , is consumed in fracture and other

dissipative interactions, including friction and inelastic
collisions between fragments and with the rigid plane. If
A is the total cohesionless surface area created during
fracture, the total fracture energy is given by

Wf = 2AGc. (8)

We also define the total surface energy Ws = 2A0Gc,
which is the total energy required to break all interfaces
of the total initial area A0. Hence, particle damage Dw

can be defined as

Dw =
Wf

Ws
=

A
A0

. (9)

By definition, Dw varies from 0 to 1.
Figure 5 displays particle damage Dw as a function of

impact velocity v, for different values of fracture energy
Gc. The damage first increases rapidly with v and then
slowly tends to a constant value. The maximum value of
damage is below 1, meaning that despite huge initial ki-
netic energy, the cell-cell interfaces do not break entirely
apart. As we shall see, since the number of primary cells
is sufficiently high, elongated fragments composed of sev-
eral cell-cell interfaces are generated. Examples of parti-
cle fragmentation are shown in Fig. 6 for several values
of fracture energy Gc with impact velocity v = 4.5 m/s.
Obviously, the damage of a particle with smaller values
of Gc is higher at the same impact velocity v and in-
creases faster than those of larger Gc. We also see that
the error bars are small, indicating that the variability of
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FIG. 5. Particle damage Dw vs impact velocity v for different
values of fracture energy Gc. For each test, the error bar
represents standard deviation over five independent tests.

Gc = 0.2 J/m2 Gc = 0.5 J/m2

Gc = 1.0 J/m2 Gc = 2.0 J/m2

1

FIG. 6. Fragmentation of a particle impacting a rigid wall
for different values of fracture energy Gc. The simulation was
carried out with an impact velocity of 4.5 m/s.

fracture as a result of the variations of impact position is
not significant.
In the comminution process, the amount of energy con-

sumed for fracture as a function of impact energy is an
important aspect that must be thoroughly considered.
We define fracture efficiency η as the ratio of the total
energy Wf consumed for fracture to the impact energy

η =
Wf

W−
k

. (10)

Comminution is generally not an efficient process in the
sense that most of the supplied energy is not consumed
in fracture. It is thus interesting to see how the value of
η for a single particle depends on the impact parameters.
The evolution of η as a function of impact velocity v

for different values of Gc is shown in Fig. 7. We see that
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fracture efficiency first decreases to a minimum value of
the order of 0.05 and then increases rapidly with v up
to a peak value of the order of 0.2. After the peak, it
slowly declines towards a nonzero asymptotic value de-
pending on Gc. The velocity at which η takes its peak
value increases with Gc. The variation of η in our study
is consistent with previous studies [42], except for the ini-
tial decrease of η at low impact velocity v. This decrease
as a function of impact velocity reflects energy loss by in-
elastic interactions and the opening of cracks inside the
particle in the vicinity of the impact point. Since cracked
interfaces are governed by frictional contact interactions,
the loss of energy at the increasing number of such con-
tacts grows with velocity and leads to a lower amount of
energy available for fracture. Note, also, that the veloc-
ity at which η reaches its minimum value increases with
Gc. The nonmonotonic behavior of the evolution of η
means that there is a characteristic velocity at which the
conversion of the kinetic energy to fracture is optimal.
As we shall see, below and above the characteristic ve-
locity, the supplied energy is essentially either dissipated
by inelastic collisions or taken away by the fragments.
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FIG. 7. Fracture efficiency η vs impact velocity v for different
values of fracture energy Gc.

During fragmentation, the kinetic energy of the parent
particle can be dissipated by viscous damping between
the particle and the rigid plane, plastic deformation, and
damage of the particle or transferred to the generated
fragments. We define an effective restitution coefficient
ek from the ratio of the pre-impact and post-impact ki-
netic energies,

e2k =
W+

k

W−
k

. (11)

The evolution of e2k as a function of impact velocity is
shown in Fig. 8. Consistently with the initial decrease of
η, the squared restitution coefficient e2k decreases from a
value close to 1 since the restitution coefficient between
primary cells is close to 1. From a value of v at which frac-
ture efficiency η reaches its minimum, e2k starts rapidly
declining to a minimal value that decreases with increas-
ing fracture energy Gc, and then increases again. The

restitution coefficient at high impact velocity is larger
for lower values of Gc.

0.0
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FIG. 8. Squared restitution coefficient e2k as a function of
impact velocity v for different values of fracture energy Gc.

IV. SCALING BEHAVIOR

The results presented so far show that the evolutions of
fracture variables Dw, η, and e2k as a function of v differ
according to the value of the fracture energy Gc. This is
an expected behavior since the amount of fracture cre-
ated by impact energy W−

k is directly dependent on the
surface energy. We define a normalized impact energy ω
by the ratio of supplied energy W−

k to the total interface
energy Ws of the particle,

ω =
W−

k

Ws
. (12)

We naturally expect that the simulation data collapse
when expressed as a function of ω. Following Ref. [60],
we refer to ω as damage potential. .

0.1

1

ω0 ω10.01 0.1 1 10 100

e2 k

ω

Gc = 0.2 J/m2

Gc = 0.5 J/m2

Gc = 1.0 J/m2

Gc = 2.0 J/m2

(a)

(b)

(c)

1

FIG. 9. Squared restitution coefficient e2k as a function of
normalized impact energy ω on a log-log scale for different
values of fracture energy Gc. The dotted lines are the fitting
forms of Eqs.(13) and (14). The vertical dashed lines mark
transition points between different regimes.

Figure 9 displays the evolution of e2k as a function of ω
on the log-log scale. We see that all data points fall into
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three distinct regimes with two well-defined crossover val-
ues ω0 and ω1. The data nearly collapse on a master
curve in the first two regimes, but differ slightly in the
third regime. In the range ω < ω0 ≃ 0.3, e2k decreases
slowly with ω. In this regime, the particle is not broken
and only a small fraction of the supplied energy is used to
create cracks at the impact point. The decrease of e2k can
be attributed to the fact that the normal restitution co-
efficient between the particle and the rigid plane is close
to zero and the restitution coefficient between cells is not
strictly equal to 1. It is, however, remarkable that ek is
above 0.9 in this range.

In the range of intermediate values, ω0 < ω < ω1 ≃
2.0, the restitution coefficient declines rapidly with in-
creasing ω due to the creation of an increasing number of
cracks inside the particle. Finally, in the range ω1 < ω,
the particle breaks into an increasing number of frag-
ments and the restitution coefficient increases slowly with
ω . It is noteworthy that the first two regimes of Fig. 9
were not observed in the simulations of Ref. [42] due to
the low value of the restitution coefficient in those simula-
tions. But the crossover to particle fragmentation occurs
at the same value ω1 ≃ 2.0 as in our simulations, despite
differences in the numerical methods that are employed.

Figure 9 also shows that the whole range of the first
two regimes ω < ω1 is well fit to a double power-law
function,

e2k =
1

a
(

ω
ω0

)m

+ b
(

ω
ω0

)n , (13)

with prefactors a = 0.058 and b = 1.165, and exponents
m = 1.9 and n = 0.024. The data do not exactly collapse
as a function of ω in the second and third regimes. Higher
values ofGc lead to lower values of ek at ω1. The values of
the parameters for the above fitting form slightly depend
on Gc. We used the highest value of Gc to obtain their
values. It is also remarkable that in the third regime, the
data seem to tend to an asymptotic power-law function
as ω increases,

e2k = c

(
ω

ω1

)k

, (14)

where c = 0.3 and k = 0.11.
Figure 10 shows particle damageDw as a function of ω.

Here, all the data nicely collapse on a single increasing
function of ω. In the low-energy regime, Dw increases
from 10−3 to 10−2. In the second regime, it increases
faster, from 10−2 to 0.2. In the third regime, it increases
from 0.2 towards 1. For the first two regimes, the follow-
ing fitting function captures the data well:

Dw =
a′(ω/ω0)

1 + b′(ω/ω0)
, (15)

with a′ = 0.022 and b′ = −0.175. In the high-energy
regime, the following form is well suited to the data:

Dw =
c′(ω/ω1)

1 + d′(ω/ω1)
, (16)

10−4
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10−2

10−1

100

ω0 ω10.01 0.1 1 10 100

D
w

ω
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Gc = 0.5 J/m2

Gc = 1.0 J/m2

Gc = 2.0 J/m2

FIG. 10. Particle damage Dw as a function of the normalized
impact energy ω on a log-log scale. The dotted lines are the
fitting forms shown in Eqs. (15) and (16). The vertical dashed
lines indicate transition points between different regimes.

where c′ = d′ = 0.403, ensuring that as ω → ∞, Dw

tends to 1.
According to Eqs (9) and (10), we have η = Dw/ω.

We may therefore express η as a function of ω from
that of Dw. Hence, for the low- and intermediate-energy
regimes, we have

η =
a′/ω0

1 + b′(ω/ω0)
. (17)

For the high-energy regime, we have

η =
c′/ω1

1 + d′(ω/ω1)
. (18)

The evolution of fracture efficiency η as a function of ω
together with these fitting forms are displayed in Fig. 11.
In the first regime, η decreases slightly from 0.1. How-
ever, in the second regime where part of the supplied
energy contributes to crack nucleation, η increases with
ω before reaching the peak value around ω = ω1. We see
that the fitting form (17) does not exactly capture the
initial decrease of η, but it follows the data points within
the available statistical precision. The third regime is
excellently captured by the proposed fit. In this regime,
η declines although particle damage Dw increases. This
means that the amount of energy contributing to parti-
cle breakage increases, but it requires an excess energy
supply which increases faster, thereby leading to a fast
reduction of η.
It is important to note that the choice of the numer-

ical values of ω0 and ω1 was based on the observation
of the generation of cracks and particle fragmentation.
Indeed, for ω > ω0, cracks begin to form inside the par-
ticle and for ω > ω1, the particle breaks into at least two
fragments. These transition points have nearly the same
value for the five independent tests performed for each set
of parameters. We also have seen that they are consis-
tent with the evolution of restitution coefficient, fracture
efficiency, and damage as a function of damage potential
ω.
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FIG. 11. Fracture efficiency η as a function of normalized
impact energy ω. The dotted lines are the fitting forms (17)
and (18). The vertical dashed lines indicate transition points
between different regimes.

Another variable of interest is the ratio χ of the post-
impact kinetic energy to the fracture energy,

χ =
W+

k

Wf
. (19)

This variable quantifies the relative weight of the energy
transported by the fragments with respect to that con-
sumed in particle breakage. It can be expressed as a
function of ek and η,

χ =
e2k
η
. (20)

Given the fitting forms of ek and η as a function of ω,
the evolution of χ in the first and second regimes must
be captured by the following fitting form:

χ =
ω0 + b′ω

a′a
(

ω
ω0

)m

+ a′b
(

ω
ω0

)n , (21)

and for the third regime by

χ =
c

c′
(ω1 + d′ω)

(
ω

ω1

)k

, (22)

The evolution of χ as a function of ω on the log-log
scale is shown in Fig. 12 for different values of Gc.
The fitting form is close to the data points in the first
two regimes within statistical precision but does not cap-
ture the trend in the first regime well, while in the third
regime, it follows the data points well. The value of χ
increases from 10 to 18 in the first regime, implying that
the kinetic energy of fragments is high compared to the
energy consumed for fracture, which should be vanish-
ingly small in the absence of crack generation. Then, it
decreases in the second regime at which the energy con-
sumed for crack generation increases faster than kinetic
energy. It reaches its minimum value coinciding with the
peak of η, as shown in Fig. 11. At this point, we have
χ ≃ 1, which means that the amount of energy consumed

at this point for fracture is nearly equal to that carried
away by the fragments. In the third regime, χ increases
again due to the faster increase of the kinetic energy of
fragments than the energy consumed by breakage.

1

10

ω0 ω10.01 0.1 1 10 100

χ

ω

Gc = 0.2 J/m2

Gc = 0.5 J/m2

Gc = 1.0 J/m2

Gc = 2.0 J/m2

FIG. 12. Fragmentation efficiency η as a function of the nor-
malized impact energy ω. The dotted lines are the fitting
forms (21) and (22). The vertical dashed lines indicate tran-
sition points between different regimes.

It is also interesting to consider the energy Wc dissi-
pated by inelastic collisions and friction,

Wc = W−
k −W+

k −Wf . (23)

We normalize this energy by the total surface energy Ws

and the following expression can be easily established:

Wc

Ws
= ω

(
1− η − e2k

)
. (24)

The evolution of this ratio as a function of ω is displayed
in Fig. 13 for ω > ω1, where particle breakage occurs. It
increases almost linearly with ω with slope ≃ 1/2 up to
very high values of ω. This implies that approximately
half of the supplied kinetic energy is dissipated by contact
inelasticity and friction when the particle breaks. The
remaining half is either used for fracture or carried away
by the fragments.
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FIG. 13. Normalized energy dissipated by inelastic collisions
and friction Wc/Ws vs normalized impact energy ω for ω >
ω1.
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V. FRAGMENT SIZES AND SHAPES

The shapes and sizes of the fragments reflect the frag-
mentation process. Several experimental studies have
shown that the fragments of rock generated by explosion
or impact have an elongated shape and the probability
distribution of the fragment masses is a power-law func-
tion [9, 25, 26, 32]. To define an appropriate shape de-
scriptor, we construct the bounding box of each fragment
with principal axis c ≤ b ≤ a, as shown in Fig. 14. The
length a of the bounding box is the longest dimension of
the fragment, b is the largest distance perpendicular to
the direction of a, and c is defined as the largest distance
perpendicular to the plane determined by a and b. The
shapes of the fragments can be described in terms of the
elongation ratio b/a and flatness ratio c/b. The inverse
values a/b and b/c represent the two aspect ratios.

FIG. 14. The space dimensions of a fragment according to its
bounding box in three mutually orthogonal planes (a ≥ b ≥
c).

We consider the average value of the elongation ratio
and flatness ratio calculated over all fragments generated
as a result of particle breakage. We neglect the fragments
composed of a single primary cell in order to remove the
effect of Voronoi tessellation. The values of ⟨c/b⟩ and
⟨b/a⟩ are shown in Fig. 15 as a function of ω for ω >
ω1. The minimum values of elongation ratio ⟨b/a⟩ and
flatness ratio ⟨c/b⟩ are ≃ 0.69 and ≃ 0.77, respectively.
The ratio c/b increases and tends to a constant value
≃ 0.88, while b/a slightly decreases and remains constant
and equal to 0.69.

Interestingly, these values are comparable to the data
obtained from particle size and shape distributions in
lunar samples [25, 26, 61]. Since only limited amounts
of lunar soil were retrieved during the Apollo missions,
the particle shapes were studied using micro-x-ray com-
puted tomography of simulant granular materials manu-
factured based on real lunar samples [26]. Disregarding
very fine particles, the distributions of the grain shapes
were found to have an average flatness ratio 0.694±0.143
and an average elongation ratio 0.723± 0.132, which are
quite close to their values of the fragments in our simu-
lations. It has been argued that this ratio represents a
self-similar shape: once broken into two equal fragments,
each fragment has the same elongation ratio as the par-
ent particle [26]. Mathematically, the ratio of self-similar

shape by this operation is
√
2/2 ≃ 0.7. In our simula-

tions, the particle does not break in successive steps, but
the average value of the elongation ratio suggests that a
self-similar crack propagation process occurs inside the
particle during its breakage.
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FIG. 15. The average shape descriptors as a function of nor-
malized impact energy ω for all values of fracture energy Gc,
with (a) the flatness ratio ⟨c/b⟩ and (b) the elongation ratio
⟨b/a⟩.

Another quantity that has been used for the charac-
terization of particle shape is the shape factor Sf defined
as [9]

Sf = (1/a+ 1/b+ 1/c)
√
a2 + b2 + c2/

√
3. (25)

This parameter reaches its lowest value Sf = 3 for nearly
spherical fragments with a ≃ b ≃ c, while elongated
shapes have larger values, Sf > 3. To quantify the statis-
tics of occurrence of different shapes of fragments, we de-
termined the probability distribution p(Sf ) of the shape
factor. Note that we gather data of fragment shapes for
different impact velocities v together to gain large enough
data sets to calculate the distribution function. Figure
16 shows that the simulation data for all values of Gc

collapse on a curve which has a decreasing exponential
form for Sf > 3.2. This is in remarkable agreement with
the experimental results of Ref. [9], although the frag-
ments in our simulations result from single-particle frac-
ture rather than a multiparticle granular process. The
mean value of Sf is about 3.3 for all cases in our simula-
tions.
We also investigated the probability distribution p(m)

of fragment masses. Several previous studies suggest that
the distribution is generically a power-law function

p(m) ∼ m−τ . (26)

It seems that the value of the exponent τ is not univer-
sal, but depends on the material or the amount of energy
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FIG. 16. Probability distribution of the shape factor Sf on a
semilogarithmic plot for all values of fracture energy Gc and
impact velocity v.

consumed for fragmentation [7, 9, 29, 62–64]. Figure 17
presents the fragment mass distributions p(m) for dif-
ferent values of fracture energy Gc on the log-log scale.
The masses of fragments m are normalized by the maxi-
mum mass mmax. We observe here a power-law behav-
ior for all values of Gc. The value of the exponent at
Gc = 0.2 J/m2 is τ = 3.0, but decreases as Gc increases.
For Gc = 2.0 J/m2, we find τ = 2.1. The value of τ
in our study is higher than the value τ = 5/3 proposed
for three-dimensional solids [9, 29, 32, 65]. It is impor-
tant to recall here again that particle size distribution
resulting from the comminution of a granular material is
a consequence of the combined effects of stress distribu-
tion inside the material and single-particle fragmentation
process. For this reason, the size and shape distributions
of single-particle impact may differ from those of a gran-
ular process involving multicontact stress transmission.
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FIG. 17. Fragment mass distributions p(m) for different val-
ues of the fracture energy Gc. The solid line shows the power
function (26) with τ = 3.0 for Gc = 0.2 J/m2 and the dotted
line with τ = 2.1 for Gc = 2.0 J/m2.

VI. CONCLUSIONS

In this paper, a fracture law based on the Griffith crite-
rion was used with the bonded cell method implemented

in a 3D DEM code for the simulation of the fracture be-
havior of a single particle impacting a rigid plane. The
particle is discretized by means of Voronoi tessellation
into polyhedral cells whose interfaces represent poten-
tial cracks while the cells and their combinations repre-
sent potential fragments. The fracture law implies that a
cell-cell interface fails if the energy release rate is above
the fracture energy. Our results of single-particle fracture
compare well with both past simulations of the same pro-
cess and recent experimental data.

Our simulations show that the behavior of the impact-
ing particle involves three distinct regimes depending on
the damage potential ω, defined as the ratio of impact
energy to the fracture energy of the particle. Our re-
sults are consistent with previous experimental and nu-
merical findings, in which our first two regimes corre-
spond to a damaged state and the high-energy regime
is coincident with the fragmented state. This behavior
makes two critical values of the damage potential appear,
which determine whether the particle breaks or simply
rebounds with or without being damaged. For different
values of fracture energy, we showed that several physical
variables such as particle damage, restitution coefficient,
fracture efficiency, and the amount of energy dissipated
by inelastic collisions and friction are well scaled by ω.
The fracture efficiency is a nonmonotonic function of im-
pact energy with its optimal value at the crossover to the
third regime where particles break into several pieces. We
found that in the third regime, nearly half of the input en-
ergy is dissipated by contact inelasticity and friction, the
other half being either consumed for fracture or carried
away by the fragments generated as a result of particle
breakage.

We also found that the distribution of fragment masses
is a power-law function with an exponent slightly decreas-
ing with fracture energy. It is remarkable that the shape
descriptors of the fragments such as flatness ratio and
elongation ratio have generic values previously observed
in real samples of granular materials. In particular, we
found that the fragments in the whole range of values of
ω have an average aspect ratio which is nearly equal to√
2, a value that hints at a self-similar shape. This self-

similarity is consistent with the existence of a power-law
size distribution, which is a consequence of the absence of
characteristic lengths (between cell size and initial parti-
cle size) in the system.

It will be important to extend this work to a broader
parametric study to assess the generality of the scaling
behavior evidenced in this work. For example, the initial
particle used in our simulations is undamaged and its
total surface energy Ws is constant. It will be interesting
to consider damaged particles (containing precracks) to
study the effect of varying Ws on the dependence of the
restitution coefficient and damage on ω. Furthermore,
the restitution coefficient between cells can be set to lower
values to study its effect on the two first regimes and the
crossover values of ω. In the same way, it is important
to consider the effect of the restitution coefficient at the
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impact point between the particle and the bottom walls
on the effective restitution ek coefficient of the particle.

Longer term, we would like to use our results to pre-
dict the fracture of particles in rotating drums and during
quasistatic deformation of granular materials. Extensive
simulations will be performed in both configurations for
the scaling of particle breakage as a function of system
parameters to obtain clues for the scale-up of comminu-

tion from the particle scale to a collection of particles.
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[64] P. Kekäläinen, J. A. Åström, and J. Timonen, “So-
lution for the fragment-size distribution in a crack-

branching model of fragmentation,” Phys. Rev. E 76,
026112 (2007).

[65] A. Bershadskii, “Some classification of fragmentation
processes related to fracture,” Journal of Physics A:
Mathematical and General 33, 2179 (2000).

https://link.aps.org/doi/10.1103/PhysRevE.59.2623
https://link.aps.org/doi/10.1103/PhysRevLett.95.095503
https://link.aps.org/doi/10.1103/PhysRevE.76.026112
https://link.aps.org/doi/10.1103/PhysRevE.76.026112
https://dx.doi.org/10.1088/0305-4470/33/11/301
https://dx.doi.org/10.1088/0305-4470/33/11/301

	Particle fracture regimes from impact simulations
	Abstract
	Introduction
	Bonded Cell Method and rupture model
	Voronoi tessellation
	Interactions between polyhedra
	Rupture criterion
	Impact parameters

	Particle fracture regimes
	Scaling behavior
	Fragment sizes and shapes
	Conclusions
	Acknowledgments
	References


