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Abstract
Conjugated QSPR models for reactions integrate fundamental chemical laws
expressed by mathematical equations with machine learning algorithms.
Herein we present a methodology for building conjugated QSPR models in-
tegrated with the Arrhenius equation. Conjugated QSPR models were used to
predict kinetic characteristics of cycloaddition reactions related by the Ar-
rhenius equation: rate constant logk, pre-exponential factor logA, and activa-
tion energy Ea. They were benchmarked against single-task (individual and
equation-based models) and multi-task models. In individual models, all char-
acteristics were modeled separately, while in multi-task models logk, logA
and Ea were treated cooperatively. An equation-based model assessed logk us-
ing the Arrhenius equation and logA and Ea values predicted by individual
models. It has been demonstrated that the conjugated QSPR models can accu-
rately predict the reaction rate constants at extreme temperatures, at which
reaction rate constants hardly can be measured experimentally. Also, in the
case of small training sets conjugated models are more robust than related
single-task approaches.
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1 | INTRODUCTION

A chemical reaction can be quantitatively described by
such kinetic characteristics as the rate constant (logk),
the pre-exponential factor (logA), and activation energy (
Ea). Their knowledge is of particular importance because
the distribution of reactant and product concentration at
any moment can be calculated based on known kinetics.
QSPR modeling of chemical reactions has made sig-
nificant progress in recent years [1–4]. QSPR method-
ology employs machine learning algorithms to the data

on reaction characteristics measured in the experiment
to predict them for new reactions. Many approaches
were proposed for reaction rate prediction. Usually,
quantum chemistry approaches are used for the search
for elementary reaction mechanisms and estimate re-
action barriers and rates [5–7]. Computationally efficient
machine learning potentials were shown to be a valuable
alternative to quantum chemistry in the estimation of lo-
cal minima and transition states energy [8]. Machine
learning is currently widely used to predict reaction rate
constants based on structural features of reactants and
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products represented by a set of chemical descriptors [9].
This approach can be dated back to early studies based
on the Linear Free Energy Principle [10] and the appli-
cation of substituent constants as descriptors [11]. It has
also been shown that quantum chemical descriptors are
a good alternative to structural descriptors [12].

In our previous publications, we reported predictive
models for the rate constants of SN2 [13, 14] and E2
[15, 16] reactions. There are also examples of machine
learning applications for predicting the activation en-
ergies of reactions. Singh et al. applied popular machine
learning algorithms to predict the activation barriers of
hydrogenation/dehydrogenation reactions [17]. Gambow
and coworkers developed a deep graph convolutional
neural network trained on the activation barriers of gas-
phase reactions obtained with quantum-chemical calcu-
lations [5, 18]. Jorner et al. proposed an approach that
combines traditional DFT transition state modeling and
machine learning [19] and trained the model using dif-
ferent machine learning algorithms to accurately predict
the reaction barriers of the nucleophilic aromatic sub-
stitution reaction (SNAr). Chin and coworkers reported
kinetic and thermodynamic analysis of the thermal deg-
radation of plastic wastes including application of artifi-
cial neural networks and global optimization algorithms
[20–23].

Previously, the temperature dependence of the re-
action rate was mostly modeled by adding the temper-
ature to the set of structural descriptors [16]. However,
the dependence of the rate constant (logk) on the tem-
perature is known to be expressed by the Arrhenius
equation (1) that relates reaction rate with the temper-
ature and two other parameters that are assumed to be
temperature independent: the pre-exponential factor (A),
and activation energy (Ea).

In our previous study [24] we reported SVR (Support
Vector Regression) and GTM (Generative Topographic
Mapping) modeling of logk, logA and EA of cycloaddition
reactions. Two scenarios for logk assessment were exam-
ined. In the first scenario, the SVR algorithm learns to
predict logk directly from reaction descriptors. In the
second scenario, two independent individual models are
built: (i) for predicting the logA and (ii) for predicting
the EA, which were used to calculate logk using the Ar-
rhenius equation:

logk ¼ logA �
EA

2:303RT
(1)

We observed that the predicted values of logk calcu-
lated using the Arrhenius equation (Arrhenius-based
model) were less accurate in comparison to the

individual model built directly from experimental values
of logk.

The models embedding thermodynamic laws (con-
jugated QSPR models) were described in our recent study
[25]. We proposed a machine learning model that com-
bines ridge regression and a neural network with an
equation that relates tautomer acidities with their equili-
brium constants. We have demonstrated that the pre-
dictive performance of such conjugated models was as
good as for the individual ones, while the former had
some additional benefits like a good prediction of acid-
ities for minor tautomers.

Here, the conjugated modeling approach involving
ridge regression and neural network algorithms is ap-
plied to the kinetic parameters of chemical reactions
linked by the Arrhenius equation: rate constant logk,
pre-exponential factor logA, and activation energy Ea.

We used the data set on cycloaddition reactions from
our previous study [24] to build individual (single-task),
equation-based (Arrhenius-based), multi-task, and con-
jugated models for predicting logk, logA and EA. In-
dividual models were built independently for each ki-
netic characteristic (Figure 1, I). The Arrhenius-based
model uses the Arrhenius equation to calculate the logk
with logA and EA predicted by individual models
(Figure 1, I). The multi-task approach (Figure 1, II) uses
all available data across the different reaction character-
istics and models them cooperatively in contrast to sin-
gle-task learning. Conjugated learning (Figure 1, III)
uses all available data on multiple tasks, but, in contrast
to the multi-task approach, explicitly embeds a mathe-
matical equation (in this study it is the Arrhenius
equation) relating the tasks to the machine learning al-
gorithm. This approach ensures that the predicted re-
action characteristics satisfy the fundamental chemical
laws and empowers the conjugated QSPR models with
new capabilities.

2 | DESIGN OF CONJUGATED
LEARNING ALGORITHMS

2.1 | Ridge regression individual models

Ridge regression (RR) is a popular machine learning al-
gorithm that was extensively used in practice [26]. In
ridge regression, the prediction of reaction characteristic
ypred is performed by multiplying the reaction descriptors
X by the vector of regression weights w:

ypred ¼ Xw (2)
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The regression weights w can be calculated using the
following expression:

w ¼ ðXTX þ lIÞ� 1XTyexp (3)

where X is the descriptor matrix of training reactions as-
sociated with experimental values yexp of the target char-
acteristic. Hyperparameter l is a regularization co-
efficient controlling the complexity of the model. We
used ridge regression to independently build three in-
dividual models for predicting the logk, logA and EA of
cycloaddition reactions. The regularization coefficient
was adjusted using the grid search technique.

2.2 | Ridge regression conjugated
models

In conjugated models, fundamental chemical laws are
integrated with machine learning algorithms. In this
study, we consider the Arrhenius equation, which can be
embedded into the ridge regression algorithm. In the
equation-based (Arrhenius-based) model the rate con-
stant ypredK is calculated using the Arrhenius equation ap-
plied to the values of logA and EA predicted by in-
dividual QSPR models from reaction descriptors XK :

logk ¼ logA �
EA

2:303RT ) ypredK ¼ XKwA � TXKwE (4)

where T is the diagonal matrix with the elements that
are calculated as:

1
2:303RTi

(5)

and Ti is the temperature of the i-th reaction. On the
other hand, if experimental data on logk are available,
the Arrhenius equation can be integrated with ridge re-
gression using a special loss function:

EK wA; wEð Þ ¼

kyexpK � ypredK k
2
¼ kyexpK � XKwA þ TXKwEk

2 (6)

In the case of EK wA; wEð Þ, there are two sets of re-
gression weights, wA (for predicting logA) and wE (for
predicting EA), which can be optimized to predict the
logk. To enable correct prediction of logA and the EA,
loss function EK wA; wEð Þ can be combined with in-
dividual loss functions for the logA and EA and regulari-
zation terms:

EA wAð Þ ¼ kyexpA � ypredA k
2
¼ kyexpA � XAwAk

2
þ lAwT

AwA (7)

EE wEð Þ ¼ kyexpE � ypredE k
2
¼ kyexpE � XEwEk

2
þ lEwT

EwE (8)

resulting in a conjugated model loss function:

F I G U R E 1 Approaches to modeling kinetic characteristics related by Arrhenius equation. In ordinary single-task learning (I) each
characteristic is modeled independently. Multi-task learning (II) performs cooperative modeling of all three characteristics, whereas
conjugated learning (III) embeds the strict mathematical relationship relating the kinetics characteristics (Arrhenius equation) into the
machine learning algorithm.
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E wA;wEð Þ ¼ cKEK wA;wEð Þ þ cAEA wAð Þþ

cEEE wEð Þþ lAwT
AwA þ lEwT

EwE

(9)

where cK , cA, cE are trade-off coefficients that control the
contribution of each type of the loss function to con-
jugated loss E wA;wEð Þ, lA and lE are regularization co-
efficients. After differentiation of the loss function
E wA;wEð Þ, the optimal regression weights wA and wE can
be calculated using the following analytical expressions:

wA ¼ ðI � BDÞ� 1ðA þ BCÞ (10)

wE ¼ ðI � DBÞ� 1ðC þ DAÞ (11)

where matrices A; B; C; D are obtained as follows:

A ¼ cKXT
KXK þ cAXT

AXA þ lAI
� �

� 1 cKXT
KyK þ cAXT

AyA
� �

B ¼ cKXT
KXK þ cAXT

AXA þ lAI
� �

� 1 cKXT
KTXK

� �

C ¼

cKXT
KT

TTXK þ cEXT
EXE þ lEI

� �
� 1 cEXT

EyE � cKXT
KTyK

� �

D ¼ ð cKXT
KT

TTXK þ cEXT
EXE þ lEIÞ

� 1 cKXT
KTXK

� �

(12)

As a result, regression weights wA and wE in the con-
jugated model are estimated using the training sets of
logk (XK), logA (XA) and EA (XE) data.

2.3 | Neural network individual,
multi-task, and conjugated models

Individual, multi-task, and conjugated models can be
built using neural networks (NN). In individual models,

each characteristic is modeled independently using a
standard multilayer neural network with one or more
hidden layers and one output neuron (Figure 2a). Multi-
task models can be built using a neural network with
three output neurons, each predicting one of the kinetic
characteristics (Figure 2b). This neural network can be
trained using the multi-task loss:

Multitask loss ¼ cK logkexp � logkpred
� �2

þ

cA logAexp � logApred� �2
þ cE Eexp

a � Epred
a

� �2
(13)

where cK , cA, cE are coefficients that control the con-
tribution of each type of error to the multi-task loss.

The conjugated models can be built using the neural
networks shown in Figure 2c. This neural network has
two output neurons. The first output neuron predicts
logA and the second one predicts EA (Figure 2c). The
predicted values of logA and EA are then used to calcu-
late the prediction of logk using the Arrhenius equation.
Finally, the obtained predicted values of logk, logA and
EA are used to calculate the conjugated loss:

Conjugated loss ¼

cK logkexp � logApred �
Epred
a

2:303RT

� �� �2

þcA logAexp � logApred� �2
þ cE Eexp

a � Epred
a

� �2

(14)

Individual, multi-task, and conjugated NN models dis-
cussed hereafter had one hidden layer with 256 neurons.
Neural network weights were optimized using a gradient
descent algorithm at a learning rate of 0.001. The

F I G U R E 2 Neural network architectures for building an individual (a), multi-task (b), and conjugated (c) model for prediction of the
reaction kinetic characteristics related by the Arrhenius equation.
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complexity of the individual and conjugated NN models
were controlled by the weight decay parameter (L2 regu-
larization), which took values from 10� 3 to 101. Neural
networks were implemented using the PyTorch package
[27].

3 | COMPUTATIONAL DETAILS

3.1 | Data

The reaction data set for model building were taken
from our previous paper [24]. The data set includes 1849
cycloaddition reactions with 1849 experimental values of
logk, 1236 experimental values of logA, and 1350 ex-
perimental values of Ea (kJ/mol). The rate constants logk
were measured in different solvents and at different tem-
peratures T. The data set contains Diels-Alder (4+2) cy-
cloaddition, (3+2) dipolar cyclization, and (2+2) cyclo-
additions. Among the 1849 reactions, there were 763
unique structural transformations (Table 1).

The data set was divided into training and test sets
(in the proportion of 90/10) so that the test set con-
tained structural transformations which did not occur
in the training set (Table 1). As a result, the test set
contained 73 unique structural transformations that
were not represented in the training set, which con-
sisted of 690 unique structural transformations
(Table 1). The training set was used to build the in-
dividual, Arrhenius-based, multi-task, and conjugated
models, while the test set was used to evaluate the pre-
dictive performance of the models.

3.2 | Descriptors

Each cycloaddition reaction was transformed into the
corresponding Condensed Graph of Reaction (CGR)
(Figure 3) [28] generated using the CGRtools package
[29]. A CGR is derived from the superposition of prod-
ucts and reactants and contains both conventional chem-
ical bonds (single, double, triple, aromatic, etc.) and so-
called “dynamic” bonds describing chemical trans-
formations, i. e., breaking or forming a bond or changing
bond order.

All generated CGRs were processed using the ISIDA
tool [30, 31] to calculate fragment descriptors counting
the occurrence of particular subgraphs (structural frag-
ments) of different topologies and sizes. We tested differ-
ent types of fragment descriptors and selected atom-cen-
tered descriptors with a radius from 2 to 5. The total
number of fragment descriptors was 3733. The vector of
fragment descriptors for each reaction was concatenated
with the vector of solvent descriptors, which included 14
descriptors describing such properties of solvent as po-
larity, polarizability, Catalan constants SPP, SA, SB,
Kamlet-Taft constants α, β, π*, dielectric constants, the
function of the refractive index. These descriptors were
successfully applied in our previous publications
[24, 25, 32, 33].

To build individual and multi-task models, the frag-
ment/solvent descriptor matrices were concatenated
with the temperature descriptor. In Arrhenius-based and
conjugated models, only fragment and solvent descrip-
tors were used as reaction descriptors, while reaction
temperatures were introduced by the Arrhenius
equation. The calculated descriptors constituted three

T A B L E 1 Description of the training and test set on cycloaddition reactions.

# Reactions # Unique structural transformations

# Kinetic characteristics

logk logA EA

Training set 1478 690 1478 1008 1120

Test set 371 73 371 228 230

F I G U R E 3 A cycloaddition reaction from the data set and the corresponding CGR describing the structural transformation. The
formed bonds are denoted with a circle, while the broken ones are crossed.
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descriptor matrices: XK , XA and XE, where the number
of rows in each matrix corresponds to the number of ex-
perimental values of logk, logA and EA for cycloaddition
reactions (Table 1).

3.3 | Model building

The best models were selected with the coefficient of de-
termination (R2) calculated using the 5-fold trans-
formation-out cross-validation procedure [34] im-
plemented in the in-house CIMtools package (https://
github.com/cimm-kzn/CIMtools). Transformation-out
cross-validation prepares test folds that include struc-
tural transformations that are not presented in training
folds. This cross-validation strategy provides an unbiased
estimation of the predictive performance of the models
for novel types of structural transformations.

Building ridge regression models. Individual and
conjugated RR models were implemented using PyTorch
tensors [27], which enabled the training of RR models
on both CPU and GPU. Individual RR models have hy-
perparameter l, the regularization coefficient, which
controls the model complexity. For individual models,
we tested discrete values of l between 10� 10 to 105 and
found the optimal value using the grid search technique.

Conjugated RR models have hyperparameters cK , cA
and cE that balance the prediction error of the logk, logA
and EA characteristics. The other two hyperparameters
of the conjugated model are the regularization co-
efficients lA and lE (Figure 4). To optimize the hyper-
parameters of the RR conjugated models, we used the hy-
peropt package [35], which applies advanced
optimization algorithms to navigate in the hyper-
parameters space. The values of coefficients cK , cA and cE

were sampled from a continuous space defined between
0 to 1, while the regularization coefficients lA and lE

took discrete values between 10� 10 to 105 (Figure 4). The
hyperopt algorithm adjusts the hyperparameters by max-
imizing the value of the objective function which was
calculated as an average prediction accuracy of all char-
acteristics: [R2(logk)+R2(logA)+R2(EA)]/3. The hyperopt
algorithm takes the average accuracy and proposes the
next combination of possible optimal hyperparameters
(Figure 4).

Building neural network models. Individual, mul-
ti-task, and conjugated NN models were built with the
architectures depicted in Figure 2. In NN multi-task and
conjugated models, the coefficients cK , cA, and cE were
automatically adjusted together with neural network
weights using the gradient descent algorithm. This
means that the trade-off coefficients are optimized dy-
namically during network training, rather than being
fixed as hyperparameters before model training as in RR
conjugated models. This approach to optimization of the
trade-off coefficients in the NN multi-task and con-
jugated models significantly reduces the computational
resources required for model training and hyper-
parameters optimization.

4 | RESULTS AND DISCUSSION

4.1 | Performance comparison of
single-task, multi-task, and conjugated
models

This section reports the results of the performance com-
parison of individual, Arrhenius-based, multi-task, and
conjugated models. The prediction accuracy (R2) of the

F I G U R E 4 The workflow for optimization of hyperparameters of ridge regression conjugated models using hyperopt package. The
trade-off coefficients were sampled from continuous space defined between 0 to 1. The regularization coefficients lA and lE took values
from discrete 10� 10 to 105. Conjugated models were built with sampled hyperparameters and evaluated using internal 5-fold cross-
validation.
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models on the external test set is presented in Table 2.
For clarity, we discuss NN models only, whereas the re-
sults obtained for RR models are available in Table 2 and
show similar trends. We tested two single-task ap-
proaches for the prediction of logk: (1) direct modeling
of logk, when the individual model was built on ex-
perimental data on logk and (2) Arrhenius-based model
when first individual models for predicting the logA and
EA were built and then used to calculate the prediction
of logk with the Arrhenius equation. The results demon-
strate (Table 2) that the direct predictions of logk by the
individual model are more accurate (R2

Test=0.76) than
those calculated with the Arrhenius equation in the Ar-
rhenius-based model (R2

Test=0.35). The prediction accu-
racy of the conjugated model (R2

Test=0.71) is close to the
individual (R2

Test=0.76) and multi-task model (R2
Test=

0.76). Individual and Arrhenius-based models often dis-
agree and provide significantly different predictions of
logk for the same reaction (Figure S1 in SI). The con-
jugated model predicts logk, logA and EA with similar ac-
curacy to the individual models, but the predictions ex-
actly agree with the Arrhenius equation (Figure S1 in SI)

Table 2 demonstrates that the RR and NN conjugated
models perform similarly. Ridge regression models are
easy to build since the optimal regression weights are
calculated using analytical expressions. However, more
sophisticated optimization of the hyperparameters
(trade-off and regularization coefficients) may require a
lot of time. On the other hand, the single NN model
trains slower than the RR model, but the trade-off co-
efficients (cK , cA and cE) in the NN model are optimized
automatically during model training, which reduces the
number of optimized hyperparameters. In addition, the
current implementation of RR conjugated models

requires a lot of computational resources in the case of
large training sets (large sizes of descriptor matrices),
while NN models can be trained on large data sets div-
ided into smaller training batches.

4.2 | Building models with limited data

As follows from Table 2, individual, multi-task, and con-
jugated models perform similarly if the training set is
representative. We hypothesized that in multi-task and
conjugated models, abundant data for one modeled char-
acteristic (e.g., logk) can compensate for the lack of
training data for another characteristic (e. g. logA or EA).
In contrast to the standard case, we simulated a scenario
in which the training sets for the logA or EA character-
istics were significantly reduced and tested the perform-
ance of the models under these conditions. We used the
same test set of 371 reactions for the model evaluation
(Table 2) but varied the size of the training set for logA
or EA. For the sake of clarity, only results for NN models
are reported (RR models show similar trends).

The initial training set contained 1480 ex-
perimental values of logk, 1008 values of logA and 1120
values of EA. We gradually reduced the number of logA
and EA training data and evaluated the resulting mod-
els on the test set. For this purpose, we randomly se-
lected and removed N% of training reactions with as-
sociated logA and EA from the initial training set and
used reduced training sets to build individual
FIndðlogAreducedÞ and FIndðEA

reducedÞ models. The same re-
duced training sets on logA and EA, as well as all avail-
able training data for logk, were used to build the

T A B L E 2 Predictive performance of individual, Arrhenius-based, multi-task, and conjugated models. RR – Ridge Regression models
and NN – Neural Network models.

Model Training set Method

R2 (Test set)

logk logA Ea

Individual model logk RR 0.78 – –

NN 0.76 – –

Individual model logA RR – 0.46 –

NN – 0.56 –

Individual model Ea RR – – 0.91

NN – – 0.90

Arrhenius-based model logA; Ea RR 0.27 – –

NN 0.35 – –

Multi-task model logk, logA; Ea NN 0.76 0.48 0.83

Conjugated model logk, logA; Ea RR 0.75 0.57 0.90

NN 0.71 0.56 0.84
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multi-task FMTðlogk; logAreduced; EA
reducedÞ and

conjugated FConjðlogk; logAreduced; EA
reducedÞ model. The

models built on the reduced training sets were then
used to predict the logA and EA for reactions from the
test set.

To alleviate the effect of random reduction of the
training sets, the above procedure was repeated 20 times,
followed by the averaging of obtained R2 values. Figure 5
reports the average R2 on the test set at different sizes of
the training set on logAreduced and Ereduced

A . For logA mod-
els built on large training sets, conjugated learning has
no advantages over single and multi-task learning
(Figure 5a). The performance of all models gradually de-
creases as the logA and EA training sets were reduced
until the models lose their predictive power at extremely
small training sets <6% (<70 training reactions). But in
general, conjugated model demonstrates more stable be-
havior towards extremely small training sets (Figure 5a).
Similar behavior is observed in modeling EA on reduced
training sets. When the size of the training set is large
(e. g. 1120 training reactions with known EA, Figure 5b),
the individual FIndðEA

reducedÞ (R2
Test=0.90) and multi-task

model FMTðlogk; logAreduced; EA
reducedÞ (R2

Test=0.83) dem-
onstrate the accuracy comparable with the conjugated
model FConjðlogk; logAreduced; EA

reducedÞ (R2
Test=0.84).

However, for significantly reduced EA training set (11
training reactions corresponding to 1% of the initial set),
the conjugated models were still predictive (R2

Test=0.33),
whereas the individual (R2

Test= � 0.60) and multi-task
(R2

Test= � 0.30) models failed.
Thus, conjugated models can correctly predict a tar-

get characteristic of reactions even for a few training in-
stances if data on another characteristic related to the
target characteristic by a strict mathematical relation-
ship is available.

4.3 | Modeling the temperature
dependence of the reaction rate constant

The dependence of the reaction rate constant on temper-
ature is described by the Arrhenius equation. We were
interested in how closely the rate constants predicted by
the individual and conjugated models reproduce this de-
pendence. In building individual models, the reaction
temperature was a descriptor concatenated with frag-
ment and solvent descriptors. Therefore, the individual
and multi-task model can only capture the statistical re-
lationship between logk and temperature. In this con-
text, we were interested to examine the performance of
the models as a function of reaction temperature. For
this purpose, we prepared a new temperature test set.
The initial test set (Table 1) contained 1 reaction in 1,4-
dioxane, 3 reactions in chlorobenzene, 4 reactions in
benzene, and 53 reactions in toluene (in total 61 re-
actions) for which logA and EA were experimentally de-
termined. We used the experimental logA and EA values
of these 61 reactions to calculate new logk using the Ar-
rhenius equation at “extreme” temperatures, which sig-
nificantly deviates from the temperature range of the
training set. For example, for each cycloaddition reaction
in toluene, the logk was calculated for a list of temper-
atures that starts with the freezing temperature of tolu-
ene, changes in increments of 5 K, and ends with the
boiling temperature of toluene. Thus, for each cyclo-
addition reaction in toluene, logk were calculated at 42
new temperatures, including “extreme” temperatures
close to the freezing and boiling point of toluene. The
same procedure was repeated for reactions in 1,4-diox-
ane (18 temperatures), chlorobenzene (36 temperatures),
and benzene (15 temperatures). As a result, the temper-
ature test set consisted of 61 reactions associated with

F I G U R E 5 Predictive performance of the individual, multi-task, and conjugated neural network model on test set reactions at
different sizes logA (a) and EA (b) training sets.
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2412 logk values calculated from the Arrhenius equation
for new temperatures including “extreme” temperatures;
all remaining reactions with experimental temperatures
were included in the training set. The lists of new tem-
peratures were used in the logk predictions by the NN
models. In the conjugated model, these temperatures
were directly used in predicting the logk, while in the in-
dividual model, they were used as descriptors. Then, pre-
dicted with each model logk values were compared with
calculated with the experimental Arrhenius equation
logk values.

Each reaction (and associated set of calculated logk at
new temperatures) of the 61 reactions in the test set was
considered as a separate test subset for which R2 and
RMSE were calculated. For six reactions the individual
or conjugated (or both) models failed to predict logk (R2

<0), and the reasons for such failure still need to be in-
vestigated. The erroneously predicted reactions were re-
moved and analysis was carried out on the remaining 55
reactions, for which obtained R2 and RMSE values were
averaged (R2 and RMSE for all reactions are reported in
Table S1 in Supporting Information). As a result, the
conjugated model (R2=0.96 and RMSE=0.35) demon-
strated higher accuracy of logk predictions at new tem-
peratures including extreme temperatures than the in-
dividual model (R2=0.88 and RMSE=0.62).

To take a closer look at the reasons for this behavior
of the models, we selected one of the test cycloaddition
reactions in toluene with experimentally measured
logA=6.62 and EA =53 kJ/mol, for which the logk val-
ues at “extreme” temperatures ranging far away from
training temperatures were calculated. The logk pre-
dicted at “extreme” temperatures by the individual and
the conjugated models were also plotted (Figure 6). We
can see (Figure 6) that both models perfectly predict the

rate constant at temperatures inside the training
temperature range. However, in the range beyond the
training temperatures, the logk predicted by the in-
dividual model significantly deviates from the ex-
perimental trend, while the conjugated model predicts
the logk accurately, even at extremely low temperatures
close to the freezing point of the solvent. This can be ex-
plained by the fact that the individual model accounts
for only the statistical relationship between the reaction
rate constant and the temperature descriptor, whereas
the conjugated model includes the true temperature de-
pendence in the form of the Arrhenius equation.

5 | CONCLUSION

In this study, the concept of conjugated learning was ap-
plied to model kinetic characteristics related by the Ar-
rhenius equation: rate constant logk, pre-exponential
factor logA; and activation energy EA of cycloaddition re-
actions. In conjugated QSPR models, the Arrhenius
equation was embedded into ridge regression and neural
network machine learning algorithms. The conjugated
models were compared with individual (single-task)
models that were trained independently for each charac-
teristic and multi-task model, where the kinetic charac-
teristics were modeled cooperatively. An equation-based
(Arrhenius-based) model was also considered in which
the rate constant logk is calculated using the Arrhenius
equation and predicted by individual models logA and
EA.

It was observed that the individual model, which pre-
dicts the logk directly from reaction descriptors, is more
accurate than the Arrhenius-based model, which calcu-
lates logk using the Arrhenius equation. The predictions

F I G U R E 6 Calculated with experimental Arrhenius equation and predicted logk with individual and conjugated models for the
cycloaddition reaction at different temperatures in toluene.
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of the logk of individual and Arrhenius-based models
often disagree, which demonstrates that the standard
QSPR models do not always obey the fundamental
chemical laws. However, the conjugated model predicts
logk, logA and EA with similar accuracy to the individual
models, but the predicted characteristics exactly comply
the Arrhenius equation. Furthermore, the conjugated
models are more accurate in predicting logk at the wide
range of reaction temperatures. In the individual model,
the temperature is treated as a descriptor, whereas in the
conjugated models, the exact relationship between the
rate constant and the temperature is embedded into the
model in the form of the Arrhenius equation. To validate
the models in new scenarios, a new temperature test set
was generated which included logk values associated
with “extreme” temperatures significantly deviating
from the temperature range of the training set. It was
demonstrated that the individual model cannot correctly
predict the values of logk at temperatures that are sig-
nificantly different from the training data, while the con-
jugated model correctly predicts logk even for the tem-
peratures close to the freezing and boiling points of the
reaction solvent.

SUPPORTING INFORMATION

Additional supporting information can be found online
in the Supporting Information section at the end of this
article.
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