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Stable properties under weakly geometrically flat

maps

Daniel Barlet∗ and Jón Magnússon†.

April 29, 2024

Abstract. In this note we show that a weakly geometrically flat map π : M → N

between pure dimensional complex spaces has the local lifting property for cycles.
From this result we also deduce that, under these hypotheses, several properties of
M are transferred to N .

1 Lifting cycles locally

An equidimensional holomorphic map π : M → N between two pure dimensional
complex spaces with q := dimM −dimN , is called weakly geometrically flat (or
geometrically flat in the weak sense) if it is surjective and there exists an analytic
family (Fy)y∈N of q-cycles in M such that, for any y ∈ N we have the equality
|Fy| = π−1(y).
If, moreover, for very general y ∈ N the cycle Fy is a reduced cycle we say that π
is geometrically flat (or geometrically flat in the strong sense if we want to avoid
confusion).

Remarks.

(i) Weak geometric flatness is stable by base change f : P → N , where f is a
holomorphic map and P is a pure dimensional reduced complex space. On the
contrary, this is not true, in general, for strong geometric flatness when P has
at least one irreducible component whose image has empty interior in N .

(ii) When N is normal and M,N are pure dimensional, every equidimensional
holomorphic map π : M → N is geometrically flat (in the strong sense).
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Proposition 1.0.1 Let π : M → N be a geometrically flat holomorphic map in the
weak sense between reduced complex spaces of pure dimensions m and n and z0 be
a point in M . Then there exists an open connected neighborhood N0 of π(z0) in N

and a closed analytic subset Z of π−1(N0) such that π−1(π(z0)) ∩ Z = {z0} and π

induces a proper and finite map π0 : Z → N0, which is geometrically flat in the weak
sense.

Proof. Put y0 := π(z0), q := m − n and let (Fy)y∈N be the analytic family of
fiber-cycles of π. Let E = (U,B, j) be a q−scale on M , adapted to Fy0 and centered
at z0. More precisely, j is a proper holomorphic embedding of an open neighborhood
M0 of z0 in M into an open neighborhood W of the origin in Cl and U , B are open
relatively compact polydisks in Cq, Cl−q such that Ū × B̄ ⊂ W and

j(Fy0 ∩M0) ∩ (Ū × ∂B) = ∅.

Moreover, E can be chosen in such a way that j(Fy0 ∩M0) ∩ ({0} × B̄) = {(0, 0)}.
Then there exists an open neighborhood N0 of y0 in π(M0) such that, for all y in
N0, the scale E is adapted to Fy and degE(Fy) = degE(Fy0).
Put M ′ := M0 ∩ π−1(N0). Then j(M ′) = (π ◦ j−1)−1(N0) is an analytic subset of
W which satisfies j(M ′) ∩ (Ū × ∂B) = ∅. Hence, for all x in U , j(M ′) ∩ ({x} × B)
is an analytic subset of W and consequently Zx := j−1(({x} × B) ∩ j(M ′)) is an
analytic subset of π−1(N0). Furthermore, the induced map πx : Zx → N0 is proper,
surjective and with finite fibers and we may assume that Zx0

∩ π−1(y0) = {z0}. For
every y in N0, denote Xy the multigraph that Fy determines in U × B and put
Ay := j∗(Xy ∩U×B ({x} × B)).
Then (Ay)y∈N0

is an analytic family of 0−cycles in Zx such that |Ay| = π−1
x (y) and

it follows that Z := Z0 satisfies the required properties. �

Remarks.

(i) Under the assumptions of the proposition assume that π is geometrically flat
in the strong sense. Then for very general y in N0, the cycle Fy is reduced.
So the map π0 : Z0 → N0 is geometrically flat in the strong sense (after shrink-
ing N0 if necessary).

(ii) Let Σ be an analytic subset of codimension r in M . Then j(Σ ∩ M ′) is an
analytic subset of codimension at most equal to r in j(M ′) and it follows that,
for very general x in U , we have codimZx

(Σ ∩ Zx) = r (or empty). So we may
choose x0 ∈ U such that Zx0

∩Σ has codimension at most equal to r in Zx0
. �

Corollary 1.0.2 Let π : M → N be a geometrically flat map in the weak sense
between pure dimensional complex spaces, Y be a rational p-cycle in N and y0 be a
point in |Y |. Then, for every x in π−1(y0), there exists an open neighborhood N1 of
y0 in N and a rational p-cycle X in π−1(N1) such that x ∈ |X| and π∗X = Y ∩N1.
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Proof. We may assume that Y is an irreducible analytic subset of N . Then the
induced map π−1(Y ) → Y is geometrically flat in the weak sense so it is enough to
consider the case where Y = N . Let z0 be a fixed point in π−1(y0).
Then, by Proposition 1.0.1, there exists an open connected neighborhood N0 of y0
in N and an analytic subset Z of π−1(N0) such that π induces a proper and finite
map π0 : Z → N0 which is geometrically flat in the weak sense and such that (set-
theoretically) π−1(z0) ∩ Z = {z0}. As the map π0 is both proper and open and N0

is connected, π0 is surjective and induces a surjective map from every irreducible
component of Z0 onto an irreducible component of N0. Let N ′

0 be the union of
those irreducible components of N0 which do not contain y0. Thus N1 = N0 \ N ′

0

is an open connected neighborhood of y0 which has only finitely many irreducible
components C1 . . . , Cl. For every j ∈ {1, . . . , l}, we choose an irreducible component
Zj of π−1(N1) such that π(Zj) = Cj and denote kj the degree of the induced map
Zj → Cj. Then the rational cycle

Y :=
1

k1
Z1 + · · ·+

1

kl
Zl

has the desired properties. �

2 The sheaf L•

We recall here some classical equivalent definitions of L2-holomorphic forms on a
normal complex space M .
Remember that M has weakly rational singularities if and only if ωn

M = Ln
M

where M has pure dimension n. Thanks to [4] (see also [5]) this implies that
ω
p
M = L

p
M for each p ∈ [0, n]. If, moreover, M is Cohen-Macaulay, then M has

rational singularities.

The following well known lemma gives two equivalent definitions of these (coherent)
sheaves.

Lemma 2.0.1 Let M be a normal complex space and denote S(M) its singular lo-
cus. Then the following properties are equivalent for a holomorphic p-form α defined
on M \ S(M):

1. Let Σ is a closed analytic subset of codimension ≥ 2 in M containing the
singular set S(M) in M . Then for every open set M ′ in M and any proper
holomorphic embedding f : X → M ′ of a p-dimensional reduced complex space
such that f(X) 6⊂ Σ, the integral

∫

K\f−1(Σ)
f ∗(α) ∧ f ∗(α) is finite for any

compact set K in X.

2. There exists a desingularization τ : M̃ → M such that τ ∗(α) extends as a
holomorphic p-form on M̃ .
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Proof. First assume that property 2. holds true and consider a proper holomor-
phic map f : X → M ′ such that f(X) 6⊂ Σ. Remark first that we may assume
that Σ = S(M) since on the smooth part of M the sheaf Ωp

M has the extension
property in codimension 2. Let X̃ → M̃ ′ be the strict transform of τ by f (so
X̃ := X ×M,strict M̃) and let f̃ be the canonical projection. Then we have

∫

pr−1(K)

f̃ ∗(τ ∗(α)) ∧ f̃ ∗(τ ∗(α)) < +∞

and this integral is equal to
∫

K
f ∗(α) ∧ f ∗(α) since the projection pr : X̃ → X is a

(proper) modification with center in f−1(S(M)), for any compact K in X .
Conversely, if the property 1. holds true, consider a desingularization τ : M̃ → M

and take a smooth generic point x0 of an irreducible component of the exceptional
set E in M̃ (the preimage of the center of the modification τ). Then let g : X → M̃ be
a p-dimensional complex submanifold of a neighborhood of x0 which is transversal
to E1 at the point x0. Then let f := g ◦ τ . The property 1. gives the fact that
g∗(τ ∗(α)) cannot have a pole along E, since x0 is generic, and then τ ∗(α) extends
holomorphically across E, using again the codimension 2 extension property of the
sheaf Ωp

M̃
since M̃ is a complex manifold. �

Remark. Let Z be an analytic subset of an open subset M ′ of M , such that
Z ∩ S(M) is of codimension at least 2 in Z, and j : Z →֒ M ′ be the canonical
injection. Then, due to characterisation 1. above, we have a restriction map

j∗(Lp
M ′) → L

p
Z

extending the pull-back morphism of holomorphic p-forms, for any p ≥ 0.

3 The Theorem

Theorem 3.0.1 Let π : M → N be a geometrically flat map in the weak sense
between irreducible complex spaces. Assume that M has one of the following proper-
ties:

P.1 The complex space M is normal.

P.2 The complex space M is normal and every codimension 1 cycle in M is Q-
Cartier.

P.3 The complex space M is normal and every holomorphic p-form on M \ S(M)
extends as a section of the L

p
M -sheaf (so L

p
M = ω

p
M).

1Note that if E has codimension ≥ 2 the proof is complete since τ∗(α) extends holomorphically
across E.
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P.4 The complex space M is normal and the de Rham complex 0 → C →
(

ω•
M , d•

)

is exact in degree p.

P.5 The complex space M is normal and the de Rham complex 0 → C →
(

L•
M , d•)

is locally exact in degree p on M .

Then the same property is also true for N .

Proof. As all five properties are local we may assume, due to Proposition 1.0.1
and Remark (ii) following it, that there exists an analytic subset Z of dimension n

in M satisfying the following conditions:

• The restriction π|Z is surjective, proper and geometrically flat in the weak
sense.

• S(M) ∩ Z is of codimension at least 2. in Z

Denote k the degree of π′ := π|Z .

Let us begin by property P.1. Take a locally bounded meromorphic function f in
an open neighborhood N ′ of y0 ∈ N . Then π∗(f) is holomorphic on π−1(N ′) and
induces a holomorphic function g on π′−1(N ′). Then the trace of g by the induced
map π′−1(N ′) → N ′ is holomorphic and equal to kf .

Proof of P.2 for N . Assume that X is a cycle of codimension 1 in N and y a point
in N . Then π∗(X) is a cycle of codimension 1 in M and we may find an open neigh-
borhood U in M of π−1(y) ∩ Z and a holomorphic function f defining the cycle
π∗(X) in U . As π′ is a proper map, there exists an open neighborhood N ′ of y such
that π′−1(N ′) ⊂ U ∩ Z. Put Z ′ := π′−1(N ′) and denote π′′ : Z ′ → N ′ the restriction
of π′. Then f|Z′ defines the cycle (π′′)∗(X). Since the norm of the function f|Z′ is
meromorphic and locally bounded on N ′, which is normal, it is holomorphic on N ′

and defines the cycle k(X ∩N ′). Hence X is locally Q-Cartier in N .

To prove property P.3 for N , consider a p-form α on N \S(N). Then π∗(α) extends
as a global section of the sheaf Lp

M . Since Z meets S(M) in codimension at least 2
the form π′∗(α) is holomorphic on Z \ S(M) and is a section of Lp

Z due to the char-
acterization 1. in Lemma 2.0.1. Then, since the map π′ is a proper map with finite
fibers, using again the characterization 1 above with Σ = π(S(M) ∩ Z) ∩ S(N) we
conclude that α is a section of Lp

N because the normality of M implies the normality
of N (see P.1), and S(N) has codimension at least 2 in N . �

To prove property P.4 for N we take an open neighborhood N ′ of a point y in N

and we consider α ∈ Γ(N ′, ω
p
N) such that dα = 0. Then the restriction of α to

N ′ \ S(N) is a closed holomorphic p-form. Then π∗(α) is also a closed holomorphic
p-form on π−1(N ′ \ S(N)). Since π−1(S(N)) and S(M) have codimension at least
equal to 2, π∗(α) extends as a d-closed section β of ωp

M on π−1(N ′). Then we may
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find an open neighborhood U in M of π−1(y)∩Z (which is a finite set) and a section
β ∈ Γ(U, ωp−1

M ) such that dβ = π∗(α) on U . Then β is a (p − 1)-holomorphic form
on U \S(M) and then induces a (p−1)-holomorphic form on Z \ (Z ∩S(M)). Since
(Z ∩ S(M)) has codimension at least 2 in Z we obtain a section on Z of ωp−1

Z (the
sheaf ω•

Z has the extension property in codimension ≥ 2) and we have dβ|Z = π∗(α)|Z
since the sheaf ω•

Z has no torsion. The direct image by π′ gives a section γ := π′
∗(β|Z)

on N ′ which satisfies dγ = kα where k is the degree of π′. This proves property P.4
for N .
The proof of P.5 is analogous. �

Remark. In the paper [4] it is proved (see Theorem 1.42), generalizing the result
of [5], that ωn

M = Ln
M for a normal complex space implies ωp

M = L
p
M for any p ∈ [0, n].

An interesting characterization of Lp is also given in [4] (see Theorem 1.1):
A section of ωp is in Lp is for any β ∈ Ωn−p

M and any γ ∈ Ωn−p−1
M the forms α ∧ β

and dα ∧ γ are in Ln. �
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