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Abstract

IMPORTANCE Cerebral small vessel diseases (CSVDs) account for one-fifth of stroke cases.
Numerous familial cases remain unresolved after routine screening of known CSVD genes.

OBJECTIVE To identify novel genes and mechanisms associated with familial CSVD.

DESIGN, SETTING, AND PARTICIPANTS This 2-stage study involved linkage analysis and a case-
control study; linkage analysis and whole exome and genome sequencing were used to identify
candidate gene variants in 2 large families with CSVD (9 patients with CSVD). Then, a case-control
analysis was conducted on 246 unrelated probands, including probands from these 2 families and
244 additional probands. All probands (clinical onset <age 55 years and �1 first-degree relative with
CSVD) were referred to the French cerebrovascular referral center between 2013 and 2023. The
large-scale gnomAD structural variant database and 467 healthy individuals of French ancestry were
used as a control group.

MAIN OUTCOMES AND MEASURES A pathogenic AluYa5 insertion was identified within the
COL4A1 3′UTR in the 2 large families with CSVD. Reverse transcriptase–quantitative polymerase chain
reaction (RT-qPCR), Western blot, and long-read RNA sequencing were used to investigate outcomes
associated with the insertion using patient fibroblasts. Clinical and magnetic resonance imaging
features of probands with variants and available relatives were assessed.

RESULTS Among 246 probands (141 females [57.3%]; median [IQR] age at referral, 56 [49-64]
years), 7 patients of French ancestry carried the insertion. This insertion was absent in 467 healthy
French individuals in a control group (odds ratio, �; 95% CI, 2.78 to �; P = 5 × 10−4) and 10 847
individuals from the gnomAD structural variant database (odds ratio, �; 95% CI, 64.77 to �;
P = 2.42 × 10−12). In these 7 patients’ families, 19 family members with CSVD carried the insertion.
RT-qPCR and Western blot showed an upregulation of COL4A1 mRNA (10.6-fold increase; 95% CI,
1.4-fold to 17.1-fold increase) and protein levels (2.8-fold increase; 95% CI, 2.1-fold to 3.5-fold
increase) in patient vs control group fibroblasts. Long-read RNA sequencing data showed that the
insertion was associated with perturbation in the use of canonical COL4A1 polyadenylation signals
(approximately 87% of isoforms transcribed from the wild type allele vs 5% of isoforms transcribed
from the allele with the insertion used the 2 distal canonical polyadenylation signals). The main
clinical feature of individuals with CSVD was the recurrence of pontine ischemic lesions starting at an
early age (17 of 19 patients [89.5%]).

CONCLUSIONS AND RELEVANCE This study found a novel mechanism associated with COL4A1
upregulation and a highly penetrant adult-onset CSVD. These findings suggest that quantitative
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Abstract (continued)

alterations of the cerebrovascular matrisome are associated with CSVD pathogenesis, with
diagnostic and therapeutic implications.

JAMA Network Open. 2024;7(4):e247034. doi:10.1001/jamanetworkopen.2024.7034

Introduction

Cerebral small vessel disease (CSVD) consists of a heterogeneous group of disorders accounting for
one-fifth of stroke cases worldwide.1 It is also the second leading cause of dementia.2 Most CSVDs are
sporadic and associated with age and hypertension, but several monogenic forms of the disease have
been reported.3 The most frequent one is cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy.4 In addition to its diagnostic applications, identification of
causative variants has proven to be a powerful approach to decipher CSVD mechanisms.5 However,
in most patients with familial CSVD, the cause remains elusive, precluding genetic counseling and
mechanistic studies. Indeed, targeted sequencing of exons and exon-intron boundaries of all known
CSVD genes does not identify a causative variant in almost 80% of familial CSVD cases.6,7 This
strongly suggests that other genes or noncoding variants may be involved in CSVD.

Linkage analysis performed on large multiplex families in combination with Sanger sequencing led
to the discovery of genes involved in numerous monogenic diseases.4,8,9 The development of whole
exome sequencing (WES) and whole genome sequencing (WGS) substantially shortened this approach.

In this study, we combined linkage analysis, WES, and WGS to identify candidate variants in 2
French families with multiple cases of CSVD. We then designed a case-control study to search for
statistical association using probands from these 2 families, 244 additional unrelated probands with
CSVD, and 467 healthy French individuals in a control group. We also used the large-scale gnomAD
structural variant database as a control.

Methods

All procedures and protocols for this 2-stage study involving linkage analysis and a case-control study
complied with the Institut National de la Santé Et de la Recherche Médicale human investigation
committee and institutional review board. All patients provided a written informed consent for
participation in genetic studies in accordance with French ethical recommendations for genetic
study. Consent forms signed by the patients allow the publication of all clinical and MRI information,
except photographs and video and audio recordings of patients. This study followed the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline for observational studies.

There were 2 families (F1 and F2), including 3 members in F1 and 7 members in F2 (Figure 1)
showing ischemic stroke manifestations and white matter lesions strongly suggestive of a CSVD.
They were referred to the French Reference Cerebrovascular Diseases Genetics Lab (Saint-Louis
Hospital, Paris). Targeted sequencing of known CSVD genes was performed in F1 and F2 probands.
We included 244 additional CSVD probands based on the following criteria: (1) presence of a vascular
leukoencephalopathy strongly suggestive of a CSVD; (2) no pathogenic variants detected with our
CSVD-targeted gene panel, which includes NOTCH3, HTRA1, COL4A1, COL4A2, TREX1, GLA, CTSA,
APP, and LAMB1; (3) age at clinical onset younger than 55 years; and (4) 1 or more first-degree relative
with a clinical history of stroke, vascular dementia, or both.

We performed linkage analysis of families F1 and F2 and WES of F1 and F2 family members and
244 additional probands with CSVD as described in the eMethods in Supplement 1. To further
investigate structural and regulatory noncoding variants present in possibly linked regions, we
performed WGS of the 3 F1 patients (eMethods in Supplement 1).
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Copy number variants and structural variations, including mobile element insertions (MEIs),
were searched from Illumina single-nucleotide variation (formerly, single-nucleotide polymorphism)
arrays and WGS data as described in the eMethods in Supplement 1. Polymerase chain reaction (PCR)

Figure 1. Genealogical Trees of Families F1 to F7
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and Sanger sequencing (protocols available upon request) were used to confirm the candidate MEI,
and PCR was used to genotype this MEI in all 244 probands with CSVD and in 467 healthy French
individuals in the control group. In addition, the GnomAD structural variant database version 2.1 was
used as a control database for structural variations.10

Skin fibroblasts were obtained from patients F1-8 and F2-12 and from an additional proband
(F8-16) (eFigure 1 in Supplement 1) referred for targeted sequencing and in whom PCR analysis
detected the candidate MEI insertion. Of note, proband F8 was identified after the completion of the
initial study and was therefore not included in the case-control study. The search for the insertion
using PCR was performed in this proband based on clinical, familial, and magnetic resonance imaging
(MRI) similarities with previously identified AluYa5 carriers. In addition, we obtained skin fibroblasts
from 4 healthy individuals in a control group (C1-C4) (CBC Biotech), 1 patient with CSVD and a COL4A1
duplication, and 5 patients with CSVD who did not carry the insertion. These fibroblasts were used
for reverse transcriptase–quantitative PCR (RT-qPCR), Western blotting, and long-read RNA
sequencing (eMethods in Supplement 1). Details on library preparation, sequencing, and alignment
according to the Oxford Nanopore technology are presented in the eMethods in Supplement 1. The
aim was to investigate alternative polyadenylation signal (PAS) usage depending on the presence or
absence of the MEI in the 3′UTR of COL4A1 (eMethods in Supplement 1).

Statistical Analysis
The number of carriers of the candidate AluYa5 insertion was compared between patients with CSVD
and those in the control group using the Fisher exact test implemented in R statistical software
version 4.2 (R Project for Statistical Computing).11 We compared mRNA and protein levels between
patients with CSVD and those in the control group using the Mann-Whitney test using Prism software
version 9 (GraphPad). Differential use of polyadenylation sites between patients and those in the
control group was analyzed with a Mann-Whitney test using R statistical software version 4.2.11 A
2-sided P value < .05 was considered statistically significant.

Results

Baseline Characteristics of Study Participants
The 2 large families used for linkage analysis were of French ancestry and included 9 patients with
CSVD who had blood samples (3 females [33.3%]; median [IQR] age, 50 [42-59] years). Their
genealogical trees are presented in Figure 1. Including 2 probands from the 2 families with CSVD and
244 additional probands, a total of 246 probands (141 females [57.3%]; median [IQR] age at referral,
56 [49-64] years) were used for the case-control study; among them, 227 individuals (92.2%) were
of European ancestry. Proband age at clinical onset was younger than 55 years, and probands had
at least 1first-degree relative with CSVD.

Clinical and Neuroimaging Features of Patients in Families F1 and F2
Genealogical trees and clinical and MRI features of F1 and F2 family members are presented in
Figure 1, Figure 2, and Figure 3 and eTables 1 and 2 in Supplement 1. Probands F1-8 and F2-9 were
referred for targeted CSVD gene screening and remained negative. We investigated 2 additional
members of family F1 and 5 additional members of family F2, obtaining clinical and MRI data. In total,
blood samples were taken from 9 individuals with CSVD in these 2 families.

Family F1
Patient F1-8 (proband) was a male aged 45 years without any vascular risk factor. At age 39 years, he
experienced sudden dizziness, paresthesia of the left arm, left central facial palsy, and dysarthria
related to a pontine ischemic lesion. At ages 41 and 43 years, he had sudden transient diplopia
without any incident lesion on MRI. In the following years, he reported mild cognitive disturbances.
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His female first cousin aged 45 years (F1-9) had a well-controlled hypertension under
monotherapy but no other vascular risk factor. At age 35 years, she presented a sudden episode of
hemisensory loss related to a pontine ischemic lesion. At age 41 years, she had a similar episode. MRI
showed an extension of the previous pontine ischemic lesion and an additional punctiform white
matter hyperintensity in the centrum semioval.

Their uncle (F1-7) was an active smoker and already experienced myocardial infarction. At age
42 years, he twice presented a sudden episode of loss of balance and dysphonia associated with
headache. MRI showed a pontine ischemic lesion. In the 2 following years, he developed a
progressive cognitive deterioration and dementia, without any stroke event. He was treated for a
primary cerebral vasculitis with cyclophosphamide and corticosteroid for 2 years.

MRI data for these 3 patients are presented in Figure 2. We detected 1 or several lacunes in the
pons, subcortical hemispheric area, or both in all these patients. Hemispheric white matter
hyperintensities were present in all patients, in the centrum semioval, subcortical, and
periventricular areas. Anterior temporal lobes, thalami, and external capsules were involved in the 2
most severe cases. Gradient echo images, available in only F1-9, did not detect any microbleed.

In addition to these 3 patients, 3 additional patients (F1-4, F1-5, and F1-2) were assessed using
clinical health records. The proband’s mother (F1-4) presented at ages 49 and 51 years with 2
episodes of sudden loss of balance and vertical diplopia and developed cognitive impairment. F1-5,
another uncle of the proband, presented with a stepwise motor and cognitive deterioration up to a

Figure 2. Magnetic Resonance Imaging Data of Patients From Family F1

Fluid-attenuated inversion recovery images

F1-8: age 39 yA

F1-9: age 43 yB

F1-7: age 44 yC

Sagittal T1–weighted image

Fluid-attenuated inversion recovery imagesSagittal T1–weighted image

Fluid-attenuated inversion recovery imagesSagittal T1–weighted image

The first column presents sagittal T1–weighted images.
Fluid-attenuated inversion recovery images are
presented in columns 2 to 4. All patients present
pontine infarcts and a vascular leukoencephalopathy
associated with hemispheric lacunes.
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motor disability with dementia. He was treated for a long time as having progressive multiple
sclerosis. F1-2, the grandmother of the proband, had a history of early severe cognitive impairment.
F1-4, F1-5, and F1-2 died prematurely at ages 53, 62, and 50 years, respectively.

Family F2
Proband F2-9, a male aged 55 years, had several vascular risk factors, including hypertension (well-
controlled by treatment), dyslipidemia, active smoking, and alcoholism. He complained with chronic
headache and developed a stepwise cognitive decline from age 50 years. Cognitive testing showed
alteration of performance, possibly increased by an anxiety disorder, in tests evaluating attention,
processing speed, and verbal episodic memory. No sudden focal symptom was ever observed. His
first MRI (at age 53 years) showed a recent ischemic lesion in the right lenticular nucleus. In 2022, he
experienced diplopia (sixth nerve palsy) and gait disturbance.

Patient F2-10 experienced a transient episode of diplopia at age 42 years and a partial third
nerve palsy at age 45 years, both related to pontine ischemic lesions. At ages 46 and 49 years, he
presented a sudden hemiparesis related to incident ischemic lesions in the centrum semioval and
internal capsule. He was treated for 4 years as having progressive multiple sclerosis. At age 56 years,
he died because of a severe deep intracerebral hemorrhage.

There were 4 other first cousins of F2-9 who were investigated and underwent MRI and blood
sampling. Patient F2-11 presented at age 54 years with a sudden diplopia, ptosis, and loss of balance

Figure 3. Magnetic Resonance Imaging Data of Patients From Family F2
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The first column presents sagittal T1–weighted images
except for C (patient F2-12), which presents
diffusion-weighted images. Fluid-attenuated inversion
recovery images are presented in columns 2 to 4,
except for A (patient F2-9) and B (patient F2-10) in
column 4, which present gradient echo sequences, and
D (patient F2-11) in column 3, which presents sagittal
T1 images. All patients except patient F2-9 (A) present
pontine infarcts and vascular leukoencephalopathy
associated with hemispheric lacunes.
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related to a recent pontine ischemic lesion. At age 59 years, patient F2-12 experienced a sudden
episode of transient third nerve palsy with loss of balance. At age 59 years, patient F2-13 presented a
pontine infarct. Patient F2-16 experienced an episode of numbness of the left hemibody with sudden
gait disturbance at age 60 years.

Of these 6 patients, 5 individuals presented lacunes located in the pons, including 3 patients
with multiple pontine ischemic lesions. The sixth patient (F2-12) had no pontine lesion but
experienced symptoms evocative of vertebrobasilar territory transient ischemic attack. There were
4 patients with lacunes located in the subcortical hemispheric area. Hemispheric white matter
hyperintensities were observed in all 6 patients, although with variable magnitude. No abnormalities
were observed in the anterior temporal lobes. Gradient echo images, available in all patients, showed
microbleeds in 1 patient (F2-10) in the deep supratentorial gray matter, deep cerebellum, and
brainstem.

Clinical health records were obtained for 2 additional patients. Patient F2-14 had a vascular
leukoencephalopathy and died prematurely at age 55 years. Patient F2-15 died prematurely at 56
years of a cerebral hemorrhage.

Linkage Analysis and WES Data
We identified 35 and 22 possibly linked regions for family F1 and F2, respectively (eFigures 2-3 in
Supplement 1). Our WES filtering strategy identified 1 variant fulfilling our pathogenicity criteria
(eMethods in Supplement 1). This variant, detected in F2, was located in a zinc transporter gene
expressed in the mammary gland and was therefore not further considered. Linkage analysis
revealed that the families shared a 4.8-Mb possibly-linked region on 13q33-34, a locus containing
COL4A1 and COL4A2. In cDNA sequencing of COL4A1 and COL4A2, both alleles were expressed and
normal in patients F1-8 and F2-12. Altogether, these data suggested that a noncoding sequence
variation may have been located at the COL4A1/COL4A2 locus.

WGS Data Analysis
WGS did not detect any pathogenic variant in the COL4A1/COL4A2 promoter region. Structural
variant search using Delly, Lumpy, and Manta was negative within the COL4A1/COL4A2 region and in
other linked regions. Careful visualization of reads aligned within the COL4A1/COL4A2 locus revealed
the presence of an insertion, which was exclusively supported by soft-clipped reads, in the 3′UTR of
COL4A1 (eFigure 4 in Supplement 1). The insertion at position chr13:110149065 (hg38) best matched
to the consensus sequence of AluYa5, with the presence of 2 single substitutions (C110T and A189G).
The insertion was validated by PCR, Sanger sequencing, and long-read RNA sequencing (eFigures
5-6 in Supplement 1).

AluYa5 Insertion in 3′UTR of COL4A1 and CSVD
In addition to patients from F1 and F2, 5 additional probands with CSVD who were unrelated also had
the insertion. Results were confirmed by PCR and Sanger sequencing. We conducted PCR
genotyping on 467 healthy French individuals in a control group to evaluate the prevalence of this
genetic variant within the healthy French population to exclude that it may be a benign
polymorphism in the French population. All individuals in this control group tested negative for the
variant (odds ratio, �; 95% CI, 2.78 to �; P = 5 × 10−4), suggesting its rarity or absence in the general
French population. Furthermore, we investigated the presence of our insertion in the gnomAD
structural variant database version 2.1, in which the same software (ie, MELT) was used to identify Alu
insertions. The insertion was not found in 10 847 well-covered genomes in the 3′UTR of COL4A1
(odds ratio, �; 95% CI, 64.77 to �; P = 2.42 × 10−12).

Upregulation of COL4A1 mRNA and Protein in Carriers of AluYa5
To study functional outcomes associated with the AluYa5 insertion, we compared COL4A1 mRNA and
protein levels in fibroblasts from patients F1-8 and F2-12, healthy individuals C1 to C4 in a control
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group, a COL4A1/2 duplicated patient, and a CSVD patient without the insertion as a control. RT-qPCR
showed a 10.6-fold (95% CI, 1.4-fold to 17.1-fold) increase of COL4A1 mRNA levels in patients F1-8 and
F2-12 vs individuals in the control group (eFigure 7 in Supplement 1).

Protein levels of COL4A1 were also significantly higher in fibroblast lysates (2.8-fold; 95% CI,
2.1-fold to 3.5-fold increase) and conditioned media (2.9-fold; 95% CI, 2.4-fold to 3.3-fold increase)
from patients with the insertion compared with 4 healthy individuals in the control group. These
levels were comparable with those detected in the duplicated patient who served as a control
(Figure 4).

AluYa5 Insertion and PAS Usage
Based on the location of this insertion within the 3′UTR region, we raised the hypothesis that it may
have been associated with disruption of COL4A1 PAS usage.12,13 The National Center for
Biotechnology Information (NCBI)14 lists 2 PASs for COL4A1; the major one is located at position
c.6421 (designated in Figure 5 as c.*1281 based on its distance to the stop codon) and the second one
at position c.6513 (c.*1373). PAS databases (eg, PolyA_DB315) list more than 10 PASs for COL4A1. We
used long-read RNA sequencing of 3 patients with the insertion (F1-8, F2-12, and F8-16) and 7
individuals in a control group (4 healthy individuals and 3 patients with CSVD without the insertion)
to investigate the usage of PASs in these individuals, finding that 6 isoforms of COL4A1 could be
identified depending on PAS usage (eFigure 8 in Supplement 1). They differed in their 3′UTR size.
Among 7 individuals in the control group, mainly 2 isoforms using the 2 distal canonical PASs listed in
NCBI were expressed, with approximately 42% use of the c.*1281 PAS and approximately 43% use
of the c.*1373 PAS (Figure 5). In contrast, 3 patients with the insertion expressed equally 4 isoforms,
with approximately 23% usage of each of 2 distal PASs (c.*1281 and c.*1373) but also approximately
20% usage of c.*236 and c.*711 proximal sites. We detected 2 other isoforms (c.*610 and c.*920) at

Figure 4. Western Blot Analysis of Wild-Type and Variant COL4A1 Expressed in Transfected Cells
and Endogenous Fibroblasts
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Figure 5. AluYa5 Insertion and Polyadenylation Signal (PAS) Usage
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an approximately 7% level in the patients that were not expressed or were expressed at a very low
level in individuals in the control group (Figure 5).

In addition, we took advantage of a heterozygous polymorphism present in COL4A1 exon 45
(rs3742207-T/G) in patients F2-12 and F8-16 to quantify transcripts encoded by the wild type allele
and inserted allele using long-read RNA sequencing data. The insertion occurred on the same
haplotype as the T allele (T_AluYa5 haplotype). Proportions of isoforms produced by the T_AluYa5
allele were as follows: approximately 43% c.*236, approximately 10% c.*601, approximately 29%
c.*711, and approximately 13% c.*920; approximately 5% of transcripts used the 2 distal signals
c.*1281 and c.*1373. Proportions of isoforms produced by the wild type allele (G allele/no-AluYa5
insertion) were similar to those observed in the control group; approximately 87% of isoforms used
the 2 canonical distal PASs. The remaining approximately 13% of isoforms used the 4 other PASs
(Figure 5). Altogether, these RNA sequencing and expression data suggest that the Alu insertion was
associated with changes in usage of PAS and an upregulation of COL4A1 mRNA and protein levels.

Clinical and Neuroimaging Features of F3-F7 Patients
Genealogical trees and clinical and MRI features of F3 to F7 probands and relatives are presented in
Figure 1 and eFigure 9 and eTables 3 to 4 in Supplement 1. Familial history was suggestive of an
autosomal dominant inheritance in all families (Figure 1). Clinical and MRI features were similar to
those observed in families F1 and F2, with pontine involvement and hemispheric multiple ischemic
lesions associated with hemispheric white matter hypersignals in most patients (9 of 10 patients
[90.0%]). Recurrent pontine and subcortical ischemic lesions started at a mean (SD) age of 50 (9)
years (eTables 1-4 in Supplement 1) among 17 of 19 patients (89.5%). A younger age at onset (<50
years) was observed in 9 of 19 patients. However, microbleeds were more frequent in patients from
families F3 to F7. Intracerebral hemorrhage was observed in patients F2-10, F2-15, F5-5, and F5-10.

Discussion

In this 2-stage study with linkage analysis and a case-control study, we identified an Alu insertion in
the 3′UTR noncoding region of COL4A1 in 7 families with a disabling autosomal dominant CSVD. This
insertion was associated with a strong upregulation of COL4A1 through a change in PAS usage.

Several results support the association of this AluYa5 insertion with CSVD. First, the insertion
was absent from the gnomAD structural variant large-scale control database. Second, this insertion
was co-segregating with the affected phenotype in all 7 families. Third, this insertion was associated
with a strong upregulation of COL4A1 mRNA and protein levels, reminiscent of pontine autosomal
dominant microangiopathy arteriopathy with leukoencephalopathy (PADMAL), another severe
CSVD caused by a sequence variation in a COL4A1 microRNA binding site (miR29).9,16,17

Clinical features of patients from these families were characterized by the recurrence of pontine
and subcortical ischemic lesions starting at a mean (SD) age of 50 (9) years, and 9 of 19 patients
investigated so far had an age of onset younger than 50 years. The high frequency of pontine infarcts
has also been observed in PADMAL.9,16,17 However, microbleeds (and to a lower degree, intracerebral
hemorrhage, as observed in patients F2-10, F2-15, F5-5, and F5-10) may be more frequent in this
condition associated with the AluYa5 insertion. Interestingly, COL4A1 duplications have also been
associated with a similar phenotype.18,19 Altogether, these data strongly suggest that COL4A1
noncoding sequence variations should be searched in unresolved familial CSVD cases with pontine
infarcts and leukoencephalopathy. This search should combine copy number analysis and 3′UTR
screening. When negative, an upregulation of COL4A1 in patient fibroblasts should be assessed using
RT-qPCR and Western-blotting. In case of an upregulation, full sequencing of all noncoding regions
should be performed given that other mechanisms may lead to gene upregulation.20,21

The Alu insertion identified in these 7 families was associated with strong upregulation of
COL4A1 mRNA and associated with a change in PAS usage in the 3′UTR of this gene. RNA processing
is an essential step in gene regulation. It involves an RNA endonucleolytic cleavage followed by the
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addition of a poly(A) tail, which allows the translocation of the nascent mRNA from the nucleus to the
cytoplasm and the regulation of translation efficiency and RNA degradation.22,23 This tightly
regulated process fine-tunes gene expression in a cell type and cellular state–dependent
manner.12,24,25 Various loss and gain of function alterations have been reported to be associated with
dysregulation of alternative polyadenylation and disease, including endocrine, oncological,
immunological, and neurological diseases.22,23,25-27 As an example, sequence variants in the proximal
canonical PAS of the NAA10 gene lead to an increase in usage of a distal PASs and a 50% decrease in
mRNA expression.28 In contrast, a variant creating a canonical proximal PAS in IRF5 shifts
polyadenylation from the distal canonical PAS, leading to increased expression of IRF5.29 The AluYa5
insertion observed in our patients is located downstream of the major canonical distal PAS of COL4A1,
which is associated with an almost complete abolition of this canonical distal PAS usage and the use
of 2 proximal PASs, leading to the expression of shorter 3′UTR isoforms of COL4A1 and upregulation
of COL4A1 mRNA. Suggesting how this preferential usage of these proximal PAS may be associated
with COL4A1 upregulation would be speculative at this point. However, several lines of evidence
obtained in other diseases and cellular models strongly suggest that this upregulation may be an
outcome associated with the deletion of regulatory regions in shorter 3′UTRs.12,21,23,27

Limitations
This study has several limitations. The number of patients in these 7 families is still limited, and the
description of all phenotypic features of this condition will need the recruitment of additional
families. A search for a founding effect will also be needed. This study is monocentric and focused on
a singular population. Analysis of other populations is warranted. Nonetheless, this study
demonstrates the power of combining linkage analysis of families with several members who have a
rare CSVD with WES and WGS from a large series of unrelated probands.

Conclusions

In this 2-stage study involving linkage analysis of 2 large families and a case-control study of 246
unrelated probands, we found an association between an AluYa5 insertion located in a COL4A1 3’UTR
and CSVD. We also uncovered a novel mechanism associated with COL4A1 expression. This discovery
suggests the possibility that other, yet-unidentified noncoding anomalies contributing to COL4A1
upregulation may be responsible for additional familial cases that remain unresolved.
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