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ABSTRACT
This paper introduces a novel protocol for privacy-preserving bio-
metric identification, named Monchi, that combines the use of
homomorphic encryption for the computation of the identifica-
tion score with function secret sharing to obliviously compare this
score with a given threshold and finally output the binary result.
Given the cost of homomorphic encryption, BFV in this solution,
we study and evaluate the integration of two packing solutions that
enable the regrouping of multiple templates in one ciphertext to im-
prove efficiency meaningfully. We propose an end-to-end protocol,
prove it secure and implement it. Our experimental results attest to
Monchi’s applicability to the real-life use case of an airplane board-
ing scenario with 1000 passengers,taking less than one second to
authorize/deny access to the plane to each passenger via biometric
identification while maintaining the privacy of all passengers.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Multiparty Homomorphic Encryption, Function Secret Sharing,
Secure Two Party Computation, Masking, Privacy Preserving Tech-
nologies, Scalar Product

1 INTRODUCTION
Biometric identification and authentication are being increasingly
adopted in a wide range of applications including law enforce-
ment, banking1, personal hardware, and airport security2. Users
are identified based on their unique biological traits (e.g., finger-
print, face, iris), making systems more secure. Biometric systems
usually compute the so-called identification scores through scalar
products between a fresh biometric template and templates that
were collected in a prior enrollment phase, then stored in a reference
database. This score is further compared to a pre-defined threshold
and when exceeded, identification is considered successful.

∗This work was carried out while at Idemia
†This work was carried out while working at IDEMIA and studying at EURECOM
1https://www.mastercard.com/news/perspectives/2024/biometrics-will-soon-
replace-passwords-once-and-for-all/
2https://www.fraport.com/en/newsroom/press-releases/2023/q4/using-facial-
recognition–sita-and-fraport-enable-a-contactless-.html

The collection and processing of biometric data raises significant
privacy concerns because such data uniquely identifies the indi-
vidual and cannot be cancelled or re-issued. Therefore, the use of
privacy enhancing technologies in such a context is crucial. Privacy-
preserving identification systems call for advanced cryptographic
techniques such as fully homomorphic encryption (FHE)[13] or
multi-party computation[20], that enable computation while data
being protected. While this technology ensures that biometric data
is never revealed, it still incurs significant overhead and refrains
their wide adoption.

In this paper, we study the suitability of FHE for biometric iden-
tification in the context of airport applications where passengers
are authorized to board the plane only when identification is suc-
cessful3. As opposed to the use of MPC, FHE does not consume
any pre-processing and therefore results in a lighter and one-shot
offline phase. To efficiently perform the final comparison operation,
similar to [20], we propose to combines the use of FHE, BFV[7, 14]
in this application, with function secret sharing[5, 6]. Hence, once
the scalar product is computed, masks and splits this score to be dis-
tributed among two parties who further collaboratively decrypt the
masked score and compare it to the threshold. To improve efficiency
even more, we focus on the computation of scalar products and pro-
pose to study and evaluate the integration of two packing methods
that enable the encoding of multiple templates in one ciphertext
and hence increase performance in terms of communication and
computation.

By leveraging FHE, Monchi perfectly fits the airport access con-
trol use-case: given that linear operations are carried out without
the need for a continuous supply of pre-processing material, and
contrary to pure MPC solutions, we reduce the interactions in the
offline phase of these linear operations to a one-time setup. This
combination yields the best of both worlds, since it removes the
otherwise endless supply of pre-processing material required to
execute pure MPC protocols while leveraging MPC for non-linear
operations that are impractical via FHE.

Our main contributions can be summarized as follows:
• Monchi is the first protocol that combines the use of FHE
with function secret sharing in order not to disclose the
identification score but the access decision;

3https://www.theguardian.com/world/2024/jan/01/facial-recognition-could-replace-
passports-at-uk-airport-e-gates
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• To improve performance even more, we propose to inte-
grate two packing solutions and study their performance
according to different metrics;

• Monchi is implemented and evaluated through real-life
use case scenarios and more specifically to the airport ap-
plication and demonstrated its feasibility: in an airplane
boarding scenario with 1000 passengers, Monchi takes less
than one second to authorize/deny access to the plane.

2 RELATEDWORK
There have been multiple solutions that have investigated the use
of biometrics (see [36] for a review). These solutions like [2, 23, 32],
usually compute the scorewhile the templates are homomorphically
encrypted (either using BFV or CKKS). Other solutions like [4, 13]
also investigated the use of packing in this context. As opposed
to Monchi, all these solutions decrypt the actual identification
score and further compare it to a given threshold. As shown in
[15], revealing this identification score is harmful and can help
attackers infer and finally disclose biometric templates. In Monchi,
decryption occurs over the masked score and the decryption key is
never revealed.

Another noteworthy FHE-based work, Colmade [19], which also
employs FHE for distance metric computation in biometrics, ad-
dresses this issue by performing vector-matrix multiplication fol-
lowed by comparison to a threshold in the encrypted domain, and
subsequent masking of the result, revealing only its least significant
bit. However, performing the comparison in the encrypted domain
in Colmade is orders of magnitude more computationally expensive
than Monchi.

Finally, as mentioned in the introduction, an alternative to the
use of FHE for scalar products in biometric identification is the
use of arithmetic secret sharing in a secure two-party computa-
tion (2PC) setting. AriaNN [31] employs arithmetic secret sharing
to perform privacy-preserving distance metric computations, fol-
lowed by a comparison with a threshold with FSS, requiring two
rounds of online communication. Subsequently, Funshade [20] im-
proves the communication overhead by employing a novel method
for secret-sharing during 2PC called 𝚷-Secret-Sharing (𝚷-SS). The
new 𝚷-SS protocol allows local additions and multiplications with
only one round of communication in the online phase, thus out-
performing AriaNN. In Monchi, we chose to replace the 2PC Π-SS
building block of Funshade with a distributed implementation of
the Brakerski-Fan-Vercauteren (BFV) FHE scheme (together with
dedicated packing solutions), and improve its performance keeping
the FSS block for subsequent comparison with a fixed threshold.
Leveraging BFV for linear operations, we effectively get rid of
the associated pre-processing material (typically beaver triples),
meaningfully simplifying the continuous operation of a biometric
identification system built with Monchi at the expense of an addi-
tional masking to adapt the numerical range of BFV to that of FSS
while maintaining the privacy guarantees.

3 PRELIMINARIES
3.1 Notation
We use bold letters to denote matrices/vector (Eg. 𝒙) and non-bold
letters for scalars. 𝑅𝑣 expresses a polynomial ring with integer coef-
ficients modulo 𝑣 . 𝑎 (𝑖 ) denotes the 𝑖-th feature/element/coefficient
of a template/vector/polynomial. We use ⟨𝑏⟩𝑗 to refer to share 𝑗
in an arithmetic modular secret sharing of 𝑏 =

∑𝐾
𝑗=1⟨𝑏⟩𝑗 . We de-

note [·]𝑞 the reduction modulo 𝑞, and ⌊·⌋, ⌈·⌉ the rounding up and
rounding down, respectively, to the nearest integer. When applied
to polynomials, these reductions are performed coefficient-wise.
We use 𝑈 (𝑋 ) to denote a uniformly random distribution in 𝑋 , and
N(𝜇, 𝜎) to denote a Gaussian distribution withmean 𝜇 and standard
deviation 𝜎 . a · b = c to denote the element-wise/coefficient-wise
multiplication of two vectors/polynomials where 𝑐 (𝑖 ) = 𝑎 (𝑖 )𝑏 (𝑖 ) .
Z∗
𝑛+ represents the range 0 ≤ 𝑥 ≤ 2𝑛−1 − 1.

3.2 BFV

Scheme 1 BFV(𝑡, 𝑞, 𝑁 , 𝜎, 𝐵)
Input: 𝑡, 𝑞, 𝑁 , 𝜎, 𝐵: Security Parameters
BFV.SecKeyGen():
𝑠 ← 𝑆𝑅𝑞
Output: the secret key 𝑠𝑘 = 𝑠

BFV.PubKeyGen(𝑠𝑘):
𝑝1 ← 𝑈 [𝑅𝑞 ] and 𝑒 ← 𝜒[𝑅𝑞 ]
Output: a public key 𝑝𝑘 = (𝑝0, 𝑝1) = (−𝑠𝑘 · 𝑝1 + 𝑒, 𝑝1)

BFV.Encrypt(𝑝𝑘,𝑚):
Let 𝑝𝑘 = (𝑝0, 𝑝1)
𝑢 ← 𝑆 [𝑅𝑞 ] and 𝑒0, 𝑒1 ← 𝜒[𝑅𝑞 ]
(𝑐𝑚0 , 𝑐𝑚1 ) = (Δ𝑚 + 𝑢 · 𝑝0 + 𝑒0, 𝑢 · 𝑝1 + 𝑒1)
Output: a ciphertext 𝑐𝑚 = (𝑐𝑚0 , 𝑐𝑚1 )

BFV.Add(𝑐𝑎, 𝑐𝑏 ):
Let 𝑐𝑎 = (𝑐𝑎0 , 𝑐𝑎1 ), (𝑐𝑏0 , 𝑐𝑏1 )
𝑐𝑎𝑑𝑑0 = [𝑐𝑎0 + 𝑐𝑏0 ]𝑞 and 𝑐𝑎𝑑𝑑1 = [𝑐𝑎1 + 𝑐𝑏1 ]𝑞
Output: the ciphertext 𝑐𝑎𝑑𝑑 = (𝑐𝑎𝑑𝑑0, 𝑐𝑎𝑑𝑑1)

BFV.Mul(𝑐𝑎, 𝑐𝑏 ):
Let 𝑐𝑎 = (𝑐𝑎0 , 𝑐𝑎1 ), (𝑐𝑏0 , 𝑐𝑏1 )
𝑐𝑚𝑢𝑙0 = [𝑐𝑎0 · 𝑐𝑏0 ]𝑞 and 𝑐𝑚𝑢𝑙1 = [𝑐𝑎1 · 𝑐𝑏1 ]𝑞
Output: the ciphertext 𝑐𝑚𝑢𝑙 = (𝑐𝑚𝑢𝑙0 , 𝑐𝑚𝑢𝑙1 )

BFV.Decrypt(𝑠𝑘, 𝑐𝑚):
Let 𝑐𝑚 = (𝑐𝑚0 , 𝑐𝑚1 )
𝑚𝑟𝑒𝑠 =

[⌈
𝑡
𝑞

[
𝑐𝑚0 + 𝑠 · 𝑐𝑚1

]
𝑞

⌋ ]
𝑡

Output: the decrypted message𝑚𝑟𝑒𝑠

The Brakerski-Fan-Vercauteren (BFV) [1, 14, 17] scheme is a
privacy-preserving, ring-Learning with Errors (RLWE) homomor-
phic encryption scheme. The plaintext space is defined by a parame-
ter 𝑡 . Messages are encoded into the plaintext ring𝑅𝑡 = Z𝑡 [𝑋 ]/(𝑋𝑁 +
1), which defines polynomials of degree at most 𝑁 − 1 with coef-
ficients in Z𝑡 . Specifically, the coefficients lie in the range [0, 𝑡)
for non-negative integer and in the symmetric range [−𝑡/2, 𝑡/2)
for signed integers. The encrypted message will be an element of
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𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑁 + 1) with 𝑞, a security parameter defining the
ciphertext modulus. The coefficients of the encrypted space reside
in Z𝑞 . Typically, 𝑡 ≪ 𝑞, 𝑁 is a power of two, and Δ = ⌈𝑞/𝑡⌉ defines
the maximum number of homomorphic operations that can be per-
formed on the ciphertext without affecting the correctness of the
decrypted result. 𝑞 can be decomposed with the Chinese Remainder
Theorem (CRT) in small co-prime moduli 𝑞1, . . . , 𝑞𝑣 and establish-
ing a ring isomorphism between the spaces Z𝑞 and Z𝑞1 × · · · × Z𝑞𝑣
[17]. Thanks to CRT, arithmetic modulo 𝑞 can be replaced by 𝑣
independent arithmetics in the smaller rings R𝑞𝑖 enabling Residue
Number System (RNS) to accelerate arithmetic in 𝑅𝑞 over large
integers.

The BFV scheme defines two uniform distributions: the secret
key distribution 𝑆𝑅𝑞 = Z{−1,0,1} [𝑋 ]/(𝑋𝑁 +1), defining ring polyno-
mials of degree at most 𝑁 with coefficients sampled from a uniform
distribution 𝑈 ({−1, 0, 1}). The error distribution 𝜒𝑒𝑟𝑟 is defined
over the ring 𝑅𝑞 where coefficients are drawn from a distribution
statistically close to a Gaussian with standard deviation 𝜎 truncated
into [−𝐵, 𝐵], where 𝜎 and 𝐵 are two cryptographic parameters. 𝜒𝑒𝑟𝑟
is related to the hardness of the Ring Learning with Errors (RLWE)
problem introduced in [24] as a version of the Learning-With-Error
(LWE) problem [30]. In BFV, noise management is critical for main-
taining correctness throughout the decryption process. BFV sup-
ports bootstrapping [12], which involves re-encrypting a ciphertext
to get a fresh ciphertext of the same message, effectively resetting
the noise growth. However, bootstrapping is practically slow, and
despite suggested improvements in noise management [8][7], BFV
is commonly instantiated with parameters sufficiently large to ac-
commodate noise growth. Scheme 1 outlines several algorithms of
the BFV scheme pertinent to our research.
Specifically, the algorithm BFV.Decrypt, which we aim to adapt
and use in a distributed setting, involves using the secret key to
compute an upscaled plaintext, followed by two rounding processes
(first by q, then by t), with a downscaling step between the two
rounding operations.

3.2.1 Ring Learning with Errors (RLWE) problem. The RLWE prob-
lem is defined as follows: given uniformly random 𝑎 from 𝑈 (𝑅𝑞),
𝑠 from 𝑆𝑅𝑞 , and 𝑒 from 𝜒err, it is computationally challenging for
an adversary to distinguish between the distributions of (𝑠𝑎 + 𝑒, 𝑎)
and (𝑏, 𝑎), where 𝑏 is uniformly sampled from 𝑈 (𝑅𝑞). Introduced
in [24], the RLWE problem serves as a fundamental challenge in
lattice-based cryptography.

3.3 Multiparty BFV Scheme
Multiparty Homomorphic Encryption (MHE) extends FHE to mul-
tiparty settings, facilitating collaborative computation while main-
taining the privacy of each party’s data. The Distributed Brakerski-
Fan-Vercauteren (DBFV) scheme [26], derived from the BFV scheme,
permits a pool of M parties to locally secret-share a global secret
key and to collaboratively generate a public key using these local
shares, as detailed in Scheme 2. The process of computing a com-
mon public key (cpk) introduces M additional noise terms, resulting
in

∑𝑀
𝑖=1 𝑒𝑖 = | |𝑒𝑐𝑝𝑘 | | < 𝐵 ·𝑀 , where 𝐵 is the bound on the worst-

case norm for an error term drawn from the distribution 𝜒err (see
appendix A of [26] for more details). Thus, the worst-case fresh
ciphertext noise is linear in the number M of parties. Furthermore,

in the decryption phase, each party computes their local decrypted
share and then adds a freshly generated noise. This introduction of
noise differs from the decryption algorithm used in the single-party
BFV scheme and is crucial for addressing the RLWE problem within
a distributed setting.

Scheme 2 DBFV(𝑡, 𝑞, 𝑁 ,𝑤, 𝜎, 𝐵,𝑀)
Input: 𝑡, 𝑞, 𝑁 ,𝑤, 𝜎, 𝐵: Security Parameters;𝑀 : Number of parties
DBFV.SecKeyGen() :
Each party 𝑃𝑖 :

𝑠𝑖 ← 𝑆𝑅𝑞

Output: ⟨𝑠𝑘⟩𝑖 = 𝑠𝑖 . Note 𝑠𝑘 =
[∑𝑀

𝑖 ⟨𝑠𝑘⟩𝑖
]
𝑞

DBFV.ColPubKeyGen(⟨𝑠𝑘⟩1 , . . . , ⟨𝑠𝑘⟩𝑖 , . . . , ⟨𝑠𝑘⟩𝑀 ):
Any : 𝑝1 ← 𝑈 (𝑅𝑞). Disclose to all parties.
Each party 𝑃𝑖 :

𝑒𝑖 ← 𝜒[𝑅𝑞 ]
⟨𝑝0⟩𝑖 = −𝑝1 · ⟨𝑠𝑘𝑖 ⟩ + 𝑒𝑖

Any: Output: 𝑐𝑝𝑘 = (𝑝0, 𝑝1) =
(∑
𝑖 ⟨𝑝0⟩𝑖 , 𝑝1

)
DBFV.Encrypt(𝑐𝑝𝑘,𝑚):
Any: Output: 𝑐𝑚 = 𝐵𝐹𝑉 .𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑐𝑝𝑘,𝑚).
DBFV.ColDecrypt(𝑐𝑚, ⟨𝑠𝑘⟩1 , . . . , ⟨𝑠𝑘⟩𝑖 , . . . , ⟨𝑠𝑘⟩𝑀 ):
Each party 𝑃𝑖 :

Let 𝑐𝑚 = (𝑐𝑚0 , 𝑐𝑚1 ).
𝑒𝑖 ← 𝜒𝑅𝑞〈
𝑐𝑚1s

〉
𝑖
= ⟨𝑠𝑘⟩𝑖 · 𝑐𝑚1 + 𝑒𝑖

Any: Output:𝑚𝑟𝑒𝑠 =
[⌈
𝑡
𝑞

[
𝑐𝑚0 +

∑𝑀
𝑖

〈
𝑐𝑚1s

〉
𝑖

]
𝑞

⌋ ]
𝑡

3.4 Plaintext encoding and packing
Despite advances on the efficiency of homomorphic encryption,
homomorphic operations remain slow because of the large size of
ciphertexts (which is due to the security requirements of the HE
scheme). To address this, SIMD (Single Instruction, Multiple Data)
instructions were proposed: they consist of packing the encryption
of multiple values in one ciphertext and further customizing the
actual operation, accordingly. For the inner product computation,
the literature counts two encoding techniques [3]: (i) packed-matrix
encoding, where multiple vectors are encoded within a single poly-
nomial, and (ii) packed-integer encoding, where the same value is
cloned to all slots. This latter method is notably employed in [35].
Table 1 shows the overall complexity comparison between the two
encoding schemes.

We opt to use these two techniques and study their performance
in the context of biometric identification, namely, for matching a
freshly encrypted live template against an encrypted database of
𝐾 biometric templates. More specifically, a biometric template is
denoted as 𝒀𝒊 and is represented by a vector of dimension 𝑙 (for 𝑙
features) as follows:

𝒀𝑖 =
[
𝑌
(1)
𝑖

𝑌
(2)
𝑖

· · · 𝑌
(𝑙 )
𝑖

]
We denote the live template as 𝒙 :

𝒙 =
[
𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )

]
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Table 1: Computational Complexity of Matrix-Vector Multiplication in Inner Product Computations (Database of size K,
l-dimensional vectors, and Ring Polynomials of Degree N)

Encoding Scheme Packed-Matrix Encoding Packed-Integer Encoding Ratio

Ciphertexts ⌈(𝐾 · 𝑙)/𝑁 ⌉ ⌈(𝐾/𝑁 )⌉ × 𝑙 1
Multiplications ⌈((𝐾 · 𝑙)/𝑁 ⌉ ⌈(𝐾/𝑁 )⌉ × 𝑙 1

Additions ⌈(𝐾 · 𝑙)/𝑁 ⌉ · log2 (𝑙) ⌈(𝐾/𝑁 )⌉ × 𝑙 log2 (𝑙)
Rotations ⌈(𝐾 · 𝑙)/𝑁 ⌉ · log2 (𝑙) 0 N.A.

Decryptions ⌈(𝐾 · 𝑙)/𝑁 ⌉ ⌈(𝐾)/𝑁 ⌉ l

Packed-Matrix Encoding. This encoding scheme consists of
packing multiple plaintext vectors in one ciphertext. Multiple tem-
plate vectors from the database are packed in a single vector until
reaching the size of the ciphertext, i.e., 𝑁 . Thus, each ciphertext
can encapsulate up to 𝑁 /𝑙 templates. For the sake of clarity, we
assume that 𝐾 is a multiple of 𝑁 /𝑙 and we obtain:

𝒀
′
=


𝒀1 𝒀2 · · · 𝒀𝑁 /𝑙

𝒀(𝑁 /𝑙 )+1 𝒀(𝑁 /𝑙 )+2 · · · 𝒀2𝑁 /𝑙
.
.
.

.

.

.
. . .

.

.

.

𝒀𝐾−(𝑁 /𝑙 )+1 𝒀𝐾−(𝑁 /𝑙 )+2 · · · 𝒀𝐾


∈ Z

𝐾 ·𝑙
𝑁
×𝑁

On the other hand, the fresh template 𝑥 is cloned 𝑁 /𝑙 times

𝑿 =
[
𝒙 𝒙 · · · 𝒙

]
∈ Z𝑁

To encode the entire database, a total of (𝐾 · 𝑙)/𝑁 polynomials
would be needed and the operations would be performed by encod-
ing each row of the 𝒀 (

′ ) at a time. If 𝐾𝑙 is not a multiple of N, the
last encoded polynomial will be padded with zero values until the
degree of the polynomial is reached. To compute the inner product
of each template 𝒀𝒊 from the database with the live template 𝒙 in
the encrypted domain, (𝐾 · 𝑙)/𝑁 multiplications followed by cu-
mulative additions (𝑙𝑜𝑔2 (𝑙) rotations and additions per ciphertexts
of the encrypted database) will be performed (see appendice A for
more details).

Packed-Integer Encoding. This packing scheme corresponds to
a feature-wise encoding of the database. Instead of concatenating
each template vector, we consider a matrix 𝒀

′′

where each row
encapsulates the 𝑗𝑡ℎ feature from every template in the database:

𝒀
′′
=
[
𝒀𝑇1 𝒀𝑇2 · · · 𝒀𝑇

𝐾

]
∈ Z𝑙×𝐾

i.e.,

𝒀
′′
=


𝑌
(1)
1 𝑌

(1)
2 · · · 𝑌

(1)
𝐾

𝑌
(2)
1 𝑌

(2)
2 · · · 𝑌

(2)
𝐾

.

.

.
.
.
.

. . .
.
.
.

𝑌
(𝑙 )
1 𝑌

(𝑙 )
2 · · · 𝑌

(𝑙 )
𝐾


∈ Z𝑙×𝐾

On the other hand, the live template will be encoded in a matrix
𝑋
′
by cloning each feature 𝑥 ( 𝑗 ) 𝑁 times :

𝑿
′
=
[
𝒙𝑇 𝒙𝑇 · · · 𝒙𝑇

]𝑇 ∈ Z𝑁×𝑙
i.e.,

𝑿
′
=


𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )

𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )

.

.

.
.
.
.

. . .
.
.
.

𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )


∈ Z𝑁×𝑙

Each feature from 𝑁 enrolled templates at a time are encoded
across all slots of a single polynomial, thus resulting in 𝑙 polyno-
mials. If 𝐾 > 𝑁 this step will be repeated until all the database
is encoded. If, on the other hand, the database size 𝐾 is less than
𝑁 , each polynomial is padded with zero values. Regarding the live
template, each column of the matrix 𝑿

′
is encoded in a single poly-

nomial resulting in 𝑙 encodings, each holding N repetitions of the
same features of 𝒙 . To compute the inner product of a subset of N
templates 𝒀𝒊 from the database with the live template x in the en-
crypted domain, 𝑙 multiplications followed by cumulative additions
will be performed (see appendice B for more details). This encoding
scheme is not suitable to small databases since the complexity of
matrix-vector multiplications in the encrypted domain remains
constant (and high).

3.5 FSS
Function Secret Sharing (FSS) was introduced by Boyle et al. in [6].
It is defined for a family of efficiently computable and succinctly
described functions 𝑓 : {0, 1}𝑛 → G, with G representing a finite
Abelian group. In a semi-honest, two-party setting, FSS enables the
splitting of a function 𝑓 ∈ F into two additive shares, denoted as
(𝑓0, 𝑓1); Each share, 𝑓𝑗 , conceals the secret function 𝑓 , revealing no
information about it. For every input 𝑥 , the output of the secret
function 𝑓 (𝑥) can be reconstructed by separately computing 𝑓0 (𝑥)
and 𝑓1 (𝑥) by each distinct party, resulting in 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥).
FSS aims to obtain succinct descriptions of 𝑓0 and 𝑓1 using short
keys, 𝒌0 and 𝒌1, called function keys. This approach leads to a
fast online phase with only one round of communication. Besides
secret sharing a function 𝑓 , FSS can also be applied with a secret
input, concealed from both parties performing the evaluation. This
concealment is achieved by adding a random mask 𝑟 , with 𝑥 = 𝑥 +𝑟 .
To maintain correctness during evaluation, the mask 𝑟 is used in
generating the function keys 𝒌0 and 𝒌1.

A central building block of FSS is the Distributed Comparison
Function (DCF)[16], defining a family of comparison functions 𝑓 <

𝛼,𝛽

which output 𝛽 if 𝑥 > 𝛼 and 0 otherwise. Interval Containment
(IC) gates in an FSS scheme enable to determine whether a secret
value 𝑥 falls within an interval [𝑝, 𝑞]. Initially built upon two DCF
blocks, Boyle et al. introduced a method to construct IC using a
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single DCF block (as shown in Fig. 3 of Section 4.1 [5]). Setting
𝑝 = 0 and 𝑞 = 2𝑛−1 allows FSS to secretly share a unit step function
for 𝑛-bit signed integers, denoted as 10≤𝑥≤2𝑛−1 .

In our work, we use IC gates in FSS in the context of biomet-
ric identification for comparing a secret identification score de-
rived from the scalar product of two templates, with a fixed thresh-
old. We therefore define two algorithms: the key generation pro-
cess (FSS.Gen𝐼𝐶 - Algorithm 1) and the IC gate evaluation in FSS
(FSS.Eval𝐼𝐶 - Scheme 3). For the sake of clarity, we do not elabo-
rate on the generation and evaluation of DCF calls and refer to the
original protocols in Fig. 1 of Section 3 in [5]. FSS.Gen𝐼𝐶 gener-
ates a pair of function keys containing descriptions of the shares
𝑓0, 𝑓1 of a given secret function 𝑓 . The evaluation algorithm, given
a function key and a masked secret input, evaluates the interval
containment gate and outputs an additive share 𝑓𝑗 (𝑥) of the output
𝑓 (𝑥) = 𝑓0 (𝑥) + 𝑓1 (𝑥).

Algorithm 1 FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟 ) → (𝒌0, 𝒌1)
Input: 𝜆, 𝑛: Security parameters; r input mask
Output: 𝒌0, 𝒌1: preprocessing keys
1. Define the interval [𝑝, 𝑞] for sign extraction:
𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

2. Generate DCF for 𝛾 , an arbitrary value above the interval limit:
𝛾 ← (2𝑛 − 1) + 𝑟
(𝑘𝛾0, 𝑘𝛾1) ← 𝐺𝑒𝑛<𝑛 (𝜆,𝛾, 1,U[Z2𝑛 ] )

3. Generate the correction terms to fix overflows:
𝑐 ← −1𝑝+𝑟>𝑞 + 𝑟 + 1𝑞+𝑟+1>𝑝 + 𝑟 + 2𝑛 − 11+𝑝+𝑟>𝑝 + 1𝑝+𝑟=2𝑛−1
𝑐0 ← U[Z2𝑛 ] ; 𝑐1 ← 𝑐 − 𝑐0

4. Compose the function keys:
𝒌0 ← (𝒌𝜸0, 𝑐0); 𝒌1 ← (𝒌𝜸1, 𝑐1)

Scheme 3 FSS.Eval𝐼𝐶 ( 𝑗, 𝒌𝒋 , 𝑥) → 𝑜 𝑗

Input: 𝑗 : Party number, 𝑗 ∈ {0, 1}; 𝒌𝒋 : Function key for 𝑃 𝑗 ; 𝑥 :
Masked public input (𝑥 + 𝑟 ).
Output: 𝑜 𝑗 : Additive secret share of 1𝑥∈[0,2𝑛−1−1] .
1. Define the interval [𝑝, 𝑞] for sign extraction:
𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

2. Parse the function key and obtain local overflow term 𝜂:
(𝒌𝜸𝒋 , 𝑐 𝑗 ) ← 𝒌𝒋
𝜂 ← 1𝑥>𝑝 − 1𝑥>𝑞+1

3. Evaluate the DCF with two inputs and compute result:
𝑜𝐿
𝑗
← 𝐸𝑣𝑎𝑙<𝑛 ( 𝑗, 𝒌𝜸𝒋 , 1, 𝑥 − 1)

𝑜𝑅
𝑗
← 𝐸𝑣𝑎𝑙<𝑛 ( 𝑗, 𝒌𝜸𝒋 , 1, 𝑥 − 𝑞)

𝑜 𝑗 ← 𝑗 · 𝜂 − 𝑜𝐿
𝑗
+ 𝑜𝑅

𝑗
+ 𝑐 𝑗

4 OUR SOLUTION
4.1 Idea
We consider an airport biometric access control system use case
which aims at authorizing access to the plane to passengers if

biometric verification succeeds. Three main entities are involved in
the process: a Biometric Identity Provider (BIP), a Gatekeeper (Gate),
and a group of passengers (users) seeking plane access. The BIP
maintains a database of enrolled users’ templates and is responsible
for performing biometric identification operations against a live
template. The Gate is in charge of extracting a live template from
a user seeking access, sending it to the BIP, and making decisions
regarding authorizing or denying user access. Additionally, we
can include one more entity in our scenario to carry out the prior
acquisition of users’ templates upon enrollment, which we name
Enroller. In this context, storing the database in an unencrypted
form poses significant privacy risks.

Motivated by this use case of biometric identification in airports
introduced in [19], we combine BFV with FSS to enable third parties
to perform biometric identification between a freshly encrypted bio-
metric template and a previously encrypted database of biometric
templates. The aim is to make this privacy-preserving identification
more efficient and robust thanks to the use of dedicated, preliminary
encoding operations before the actual encryption operation. We
propose and study the two packing encoding techniques introduced
in section E of [3]: the packed-matrix encoding technique packing
several templates in a single polynomial and the packed-integer
encoding technique encoding one feature element from enrolled
templates in a single polynomial. Further, inspired by [19], the ul-
timate phase of the protocol, involves two parties collaboratively
masking and further decrypting the scores in order to securely
transit from BFV to FSS to proceed with an efficient comparison
operation.

4.2 Monchi participants
In line with the scenario presented below, we formalize the four
main participants in our protocol based on their roles:

• Enroller , responsible for enrollment, i.e., acquiring and en-
crypting the reference biometric templates of users seeking
registration during the setup phase. These encrypted ref-
erence templates are then forwarded to the BIP for secure
storage and subsequent phases.

• BIP , holding the encrypted database of reference templates
and responsible for evaluating the scores by computing the
scalar product between a freshly encrypted live template
and each encrypted template of the database with BFV.

• Gate, in charge of capturing the live biometric template of
the users requesting access, encrypting the live template,
and forwarding them to the BIP during the identification
phase. Later on Gate receives the final decision on this
actual identification and allows or not the user to access
the plane.

• P0&P1, two collaborating parties who help evaluate the
last comparison operation of biometric identification in an
efficient manner (through FSS).

Additionally, Monchi involves a trusted key server responsible for
generating the keying and other secret material. This server only
plays a role during the setup phase and is considered offline during
the actual execution of biometric identification.
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Ƹ𝑠 = 𝒄𝑠𝑎 + 𝒄 Ƹ𝑠𝑏 0
+ 𝒄 Ƹ𝑠𝑏 1 𝑞

𝑡
2𝑛−1

Gate 𝐏𝟎 𝐏𝟏

Trusted Setup
𝐵𝐹𝑉. 𝑆𝑒𝑡𝑢𝑝()
𝑠𝑘 0, 𝑠𝑘 1, 𝑝𝑘

𝐹𝑆𝑆. 𝑆𝑒𝑡𝑢𝑝()
𝑟 0, 𝑟 1, 𝑘0, 𝑘1

𝐵𝐹𝑉𝑡𝑜𝐹𝑆𝑆()
𝛼 0, 𝛼 1

𝑝𝑘 𝑟 0, 𝑠𝑘 0, 𝛼 0 𝑟 1, 𝑠𝑘 1, 𝛼 1

Enrolment

𝒄𝒚𝒖=𝐸𝑛𝑐𝑟(𝒚𝒖, 𝑝𝑘)𝒚𝒖

𝒙
𝒄𝑥=𝐸𝑛𝑐𝑟(𝒙, 𝑝𝑘)

𝒄𝑥

BIP
𝒄𝑌 = {𝒄𝒚𝟏 , … , 𝒄𝒚𝒖 , … , 𝒄𝒚𝑼}

𝒄𝑠=𝐸𝑣𝑎𝑙𝑆𝑐𝑜𝑟𝑒(𝒄𝑥 , 𝒄𝑌)
𝒄𝑠

𝒄 Ƹ𝑠𝑏 𝑖
= 𝒄𝑠𝑏 𝑠𝑘 𝑖+ 𝑟 𝑖+2𝑛−1 𝛼 𝑖+𝑒𝑖

𝑜 i = 𝐸𝑣𝑎𝑙𝐶𝑜𝑚𝑝𝑎𝑟𝑒 Ƹ𝑠, 𝑖, 𝑘𝑖

𝐵𝐹𝑉𝑡𝑜𝐹𝑆𝑆𝑖(…)   𝑖∈{0,1}

𝑜 = 𝑜 0 + 𝑜 1
Match (1)

Reject (0)

𝒄𝑠= 𝒄𝑠𝑎 , 𝒄𝑠𝑏

𝒄 Ƹ𝑠𝑏 1

𝑜 1
𝑜 0

𝒄 Ƹ𝑠𝑏 0

Figure 1: System Diagram of a biometric access control usingMonchi’s algorithm.

4.3 Threat Model
In this scenario, we consider all parties to be semi-honest, namely
an adversary follows the protocol correctly but aims at extracting
maximum information possible about the input templates and the
resulting score. The simplicity and linear nature of distance met-
ric functions yield substantial input leakage. An adversary may
leverage this leakage to extract information about the inputs by
inverting the used distance metric function [28]. Hence the score
also needs strong protection. The outputs of a private protocol
can also leak information about the inputs, as evidenced by model
extraction attacks [34] and membership inference attacks [33] in
privacy-preserving machine learning inference. Our approach min-
imizes the output information to the least amount of information
necessary, yielding a one-bit output that indicates a match or no
match against the encrypted database. By employing this technique,
we achieve an optimally minimal input leakage.

4.4 Monchi Overview
Monchi is defined in two phases and six algorithms, as illustrated
in Figure 1. The setup phase consists of the generation and distri-
bution of the keying and security material (Algorithm 1) and the
appropriate encryption and storage of the database of biometric

templates (Algorithm 2). The identification phase starts with Gate
extracting the live template, encrypting, and sending it to BIP. Upon
receiving the encrypted live template, BIP computes the scalar prod-
uct of this template together with each template of the database
(Algorithm 3). The resulting encrypted scores are further sent to 𝑃1
and 𝑃0 who transform these scores through Algorithm 4 in order
to apply FSS to perform the secure comparison (Algorithm 5) with
the threshold and return the result to Gate. Finally, with Algorithm
6 Gate reconstructs this result.

4.5 Monchi Algorithms
Algorithm 1: Monchi.Setup. This algorithm consists of the gen-

eration and the distribution of the relevant security and keying
materials for BFV, FSS, and the secure transition from BFV to FSS.
The key server first generates the encryption key for BFV as well
as two shares of the corresponding secret key; For a 1:K biometric
identification, 𝐾 pairs of FSS keys (𝑘0, 𝑘1) are generated together
with 𝐾 masks 𝑟 which are secret-shared according to threshold 𝜃 .
𝑟 is used to mask the score before the evaluation of FSS and rep-
resent n-bit signed integers uniformly drawn. Finally, to securely
transit from BFV to FSS, the key server also generates K random 𝛼

from 𝑈 (Z2𝑚 ) and secret-shares it. 𝛼 is uniformly drawn from the
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range −2𝑚−1 to 2𝑚−1, where𝑚 is defined as the maximum bit size
that ensures both the correctness of the decrypted results and the
minimal leakage of private inputs to FSS.

Algorithm 2Monchi.Setup(𝐾, 𝑝𝑝 (𝐵𝐹𝑉 ) , 𝑝𝑝 (𝐹𝑆𝑆 ) ,𝑚)

Players: Key server
Input: 𝐾 : Number of enrolled users; 𝑝𝑝 (𝐵𝐹𝑉 ) (𝑡, 𝑞, 𝑁 , 𝜎, 𝐵): BFV
public parameters; 𝑝𝑝 (𝐹𝑆𝑆 ) (𝜆, 𝑛, 𝜃 ): FSS parameters;𝑚 Security
parameter for BFV to FSS.
Output: ⟨𝑠𝑘⟩0 , ⟨𝑠𝑘⟩1 𝑝𝑘 : DBFV Secret key shares and public key
⟨𝒓⟩0 , ⟨𝒓⟩1, 𝒌0, 𝒌1: Random mask shares and FSS function keys
⟨𝜶 ⟩0 , ⟨𝜶 ⟩0: Additional random shares to prevent from leakage
when switching from BFV to FSS.
1. Run BFV Setup:

BFV.SecKeyGen()→ ⟨𝑠𝑘⟩1 , ⟨𝑠𝑘⟩1
BFV.PubKeyGen(⟨𝑠𝑘⟩1 + ⟨𝑠𝑘⟩0)→ 𝑝𝑘

2. Run FSS gate setup. For each template in the database, do:
𝑟 ← U[Z2(𝑛) ]
FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟 )→ 𝑘0, 𝑘1
⟨𝑟 ⟩0 , ⟨𝑟 ⟩1 ← 𝑟 and ⟨𝑟 ⟩1 ← ⟨𝑟 ⟩1 − 𝜃

3. Run BFVtoFSS setup. For each template in the database, do:
𝜶 ← U[Z𝐾2𝑚 ]
(⟨𝜶 ⟩0 , ⟨𝜶 ⟩1) ← 𝜶

Algorithm 2:Monchi.Encr. In this algorithm, Enroller first en-
codes the templates of the database and encrypts this encoded
information with BFV using 𝑝𝑘 . The encrypted database is then
transmitted to BIP. Gate also uses the same algorithm to encode
and encrypt the live template.

Algorithm 3Monchi.Encr(𝑝𝑘,𝑉 )

Players: Enroller or Gate
Input: 𝑝𝑘 : BFV public key;𝑉 : Input vector(s) (either the database
of K templates or the freshly extracted live template)
Output: 𝐶𝑉 : Matrix of encrypted template(s).

𝑃𝑉 = 𝐵𝐹𝑉 .𝑃𝑎𝑐𝑘𝐸𝑛𝑐𝑜𝑑𝑒 (𝑉 )
𝐶𝑉 = 𝐵𝐹𝑉 .𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑝𝑘, 𝑃𝑉 )

Algorithm 3: Monchi.EvalScore. BIP executing this algorithm
performs the scalar product between the encrypted live template
and each ciphertext in the encrypted database. If the templates are
encoded using packed-matrix encoding, the encrypted live template
consists of a single ciphertext, encrypting 𝑁 /𝑙 instances of the live
template and the encrypted database matrix contains (𝐾 × 𝑙)/𝑁
ciphertexts. The evaluation involves SIMD multiplications followed
by cumulative additions, (𝑙𝑜𝑔2 (𝑙) rotations and additions per ci-
phertext in the encrypted database matrix 𝐶𝑌 ). Consequently, the
resulting matrix of encrypted scores includes (𝐾 ×𝑙)/𝑁 ciphertexts,
each storing 𝑁 /𝑙 encrypted scores. Conversely, if the templates are
packed with packed-integer encoding, the matrix encapsulating
the encryption of the live template will be composed 𝑙 ciphertexts.
Each of these ciphertexts contains N slots, with each slot holding

the encryption of the same feature of the live template, having
N encryptions of each feature in each ciphertext. The encrypted
database matrix will be composed of (𝐾 × 𝑙)/𝑁 ciphertexts, each
containing N features from N templates. Computing the scalar prod-
uct requires only 𝑙 multiplications followed by additions for each
ciphertext in the encrypted database 𝐶𝑌 . Rotations are no longer
required as the coefficients of the ciphertexts are already aligned.
As a result, the resulting matrix of encrypted scores contains 𝐾/𝑁
ciphertexts, with each ciphertext holding 𝑁 encrypted scores.

Algorithm 4 Monchi.EvalScore(𝐶𝑌 ,𝐶𝑥 )

Players: BIP
Input: 𝐶𝑌 : Encrypted Database matrix; 𝐶𝑥 Encrypted live tem-
plate.
Output: 𝐶𝑠 : Encrypted scores matrix.

𝐶𝑠 = 𝐵𝐹𝑉 .𝑀𝑎𝑡𝑀𝑢𝑙 (𝐶𝑌 ,𝐶𝑥 )

Algorithm 4:Monchi.BFVtoFSS. 𝑃0 and 𝑃1 who have received the
encrypted shares of scores first masks them before their decryption.
This step is needed for the subsequent comparison step which is
executed using FSS. The masking of each score with 𝑟 is performed
via addition. To keep consistency with the FSS-based works [5],
the local shares additions needs to be performed modulo 2𝑛 . Due
to the high computational cost of performing this modulus opera-
tion in the encrypted domain, we decide to perform the modulus
reduction post-decryption. However, this approach introduces a
security vulnerability by potentially exposing information about
the results. To mitigate this risk while still performing modulus
reduction after decryption, an additional mask 𝛼 is introduced and
secret-shared among the two parties. These shares are multiplied
with 2𝑛 to shift them with n bits to the left before being added
concurrently with the local shares used for masking during the
intermediate decryption. This approach enables the removal of the
additional share 𝛼 via a modulus operation in Z𝑛2 post-decryption,
while decreasing the probability of leakage associated with modulus
reduction performed in cleartext (see Section 5 for more details).

Algorithm 5: Monchi.EvalCompare. Once the scores are collabo-
ratively decrypted and transformed to become inputs to FSS, the
two parties evaluate the interval containment gate to determine
whether the scores are below or above the fixed threshold 𝜃 .

Algorithm 6:Monchi.Result. Gate reconstructs the results of the
identification from the arithmetic shares, which are derived from
the evaluation of the interval containment gate in the FSS scheme,
using the decrypted randomized and masked scores.

5 SECURITY ANALYSIS
5.1 Overview
We begin by succinctly analyzing the security of Monchi.

Firstly, the security of Monchi directly derives from the security
of BFV and FSS. Nevertheless, since BFV and FSS are not executed
in the same rings, during 𝐵𝐹𝑉𝑡𝑜𝐹𝑆𝑆 algorithm, the extra term 𝛼𝑖 is
added. In 𝐵𝐹𝑉𝑡𝑜𝐹𝑆𝑆 , similar to Funshade, the score is first masked
with 𝑟 before its decryption. At some point during decryption, both
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Algorithm 5Monchi.BFVtoFSS(𝑐𝑠 , ⟨𝑠𝑘⟩ 𝑗 , ⟨𝑟 ⟩ 𝑗 , ⟨𝛼⟩ 𝑗 )

Players: 𝑃 𝑗 , 𝑗 ∈ {0, 1} computing parties
Input:
⟨𝑠𝑘⟩ 𝑗 : Secret key share for BFV
⟨𝒓⟩𝒋 : Vector of secret mask shares for FSS
⟨𝜶 ⟩𝒋 : Vector of secret mask shares for BFV to FSS
𝑐𝑠 : Matrix of ciphertext of the encrypted scores.

Output:Masked and randomized decrypted scores 𝑠 .
For each ciphertext 𝑐𝑠 of the matrix 𝐶𝑠 :
Let 𝑐𝑠 = (𝑐𝑠𝑎 , 𝑐𝑠𝑏 )
⟨𝒓⟩𝒋 ← 𝐵𝐹𝑉 .𝑃𝑎𝑐𝑘𝐸𝑛𝑐𝑜𝑑𝑒 (⟨𝒓⟩𝒋)
⟨𝜶 ⟩𝒋 ← 𝐵𝐹𝑉 .𝑃𝑎𝑐𝑘𝐸𝑛𝑐𝑜𝑑𝑒 (⟨𝜶 ⟩𝒋)
𝑒𝑖 ← 𝜒𝑅𝑞〈

𝑐𝑠𝑏
〉
𝑖
= ⟨𝑠𝑘⟩ 𝑗 𝑐𝑠𝑏 + ⟨𝒓⟩𝒋 + ⟨𝜶 ⟩𝒋 ∗ 2𝑛 + 𝑒𝑖

𝑠 =

[ [
𝑡

𝑞

[
(𝑐𝑠𝑎 +

〈
𝑐𝑠𝑏

〉
0 +

〈
𝑐𝑠𝑏

〉
1)
]
𝑞

]
𝑡

]
2𝑛−1

Algorithm 6Monchi.EvalCompare(𝑠, 𝑗, 𝑘 𝑗 )
Players: 𝑃 𝑗 , 𝑗 ∈ {0, 1} computing parties
Input: 𝑠:masked scores; 𝑘 𝑗 : FSS key.
Output: 𝒐𝒋 : Arithmetic shares.
For each masked score 𝑠𝑖 of 𝑠:
⟨𝑜⟩𝑖 ← 𝐹𝑆𝑆.𝐸𝑣𝑎𝑙 𝐼𝐶 ( 𝑗, 𝑘𝑣𝑒𝑐 𝑗 [𝑖], 𝑠𝑖 )
𝒐𝒋 ← 𝒐𝒋 .𝑎𝑝𝑝𝑒𝑛𝑑 (⟨𝑜⟩𝑖 )

Algorithm 7Monchi.Result(𝒐0, 𝒐1)
Players: Gate
Input: (𝒐0, 𝒐1): arithmetic shares of the results
Output: 𝒐: Results of the comparison 𝑓 <

𝜃,1 (𝑠)
𝒐 = 𝒐0 + 𝒐1

𝑃0 and 𝑃1 obtain 𝑠 + 𝑟 without any modular reduction, and, hence,
some leakagemay appear. Such leakage is mitigated by the introduc-
tion of the new 𝛼 . Considering that 𝑠 (resp. 𝛼) is drawn uniformly
at random with 𝑛 (resp.𝑚) bits, given the sum 𝑠 + 𝑟 + 2𝑛𝛼 , all values
of 𝑠 can be expected – and an attacker cannot get any information
on the score – with an overwhelming probability of 1− 2𝑛−1

2(𝑛+𝑚) . This
term 𝛼 cancels out during the modular reduction mod 2𝑛 which
precedes the beginning of the Monchi.Eval algorithm.

A more detailed formal analysis can be found below.

5.2 Security Proof
We consider security against a Honest-but-Curious adversary A
that corrupts up to one of the parties {𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡, 𝐵𝐼𝑃,𝐺𝑎𝑡𝑒, 𝑃0, 𝑃1}.
We consider a static corruption model where the adversary must
choose which participant to corrupt before the execution of the
computations. This is a standard security model in previous MPC
frameworks [5, 9, 11, 25, 29]. Under this threat model, we define and
later prove the privacy and correctness of our constructions. Later,
we extend our security to certain combinations of corruptions.

We employ the standard real world - ideal world paradigm, pro-
viding a simulator for each party corrupted by the ideal adversary
A′ such that the adversary cannot distinguish the simulator-led in-
teractions of A′ from the real-world view of A with the party/ies
it corrupted. The ideal world simulation contains an additional
trusted party that receives all the inputs from all parties, computes
the ideal functionality correctly and sends the corresponding re-
sults back to the corresponding parties. Conversely, the Monchi
protocol is executed in real world in the presence of A.

Our security proof works in the (FMonchi.setup)-hybrid model,
that is, grounded on the faithful execution of Monchi.setup by
a trusted party that generates and distributes each piece of setup
material to its designated recipient.

Ideal Functionality F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓
F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 interacts with 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡, 𝐵𝐼𝑃,𝐺𝑎𝑡𝑒, 𝑃0, 𝑃1 and
the simulator S, and is parameterized by the inputs to
Monchi.setup and the template length 𝑙 .
• Inputs: F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 receives 𝒙 from 𝐺𝑎𝑡𝑒 and, 𝒀 from
𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 .

• Computation: F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 sets 𝒔 = {𝒀𝑖𝒙𝑇 }∀𝑖∈{1...𝐾 } and
obtains 𝒐 = {𝒔𝑖 ⩾ 𝜃 }∀𝑖∈{1...𝐾 }

• Output: Sends 𝒐 to 𝐺𝑎𝑡𝑒 .

Theorem 5.1 (Security of Monchi). For each party in {𝐵𝐼𝑃 ,
𝐸𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡 , 𝐺𝑎𝑡𝑒 , 𝑃0, 𝑃1}, there exists a PPT algorithm S (simu-
lator) such that ∀𝜃 ∈ Z∗

𝑛+ , ∀𝒙 ∈ Z
𝑙
𝑛 , ∀𝒀 ∈ Z𝑙×𝐾𝑛 , S realizes the

ideal functionality F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 , such that its behavior is computationally
or statistically indistinguishable from a real world execution of the
Monchi protocol (consisting of the sequential execution of algorithms
4, 5, 6 by the designated players) in the presence of a static semi-honest
adversary A corrupting said party.

Proof. We define a simulator S for each possible corruption
during the execution of each sequential step in Monchi protocol:

• For corrupt 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 : Since it does not receive any mes-
sages from any other party, it suffices for S to run 𝑪𝑌 =

{Monchi.Encr(𝑝𝑘, 𝒀𝒊)}∀𝑖∈{1...𝐾 } under BFV using 𝑝𝑘 with
the chosen packing technique and give it to A′, then yield
𝒀 to F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 . The adversary cannot distinguish anything,
as the valid 𝑪𝑌 is enough to perfectly simulate his view of
the protocol.

• For corrupt 𝐵𝐼𝑃 :S artificially sets 𝒀 ′ = 0Z𝑙×𝐾𝑛 and 𝒙′ = 0Z𝑙𝑛 ,
encrypts them into𝐶𝑌 ′ &𝐶𝑥 ′ under BFV using 𝑝𝑘 with the
chosen packing technique and gives both toA′. It also gives
𝐶𝑠′ = {Monchi.EvalScore(𝐶𝑌 ′ ,𝐶𝑥 ′ ) to A′. For all these
ciphertexts, any non-negligible advantage to distinguish
𝐶𝑠′ from𝐶𝑠 ,𝐶𝑥 ′ from𝐶𝑥 or𝐶𝑌 ′ from𝐶𝑌 would immediately
provide a non-negligible advantage to solve the decisional
RLWE problem of BFV [14].

• For corrupt 𝐺𝑎𝑡𝑒 : S runs Monchi.Encr(𝑝𝑘, 𝒙) and gives it
to A′, then it artificially sets 𝒔′ = 0Z𝐾𝑛 , encrypts it under
BFV using 𝑝𝑘 with the chosen packing technique and give it
to A′. Again, any non-negligible advantage to distinguish
𝐶𝑠′ from𝐶𝑠 would immediately provide a non-negligible ad-
vantage to solve the decisional RLWE problem of BFV [14].
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• For corrupt 𝑃 𝑗 with 𝑗 ∈ {0, 1}:S artificially samples 𝒔′ from
U[Z𝐾2𝑛 ], encrypts it into𝐶𝑠′ under BFV using 𝑝𝑘 and gives
it to A′. S runs Monchi.BFVtoFSS to generate share 𝑗 of
𝑠′ and gives this share to A′. Then, S computes the other
share 1− 𝑗 so that their reconstruction yields 𝑠′ and yields it
to A′. Finally, S runs Monchi.EvalCompare(𝑠′, and gives
the output share 𝑜 𝑗 to A′.
Crucially, in the absence of the masking term 𝛼 , the real-
world adversary would receive 𝑠 = 𝑠 + 𝑟 without any modu-
lar reduction, thus he would have a meaningful advantage
at distinguishing between the distributions of 𝑠 and 𝑠′ and
thus breaking the simulation. By adding 𝛼 drawn uniformly
at random with 𝑚 bits, the distributions 𝑠 + 𝑟 + 2𝑛𝛼 and
𝑠′+𝑟 +2𝑛𝛼 are indistinguishable with probability 1− 2𝑛−1

2(𝑛+𝑚) ,
based on the probability of obtaining a sampling a value
of 𝛼 that falls under the interval of [1, 2𝑛 − 1]. This term 𝛼

cancels out during the 2𝑛 modular reduction, hence having
no impact on the FSS gate evaluation.
For the FSS IC gate, we resort to the simulation-based se-
curity of [5, Definition 2] to argue computational indistin-
guishability of the keys from random strings, hiding the
information of 𝑟 contained in 𝒌0 and 𝒌1 from A/A′, and
thus allowing the addition of this 𝑛-bit uniformly random
mask 𝑟 to perfectly hide the input value 𝑠 in the signed
𝑛-bits interval.

□

Theorem 5.2 (Correctness of Monchi). For every threshold
𝜃 ∈ Z∗𝑛+, every pair of input vectors 𝒙 ∈ Z𝑙𝑛 , 𝒀 ∈ Z𝑙×𝐾𝑛 , and for
suitable choices of BFV& FSS parameters, the execution of theMonchi
protocol fulfills:

Pr[Monchi(𝒙, 𝒀 , . . . ) ≠ F𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 (𝒙, 𝒀 )] ≤ 1/𝑛𝑒𝑔𝑙 (𝑝𝑝 (𝐵𝐹𝑉 ))

where 𝑛𝑒𝑔𝑙 (𝑝𝑝 (𝐵𝐹𝑉 )) is a negligible function for sufficiently large
BFV parameters in Monchi.Setup.

Proof. To argue the correctness of the BFV-based matrix multi-
plication we resort to [14, Theorem 1], stating that for an appropri-
ately chosen BFV parameters 𝐵, 𝑡 and 𝑞, the BFV scheme supports
the evaluation of a circuit of depth 𝐿𝐵𝐹𝑉 , where 𝐿𝐵𝐹𝑉 = 1 in our
case for the one single multiplication present in the scalar product.

Adding the mask 𝛼 has no impact on correctness, as this mask is
cancelled out when performing reduction modulo 2𝑛 .

Lastly, we focus on the correctness of the FSS gate. Based on
[5, Theorem 3], (FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟 ) and FSS.Eval𝐼𝐶 ( 𝑗, 𝒌𝐼𝐶

𝑗
, 𝑧𝜃 )) con-

stitute an FSS gate realizing 𝑓 (𝑠, 𝜃 ) = (𝑠 ⩾ 𝜃 ). Then, follow-
ing the Correctness definition in [5, Definition 2], we argue that
Pr[FSS.Eval𝐼𝐶 (0, 𝒌𝐼𝐶0 , 𝑠𝜃 ) + FSS.Eval𝐼𝐶 (1, 𝒌𝐼𝐶1 , 𝑠𝜃 ) = (𝑠 ⩾ 𝜃 )] = 1.

□

Beyond this security definition, and due to the lack of direct
interactivity between 𝐵𝐼𝑃 and {𝑃0, 𝑃1}, Monchi also maintains
its privacy guarantees if A corrupts both 𝐵𝐼𝑃 and one of {𝑃0, 𝑃1}.
This can be proven straightforwardly combining the simulator for
corrupted 𝐵𝐼𝑃 with that of one corrupted party out of {𝑃0, 𝑃1}. A
similar argument can be made for the case where A corrupts both
𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 and one of {𝑃0, 𝑃1}. Finally, 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 and 𝐵𝐼𝑃 may

be collapsed into a single party while preserving the privacy of
the fresh template and the biometric operations, yet relinquishing
the privacy of the reference template database, which is why we
presented them as separate entities.

6 PERFORMANCE EVALUATION
In this section, we describe the results of our experimental evalua-
tion of Monchi.

6.1 Environment setting
We implemented Monchi with the two packing methods in Golang
with efficient C blocks and using several cryptography libraries
including: the (2, 2) threshold variant of the BFV implementation of
Lattigo [27] for Monchi.Encrypt and Monchi.BFVtoFSS partially,
and Funshade’s FSS algorithm for Monchi.EvalCompare. Monchi
was implemented and executed on an Intel Core i7-7700 CPU, 3600
MHz with 4 physical cores available; To fully leverage the CPU ca-
pabilities, multi-threading was used, running the 4 cores in parallel.

Regarding security parameters, collaborative decryption requires
the use of an adequately large smudging noise[10] (the 𝑒𝑖 term). Ac-
cordingly, the BFV parameters were set as follows: the polynomials
degree is set to 𝑁 = 8192, and, the size of the ciphertext modulus to
162 bits. Based on this choice of security parameters, we chose the
maximum available plaintext modulus, and set the size of 𝑡 to ∼ 32
bits4. For FSS we work with 𝑛 = 16-bit modular arithmetic. Finally,
in order to avoid errors while adding 𝛼 be random m signed bits
integers where𝑚 = 𝑡 − 𝑛 = 16. The reason behind the choice of a
large plaintext modulus for the BFV scheme is primarily driven by
the need to achieve the best performance results while keeping a
high security degree and avoid errors during decryption.

To study and evaluate the performance of Monchi according
to the airport use case, we have used the Labeled Faces in the
Wild (LFW) dataset [18], the publicly available dataset for face
verification. The dataset includes 13,233 facial images of 5,749 in-
dividuals. To process these images and extract templates, we used
4 pre-trained neural network models – Swin Transformer [22] –
and, obtain templates size of 64, 128, 256, 512 floats. We employ the
False Acceptance Rate (FAR) and False Rejection Rate (FRR) as key
metrics, as defined in [21], to assess the impact of quantization on
our facial recognition model’s accuracy.

6.2 Quantization and Accuracy
In this section, we study the quantization to minimize the accuracy
degradation. The extracted features are quantized to fit BFV integer
inputs. Given that templates are normalized so that scores range
between -1 and 1, the quantization factor defines the range of possi-
ble scores. Hence, the quantization factor has a direct impact on the
accuracy of biometric identification and the security of Monchi.
Given that 𝑛 is the security parameter for FSS 𝑛 = 16, the scores’
range should not exceed [−2𝑛−1, 2𝑛−1 − 1]. For each template size,
the quantization factor has been found to guarantee a degradation
lower than 10% rate of FRR at a FAR of 10−6. For simplicity, we pick
a fixed quantization factor (𝑞𝑓 ) of 180.

4Note that the plaintext modulus needs to be a prime with special properties to allow
ciphertext rotations [7]
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Figure 2: Execution time of 1:K identification withMonchi for 𝑙-dimensional templates using a ring with 𝑁 = 8192

Table 2: Computation overhead ofMonchi (online phase, 𝑵 = 8192, 𝒒𝒇 = 180) running the 4 cores in parallel.

Packed-Matrix Encoding Packed-Integer Encoding

DB Size Dim Time (s) Total Total Time(s) Total Total

(𝐾) (𝑙) Enc EvalScore BFVtoFSS EvalCompare Time (s) Mem (MB) Enc EvalScore BFVtoFSS EvalCompare Time (s) Mem (MB)

1024

64 0.003 0.09 0.024 0.015 0.132 8 0.06 0.14 0.006 0.015 0.221 52
128 0.003 0.15 0.055 0.015 0.223 14 0.09 0.27 0.006 0.015 0.381 101
256 0.003 0.28 0.123 0.015 0.421 26 0.24 0.45 0.006 0.015 0.711 202
512 0.003 0.67 0.226 0.015 0.914 52 0.34 0.90 0.006 0.015 1.261 403

Table 3: Impact of Quantization on Accuracy at 𝐹𝐴𝑅 = 10−6

(𝑙) 𝐹𝑅𝑅org 𝐹𝑅𝑅qnt

64 0.0187 0.0189
128 0.0089 0.0086
256 0.0025 0.0025
512 0.0031 0.0031

Table 3 presents the FRR before (𝐹𝑅𝑅𝑜𝑟𝑔) and after (𝐹𝑅𝑅𝑞𝑛𝑡 )
quantization for a fixed 𝐹𝐴𝑅 = 10−6. In all cases, the impact of
quantization is very low, and it is negligible above 𝑙 = 256.

6.3 Performance evaluation
To evaluate the performance of Monchi and study the effectiveness
of the two encoding schemes, we conducted experiments with
different database sizes and across various template dimensions.

Table 2 depicts the computational cost of Monchi’s identifica-
tion phase. comparing the two encoding schemes for an encrypted
database of 1024 templates. The packed-matrix encoding yields a
quicker process for the encryption of freshly extracted templates
(Monchi.Encr), around 30 milliseconds (ms) for 512-dimensional
templates compared to 0.34 seconds (s) with packed-integer encod-
ing. The computation of the encrypted scores (Monchi.Evalscore)

is also faster, taking around 0.67 s versus 0.90 s with packed-integer
encoding. On the other hand, the transformation of scores during
the transition from BFV to FHE, involving collective decryption
associated with masking and randomization, is faster with packed-
integer encoding. Monchi.BFVtoFSS takes 0.006 s with packed-
integer encoding (vs. 0.226s with packed-matrix encoding) thanks
to the reduced number of ciphertexts holding the encrypted scores.
The processing complexity of evaluating the Interval Containment
gate (Monchi.EvalCompare) remains constant, regardless of the
encoding scheme used. Overall, the identification phase is faster
with packed-matrix encoding, requiring 0.914 s with packed-integer
encoding for 512-dimensional templates instead of 1.261 s in the
case of packed-matrix encoding and the memory required is also
lower with packed-matrix encoding (403 MB vs. 52 MB for 𝑙 = 512).

Figure 2 demonstrates the computational complexity of the on-
line phase, covering a broader range of database sizes. We observe
that, for small database size (typically less than 2048), packed-matrix
encoding outperforms packed-integer encoding. However, as the
database size exceeds 2048, there is a notable shift in efficiency.
Additionally, the computational cost of the online computation
remains constant with packed-integer encoding provided that the
database size does not exceed 𝑁 = 8192. The reduced efficiency of
packed-integer encoding for small databases can be attributed to
two factors: the requirement to encode each feature of the live tem-
plate into a single polynomial, resulting in 𝑙 ciphertexts encrypting
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Table 4: Computation and Communication overhead ofMonchi’s actors (online phase, 𝑵 = 8192, 𝒒𝒇 = 180)

Packed-Matrix Encoding Packed-Integer Encoding

DB Size Dim Time (s) Bandwidth (MB) Time(s) Bandwidth (MB)

(𝐾) (𝑙) BIP Gate 𝑃 𝑗 BIP←→ 𝐺𝑎𝑡𝑒 Gate←→ 𝑃 𝑗 𝑃1− 𝑗 ←→ 𝑃 𝑗 BIP Gate 𝑃 𝑗 BIP←→ Gate Gate←→ 𝑃 𝑗 𝑃1− 𝑗 ←→ 𝑃 𝑗

1024

64 0.09 0.003 0.039 3.6 3.2 4e-4 0.14 0.06 0.021 26 0.41 5e-5
128 0.15 0.003 0.070 6.7 6.3 8e-4 0.27 0.09 0.021 51 0.41 5e-5
256 0.28 0.003 0.14 13 12 1.6e-3 0.45 0.24 0.021 101 0.41 5e-5
512 0.67 0.003 0.24 26 25 3.2e-3 0.90 0.34 0.021 201 0.41 5e-5

one live template compared to one ciphertext with packed-integer
encoding, and the need for padding of each polynomial with 𝑁 −𝐾
zero coefficients, considering that the ring polynomial degree in use
is N, K is the database size, and templates are of l-dimension. Fur-
thermore, the better efficiency of packed-integer encoding for larger
databases (where𝐾 ≥ 𝑁 ) can be explained with the varying compu-
tational demands of the two encoding methods. In packed-matrix
encoding, the operations carried out in the encrypted space, involv-
ing log2 (𝑙) cumulative rotations and additions per ciphertext of the
encrypted database, become increasingly expensive. Conversely,
with packed-integer encoding, the required operations consist of
cheaper 𝑙 cumulative additions for each batch of 𝑁 templates.

Lastly, Table 4 shows the computational costs and the commu-
nication bandwidth of the different actors involved in the identi-
fication phase. The BIP and the Gate exchanging the encrypted
live template (Gate→ BIP) and the encrypted scores (BIP→ Gate)
results in a communication cost of 26 MB with packed-matrix en-
coding compared to 201 MB with packed-integer encoding for 512-
dimensional templates. Conversely, the communication cost be-
tween the Gate and each party (Gate→ 𝑃 𝑗 ) exchanging encrypted
scores and arithmetic shares of the FSS IC gate (𝑃 𝑗 →Gate) is higher
with packed-matrix encoding (25 MB vs. 0.41 MB with 𝑙 = 512).

7 CONCLUSION
Monchi is a novel protocol for privacy-preserving biometric iden-
tification. We build our protocol upon BFV, and FSS, for full cor-
rectness for decryption and comparison with a fixed threshold,
requiring only a single round of communication among the two
parties in the identification phase. To ensure leakage resilience, we
introduce local shares ⟨𝛼⟩ to securely transition from BFV to FSS.
We propose and analyze two packing encoding techniques, packed-
matrix encoding and packed-integer encoding. We observe that the
primary advantage of packed-integer encoding is its elimination of
costly rotational operations during inner product evaluation in the
encrypted domain. Conversely, packed-matrix encoding is more
suited for operations involving small databases. We analyze practi-
cal security aspects of the biometric identification, and implement
these protocols on top of the Lattigo library with efficient C blocks.
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A PACKED-MATRIX ENCODING
This section details the computation of the inner product between a
database of𝐾 biometric templates and a live template, for dimension
𝑙 . We introduce matrices 𝒀 ′ and 𝒙 , representing the database and
the live template, respectively, using packed-matrix encoding. We
assume that 𝐾 = 𝑁 /𝑙 , obtaining:

𝒀𝑖 =
[
𝒀1 𝒀2 · · · 𝒀𝑁 /𝑙

]
∈ Z1×𝑁 ,

𝑿 =
[
𝒙 𝒙 · · · 𝒙

]
∈ Z𝑁 .

Encrypting 𝒀 ′ and 𝑿 yields:

𝐶𝒀 ′ =

[
𝑐
𝑌
(1)
1

· · · 𝑐
𝑌
(𝑙 )
1

· · · 𝑐
𝑌
(1)
𝑁 /𝑙

· · · 𝑐
𝑌 𝑙
𝑁 /𝑙

]
𝐶𝑿 =

[
𝑐𝑥 (1) 𝑐𝑥 (2) · · · 𝑐𝑥 (𝑙 ) · · · 𝑐𝑥 (1) · · · 𝑐𝑥 (𝑙 )

]
First coefficient-wise multiplication (denoted as 𝐶𝑀𝑢𝑙1):

𝐶𝑀𝑢𝑙1 =
[
𝑐𝑥 (1) · 𝑐𝑌 (1)1

· · · 𝑐𝑥 (1) · 𝑐𝑌 (1)
𝑁 /𝑙

· · · 𝑐𝑥 (𝑙 ) · 𝑐𝑌 (𝑙 )
𝑁 /𝑙

]
,

Left rotation of 𝐶𝑀𝑢𝑙1 by 1 (denoted as 𝐶𝑅𝑜𝑡1):

𝐶𝑅𝑜𝑡1 =
[
𝑐𝑥 (2) · 𝑐𝑌 (2)1

· · · 𝑐𝑥 (2) · 𝑐𝑌 (2)
𝑁 /𝑙

· · · 𝑐𝑥 (1) · 𝑐𝑌 (1)1

]
Coefficient-wise addition of𝐶𝑀𝑢𝑙1 and𝐶𝑅𝑜𝑡1 (denoted as𝐶𝑆𝑢𝑚1):
𝐶𝑆𝑢𝑚1 =[
𝑐𝑥 (1) 𝑐𝑌 (1)1

+ 𝑐𝑥 (2) 𝑐𝑌 (2)1
· · · 𝑐𝑥 (1) 𝑐𝑌 (1)

𝑁 /𝑙
+ 𝑐𝑥 (2) 𝑐𝑌 (2)

𝑁 /𝑙
· · ·

]
Subsequent left rotation by 3 (denoted as 𝐶𝑅𝑜𝑡2): 𝐶𝑅𝑜𝑡2 =[

𝑐𝑥 (3) 𝑐𝑌 (3)1
+ 𝑐𝑥 (4) 𝑐𝑌 (4)1

· · · 𝑐𝑥 (3) · 𝑐𝑌 (3)
𝑁 /𝑙
+ 𝑐𝑥 (4) 𝑐𝑌 (4)

𝑁 /𝑙
· · ·

]

We recursively repeat the steps of coefficient-wise rotation, and
addition log2 (𝑙) times, culminating in the computation of 𝐶𝑧 :

𝐶𝒛 =

[∑𝑙
𝑖=1 𝑐𝑥 (𝑖 ) · 𝑐𝑌 (𝑖 )1

· · · ∑𝑙
𝑖=1 𝑐𝑥 (𝑖 ) · 𝑐𝑌 (𝑖 )

𝑁 /𝑙
· · ·

]
.

The coefficients at indices {0, 𝑁 /𝑙, · · · , 𝐾 − 𝑁 /𝑙} in 𝐶𝑧 contain
the encrypted scores for the 𝑁 /𝑙 templates, while other coefficients
are disregarded post-decryption.

B PACKED-INTEGER ENCODING
This section introduces a packed-integer encoding scheme for
feature-wise representation of a biometric database. Assuming
𝐾 = 𝑁 for clarity, we define a matrix 𝒀 ′′ where each row captures
the 𝑗𝑡ℎ feature from every template in the database. The matrix
𝑿 ′ comprises 𝑙 rows, each row containing 𝑁 replications of each
feature of the live template.

𝒀 ′′ =


𝑌
(1)
1 𝑌

(1)
2 · · · 𝑌

(1)
𝑁

𝑌
(2)
1 𝑌

(2)
2 · · · 𝑌

(2)
𝑁

.

.

.
.
.
.

. . .
.
.
.

𝑌
(𝑙 )
1 𝑌

(𝑙 )
2 · · · 𝑌

(𝑙 )
𝑁


∈ Z𝑙×𝑁 ,

𝑿 ′ =


𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )

𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )

.

.

.
.
.
.

. . .
.
.
.

𝑥 (1) 𝑥 (2) · · · 𝑥 (𝑙 )


∈ Z𝑁×𝑙 .

Each row of 𝒀 ′′ and each column of 𝑿 ′ are encoded into single
polynomials, resulting after the encryption in 𝑙 ciphertexts for the
entire database and 𝑙 ciphertexts for the live template:

For 𝑖 ∈ {1, · · · , 𝑙}, we have:

𝐶𝒀 𝑖 =

[
𝑐
𝑌
(𝑖 )
1

𝑐
𝑌
(𝑖 )
2

· · · 𝑐
𝑌
(𝑖 )
𝑁

]
,

𝐶𝑿𝑖 =
[
𝑐𝑥 (𝑖 ) 𝑐𝑥 (𝑖 ) · · · 𝑐𝑥 (𝑖 )

]
.

The computation of the inner product involves 𝑙 multiplications
and cumulative additions.
For each 𝑖 ∈ {1, · · · , 𝑙}:

𝐶
𝑚𝑢𝑙 (𝑖 ) = 𝐵𝐹𝑉 .𝑀𝑢𝑙 (𝐶𝒀 (𝑖 ) ,𝐶𝑿 (𝑖 ) ),
𝐶𝒛 = 𝐵𝐹𝑉 .𝐴𝑑𝑑 (𝐶𝑖

𝑚𝑢𝑙
,𝐶𝒛) .

The coefficients in 𝐶𝑧 represent encrypted scores, yielding a
single ciphertext that encapsulates 𝑁 encrypted scores.
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