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PROLONGATION OF REGULAR-SINGULAR CONNECTIONS ON
PUNCTURED AFFINE LINE OVER A HENSELIAN RING

PHÙNG HÔ HAI, JOÃO PEDRO DOS SANTOS, PHA. M THANH TÂM, AND ÐÀO VĂN THI.NH

Abstract. We generalize Deligne’s equivalence between the categories of regular-singular
connections on the formal punctured disk and on the punctured affine line to the case
where the base is a strictly Henselian discrete valuation ring of equal characteristic 0.
We also provide a weaker result when the base is higher dimensional.

1. Introduction

Let C be an algebraically closed field of characteristic 0 and x be a variable. The

formal punctured disk, SpecC((x)), is equipped with the “vector field” ϑ := x
d

dx
. In

[Del87, Proposition 13.35], Deligne established an equivalence between regular-singular
connections on the formal punctured disk and on the punctured affine line P1

C r {0,∞}:{
Regular-singular connections
on the punctured formal disk

}
'
{

Regular-singular connections
on the punctured affine line

}
.

Deligne uses this equivalence to produce “fiber functors” from the category of regular-
singular connections on the formal punctured disk, the tangential fiber functors.

Deligne’s equivalence was also considered by Katz in a more general setting [Kat87]. The
analogs in characteristic p were essentially established by Gieseker in [Gie75] and further
developed by Kindler in [Kin15]. There is also a generalization to the p-adic setting by
Matsuda [Mat02], see also [And02].

If we now replace C by a complete local noetherian C–algebra R, Deligne’s equivalence
possesses a clear analogue, which was proved in [HdST23, Theorem 10.1]. The main idea
behind the proof of this result is to make use of the fact that R is a limit of finite dimensional
local C-algebras and then, turning attention to objects with “truncated actions” of R, to
“pass to the limit.” To be more specific, let r stand for the maximal ideal of R, so that
Rk := R/rk+1 is a finite C-algebra. Now, given a C-linear category C (such as the category
of connections on the punctured affine line), we restrict our attention to the category
C(Rk) of objects in C which have an action of Rk. If C′ is another C-linear category (e.g.
the category of connections on the formal punctured disk) and if we are able to obtain
compatible equivalences C(Rk) ' C′(Rk), it is to be hoped that “passing to the limit” will
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give us a menas to produce equivalences of R-linear categories. Clearly, this idea relies
heavily on the completeness of R.

In this manuscript, we deal with the case where R is a noetherian Henselian local C–
algebra. Our main results are Theorem 4.1 and Theorem 4.2. In a nutshell:

Theorem 1.1. Let MCrs(∗/R) denote the category of regular-singular connections on ∗
over R, and MC◦rs(∗/R) denote the full subcategory of objects whose underlying modules
are R-flat. Then, the restriction functor

r : MC◦rs(R[x±]/R) −→MC◦rs(R((x))/R)

is an equivalence provided that R is a G-ring. If R is, moreover, a discrete valuation ring,
then

r : MCrs(R[x±]/R) −→MCrs(R((x))/R)

is an equivalence.

The relevance of this result is twofold. On the one hand, according to Deligne’s point
of view [Del87], it produces fiber functors for the category MCrs(R((x))/R): we compose
the aforementioned equivalence with a fiber functor at an R-point of SpecR[x±]. (Deligne
calls these “tangential” fiber functors.) On the other hand, this equivalence describes the
structure of MCrs(R[x±]/R) in terms of MCrs(R((x))/R), which is easier to grasp. Finally,
the reduction from a complete noetherian local ring to a noetherian Henselian local ring
should be an important step toward the case of an arbitrary noetherian local ring. (It is
perhaps useful to observe that the class of G-rings is a broad and reasonable one. More on
this will be found in the body of the text.)

Our approach is based on Deligne’s equivalence as presented in [HdST23, Theorem 10.1]
and Popescu approximation. While the proof of [HdST23, Theorem 10.1] relied on the
accessory category of representations of the group Z, we have found no reasonable way to
include this actor in the present picture; instead, we have made use of its “Lie version”,
which is the category of endomorphisms of R-modules. The part concerning Popescu
approximation is of course important, but its employment is more straightforward.

The paper is organized as follows. Section 2 is devoted to the category of regular-singular
connections on the formal relative punctured disk. We show that each connection on a flat
R-module admits an Euler form. Section 3 is devoted to the category of regular-singular
connections on the punctured relative affine line. Similarly, we show that a connection on
an R-flat module admits an Euler form. The results obtained in these two sections are
then used to prove Theorem 1.1 in Section 4.

1.1. Notation and conventions.
C is a fixed algebraically closed field of characteristic 0.
R is an integral noetherian local C-algebra with maximal ideal r and residue field

isomorphic to C.
Rk is the truncation R/rk+1.
R̂ is the r–adic completion of R.

R((x)) denotes the ring of formal Laurent series with coefficients in R: we have R((x)) =
RJxK[x−1].

(0 : a)M is the submodule of all m ∈ M annihilated by the ideal a. If a = (a), we shall
abbreviate (0 : a)M to (0 : a)M .

ϑ denotes R-linear derivation on R((x)) given by

ϑ
∑

anx
n = x

d

dx

∑
anx

n =
∑

nanx
n.

Spϕ denotes the spectrum of the endomorphism ϕ : V → V of vector space over C.
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τ denotes a subset of C such that the natural map τ → C/Z is bijective. In some
cases, we shall assume that 0 ∈ τ .

EndR denotes the category of couples (V,A), consisting of a finite R-module V and an
R-linear endomorphism A : V → V ; arrows from (V,A) to (V ′, A′) are R-linear
morphisms ϕ : V → V ′ such that A′ϕ = ϕA. See also [HdST23].

End◦R denotes the full subcategory of EndR whose objects are flat (and hence free)
R−modules.

2. regular-singular connections on a punctured formal disk

2.1. Definitions and properties. We review in this subsection the definitions and main
properties of regular-singular connections on the relative formal punctured disk SpecR((x)).
Our reference is [HdST23]. We notice that although in op. cit. the ring R is assumed to
be complete, many results hold in more generality.

Definition 2.1 (Connections on the punctured formal disk). The category of connec-
tions on the punctured formal disk over R, or on R((x)) over R, or on R((x))/R, denoted
MC(R((x))/R), has for
objects those couples (M,∇) consisting of a finite R((x))-module M and an R-linear endo-

morphism ∇ : M → M , called the derivation, satisfying Leibniz’s rule ∇(fm) =
ϑ(f)m+ f∇(m), and the

arrows from (M,∇) to (M ′,∇′) are R((x))-linear morphisms ϕ : M → M ′ such that
∇′ϕ = ϕ∇.

The R–flat connections on R((x))/R enjoy the following remarkable property which is
employed further ahead.

Proposition 2.2 ([HdST23, Theorem 8.18]). Let (M,∇) be a connection on R((x)) over
R such that M is R–flat. Then, M is a flat R((x))–module.

Definition 2.3 (Logarithmic connections). The category of logarithmic connections, de-
noted MClog(RJxK/R), has for
objects those couples (M,∇) consisting of a finite RJxK-module and an R-linear endo-

morphism ∇ : M → M, called the derivation, satisfying Leibniz’s rule ∇(fm) =
ϑ(f)m+ f∇(m), and

arrows from (M,∇) to (M′,∇′) are RJxK-linear morphisms ϕ : M→M′ such that ∇′ϕ =
ϕ∇.

The two categories MC(R((x))/R) and MClog(RJxK/R) are abelian categories and there
is an evident R-linear functor

γ : MClog(RJxK/R) −→MC(R((x))/R).

Definition 2.4 (Regular-singular connections and models).
(1) An object M ∈ MC(R((x))/R) is said to be regular-singular if it is isomorphic to a

certain γ(M) for some M ∈MClog(RJxK/R). The full subcategory of regular-singular
connections will be denoted by MCrs(R((x))/R).

(2) Given M in MCrs(R((x))/R), any object M ∈MClog(RJxK/R) such that γ(M) ' M
is called a logarithmic model of M .

(3) Let MC◦rs(R((x))/R), respectively MC◦log(RJxK/R), stand for the full subcategory of
MCrs(R((x))/R), respectively MClog(RJxK/R), consisting of those objects (M,∇) for
which M is a flat R((x))–module, respectively flat RJxK–module.

Remark 2.5. Let M ∈MClog(RJxK/R) be a model ofM . Since (0 : x)M ⊂M is preserved
by the derivation, it is clear that M possesses a model M′ such that (0 : x)M′ = 0.
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Example 2.6 (Euler connections). Let (V,A) ∈ EndR be given. The logarithmic connec-
tion associated with the couple (V,A) is defined by the couple (RJxK⊗R V,DA), where

DA(f ⊗ v) = ϑ(f)⊗ v + f ⊗Av.

This logarithmic connection is called the Euler connection associated with (V,A). Notation:
eulRJxK(V,A).

The Euler connections yield a functor, denoted eulRJxK or simply eul when no confusion
may appear:

eul : EndR −→MClog(RJxK/R).

It is straightforward to check that this is an R-linear, exact, and faithful tensor functor.
Combining eul with γ we have a functor

γeul : EndR −→MCrs(R((x))/R).

The main aim of this section is to show that this functor produces an equivalence when
restricted to objects with exponents lying in τ ⊂ C (Theorem 2.15). We first introduce the
exponents.

Let (M,∇) ∈MClog(RJxK/R). The Leibniz rule implies that ∇(xM) ⊂ xM. Hence, we
obtain an R-linear endomorphism

(1) res∇ : M/(x) −→M/(x),

given by

(2) res∇(m+ (x)) = ∇(m) + (x).

Further, taking residue modulo r we have the map

(3) res∇ : M/(r, x) −→M/(r, x).

Definition 2.7 (Residue and exponents). Let (M,∇) ∈MClog(RJxK/R).
(1) The R-linear map (1) is called the residue of ∇.
(2) The eigenvalues of res∇ are called the (reduced) exponents of ∇. The set of exponents

will be denoted by Exp(M,∇), Exp(∇) or Exp(M) if no confusion may appear.

The following result was obtained in [HdST23] for R being a complete local C-algebra,
but the proof works indeed for any local C-algebra.

Theorem 2.8 ([HdST23, Theorem 8.10]). Let (M,∇) ∈MClog(RJxK/R) be such that M
is a free RJxK-module. If Exp(M) ⊂ τ , then (M,∇) is isomorphic to eulRJxK(M/(x), res∇).

�

2.2. Euler form for connections of MC◦rs(R((x))/R). We now suppose, until the end
of Section 2.2, that R is in addition Henselian. With the preparation in the previous
subsection, we show now that any regular-singular connection (M,∇), whereM is a flat R–
module, is isomorphic to an Euler connection. This is an extension of [HdST23, Corollary
9.4] to the case where R is solely Henselian. The idea behind the proof is to show that
logaritmic models with exponents in τ exist in all generality (cf. Proposition 2.12) and
that these models, when R is complete, are sufficient to characterize the Deligne-Manin
models appearing in the central result [HdST23, Theorem 9.1] (this is the content of
Theorem 2.9). Then, basic Commutative Algebra (cf. Lemma 2.13) allows us to find free
logarithmic models for (M,∇) by using free logarithmic models of R̂((x))⊗M .

In order to present a clear argument, we require the following notations and termi-
nology from [HdST23]. Given k ∈ N and an object (M,∇) of MClog(RJxK/R), or



PROLONGATION OF REGULAR-SINGULAR CONNECTIONS 5

of MCrs(RJxK/R), we let (M,∇)|k, or M|k if no confusion is likely, stand for the ob-
ject of MClog(CJxK/C), respectively MCrs(C((x))/C), obtained from the induced map
∇ : M/rk+1 −→M/rk+1.

We begin by showing that the Deligne-Manin model constructed in [HdST23, Theorem
9.1] can be singled-out by a much simpler condition.

Theorem 2.9. We assume that R is complete for the moment. Let (M,∇) ∈MCrs(R((x))/R)
posses a logarithmic model E ∈MClog(RJxK/R) enjoying the following properties:
(1) All its exponents are on τ .
(2) We have (0 : x)E = 0.

Then E is isomorphic to the Deligne-Manin logarithmic model described in [HdST23,
Theorem 9.1]. In particular,
(a) the CJxK–module E|k is free for any given k ∈ N.
(b) If, in addition M is R-flat, then E is a free RJxK-module.

Proof. LetM ∈MClog(RJxK/R) be a model ofM as in [HdST23, Theorem 9.1]. Fix k ∈ N;
we know that M|k is a free CJxK-module. Hence, we obtain an arrow ϕk : E|k → M|k of
MClog(CJxK/C) which fits into

(4) E|k
ϕk //

natural
��

M|k� _
natural
��

M |k M |k

because of [HdST23, Proposition 4.4(3)]. Note that, ϕk is the unique arrow rendering
diagram (4) commutative. By this reason and the fact that E andM are r-adically complete
(see Exercise 8.2 and Theorem 8.7 in [Mat86]), we obtain an arrow of MClog(RJxK/R)

ϕ : E −→M

enjoying the following properties.
(i) For each k ∈ N, we have ϕ|k = ϕk.
(ii) The following diagram commutes:

E
ϕ //

natural
��

M

natural
��

lim←−kM |k lim←−kM |k.

Let us now observe that ϕ is surjective. Indeed, E|0 ∈ MClog(CJxK/C) is a model of
M |0 ∈MCrs(C((x))/C) having exponents in τ so that,

E|0
(0 : x)E|0

is, being a quotient of E|0, a model ofM |0 with exponents in τ . Therefore, the CJxK–linear
mapping

E|0
(0 : x)E|0

−→M|0

which is induced by ϕ0 is an isomorphism [HdST23, Proposition 4.4(3)]; consequently, ϕ|0
is surjective. Because RJxK, E and M are r-adically complete, and because of [EGA, 0I,
7.1.14], we conclude that ϕ is also surjective.
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We need to show that ϕ is also injective. It is tempting to argue with the completion
lim←−kM |k, but this is a complicated object and we proceed as at the end of the proof of
[HdST23, Theorem 9.1]: We show that

ϕ[x−1] : E[x−1] −→M[x−1]

is an isomorphism. Once this is guaranteed, injectivity of ϕ is a consequence of the fact
that E→ E[x−1] is injective (by construction) and that

E� _

��

ϕ // M

��
E[x−1]

∼
ϕ[x−1]

// M[x−1]

commutes.
That ϕ[x−1] is an isomorphism is verified by the ensuing arguments. We start by observ-

ing that ϕ[x−1]|k is an isomorphism for all k, so that ϕ[x−1] is an isomorphism in a neigh-
borhood of the closed fiber of Spec R((x)) → Spec R. This implies that N := Kerϕ[x−1]
and Q := Cokerϕ[x−1] vanish on an open neighborhood of the aforementioned closed
fiber. Now, N and Q are objects of MC(R((x))/R), so that for each p ∈ Spec R, the
fibers N ⊗R k(p) and Q ⊗R k(p) are flat as R((x)) ⊗R k(p)-modules [HdST23, Theorem
8.19]. A simple argument in Commutative Algebra [HdST23, Lemma 9.2] now shows that
N = Q = 0, thus assuring that ϕ[x−1] is an isomorphism.

To end, if M is R-flat, Corollary 9.4 of [HdST23] is enough to conclude the prof of item
(b). �

In view of Theorem 2.9, it becomes important, even when R is solely Henselian, to
construct logarithmic models with exponents in τ . The construction follows the classical
method of using “Jordan subspaces” (generalized eigenspaces) to adjust the exponents
[Was76, Section 17.4] but, in the present case it is necessary to have such a decomposition
for R-linear endomorphisms. This is a consequence of the following lemma which was
mentioned in Remarks 8.15(a) of [HdST23].

Lemma 2.10 (“Jordan decomposition over R”). Let (V, ϕ) ∈ EndR and denote by ϕ :
V → V the reduction of ϕ : V → V modulo r. Let {%1, . . . , %r} be the spectrum of ϕ and
write

V =
r⊕
i=1

Ker
(
ϕ− %i

)µi
Then, there exists a direct sum

V = V1 ⊕ . . .⊕ Vr,
where Vi is ϕ–invariant R–submodule of V, such that its reduction modulo r is Ker

(
ϕ−%i

)µi ,
for each 1 ≤ i ≤ r.

Proof. Let Rn → V be a surjection inducing an isomorphism Cn → V/r. Then ϕ lifts to
ϕ̃ : Rn → Rn and the residue of the characteristic polynomial of ϕ̃ equals the characteristic
polynomial of ϕ:

Pϕ̃(T ) = Pϕ(T ).

As R is Hensenlian, the factorization

Pϕ(T ) =
r∏
i=1

(
T − %i

)µi
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lifts to a factorization

Pϕ̃(T ) =

r∏
i=1

gi(T ),

where, for any 1 ≤ i ≤ r, the polynomials gi and ĝi :=
∏
j 6=i gj are strictly coprime, i.e.

(?) R[T ] · gi +R[T ] · ĝi = (1),

cf. [Mi80, Ch. I, Section 4, p.32]. Let Vi = Ker gi(ϕ); then Vi are ϕ–invariant R–
submodules of V . From (?) and the fact that Pϕ̃(ϕ) vanishes identically on V , it is easy
to see that

V = KerPϕ̃(ϕ)

= V1 ⊕ · · · ⊕ Vr.

Now, the composition Vi → V → V sends Vi to Ker(ϕ−%i)µi and has kernel rV ∩Vi = rVi.
It is easily verified that Vi → Ker(ϕ − %i)µi must be surjective as well, so that the last
claim is verified. �

Example 2.11. If we drop the assumption that R be Henselian, the above result cer-
tainly fails. Suppose for example that R = {a/b : a, b ∈ C[t], b(0) 6= 0}. Define

ϕ =

(
0 1 + t
1 0

)
: R2 → R2. Then ϕ : C2 → C2 acts by multiplication by 1 on C(~e1 + ~e2)

and by multiplication by −1 on C(~e1 − ~e1). On the other hand, it is not possible to
decompose R2 into a direct sum of submodules of rank one.

We are now ready to show the existence of logarithmic models having exponents on τ .

Proposition 2.12 (Shearing). Let (M,∇) be the regular–singular connection on R((x))/R.
Then there exists a logarithmic model M ∈MClog(RJxK/R) of (M,∇) such that Exp(M) ⊂
τ and (0 : x)M = 0.

Proof. Let E be an arbitrary logarithmic model of (M,∇) such that (0 : x)E = 0 — and
hence E ⊂M . We shall proceed by reverse induction on the non-negative integer

b(E) := # Exp(E) \ τ.

Let us assume that b(E) > 0 and let % ∈ Exp(E) \ τ . We shall construct a logarithmic
model E′ such that b(E′) < b(E) and (0 : x)E′ = 0. Let V := E/xE, this is an R-module,
and consider its decomposition into “generalized eigenspaces”, with respect to the residue
morphism resE,

V =
⊕

σ∈Exp(E)

Vσ

as in Lemma 2.10. (Each Vσ is an R-module.) Note that there exists µ ∈ N such that, for
each σ and v ∈ Vσ, we have

(resE − σ)µv ∈ rVσ.

In particular ∏
σ∈Exp(E)

(resE − σ)µ(V ) ⊂ rV.

The reduction map E → V shall be denoted by e 7→ ẽ. Then, if Eσ := {e ∈ E : ẽ ∈ Vσ},
we have

E =
∑
σ

Eσ.
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Each Eσ is stable under ∇ because ∇̃e = res(ẽ). In addition, each Eσ is an RJxK-submodule
of E and

(?) (∇− σ)µ(Eσ) ⊂ (x, r)Eσ.

Let k ∈ Z be such that %+ k ∈ τ . Define E′% = xkE% and

E′ := E′% +
∑
σ 6=%

Eσ,

which is an RJxK-submodule of M , stable under the action of ∇. We now choose e ∈ E%
and let e′ := xke ∈ E′%. By a direct verification, we know that

[∇− (%+ k)]µ(e′) = xk[∇− %]µ(e).

Because [∇− %]µ(e) ∈ (x, r)E%, we then have

(†) [∇− (%+ k)]µ(e′) ∈ xk · (x, r)E% ⊂ (x, r)E′.

Consequently, from (?) and (†), the R–linear map

[∇− (%+ k)]µ
∏
σ 6=%

(∇− σ)µ

sends E′ into (x, r)E′. Letting V ′ = E′/xE′, we conclude that

[resE′ − (%+ k)]µ
∏
σ 6=%

(resE′ − σ)µ(V ′) ⊂ rV ′,

showing that Exp(E′) ⊂ (Exp(E) \ {%}) ∪ {%+ k}, which in particular proves that b(E′) <
b(E). Obviously, E′, being contained in M is such that (0 : x)E′ = 0.

�

We now require a result in Commutative Algebra.

Lemma 2.13. The following claims are true.
(i) The homomorphisms RJxK→ R̂JxK and R((x))→ R̂((x)) are faithfully flat.
(ii) A finite R((x))-module E is flat if and only if R̂((x)) ⊗R((x)) E is R̂((x))-flat. A finite

RJxK-module E is free if and only if R̂JxK⊗RJxK E is R̂JxK–flat.

Proof. (i) Firstly, R̂JxK is (r, x)–adically complete [Mat86, Exercise 8.6]. Thus, we can
view R̂JxK as the (r, x)–adic completion of RJxK. As RJxK is a noetherian local ring, we
conclude that R̂JxK is faithfully flat over RJxK [Mat86, Theorem 8.14]. The fact that
R((x))→ R̂((x)) is faithfully flat is a consequence of the fact that this mapping is obtained
from RJxK→ R̂JxK by inverting x.

(ii) This is [Mat86, Exercise 7.1] together with the fact that a finite module over a local
noetherian ring is flat if and only if it is free [Mat86, Theorem 7.10]. �

Theorem 2.14. Let (M,∇) be a regular–singular connection of R((x))/R, with M being
flat as a R((x))–module. (That is, (M,∇) is an object of MC◦rs(R((x))/R).) Then, M
possesses a logarithmic model M which, as an RJxK-module, is free, and in particular M
is a free R((x))-module. Moreover, the model M can be chosen of the form eul(V,A), with
Exp(M) ⊂ τ .

Proof. LetM ∈MClog(RJxK/R) be a model ofM as in Proposition 2.12. Then, R̂JxK⊗RJxK

M ∈MClog(R̂JxK/R) is a model of R̂((x))⊗R((x))M as in Theorem 2.9 and hence, R̂((x))⊗R((x))

M being flat over R̂, it must be that R̂JxK⊗RJxK M is free over R̂JxK. It then follows that
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M is RJxK-free, by Lemma 2.13-(ii). Consequently, M is free over R((x)). To verify the
last claim, it suffices to employ Theorem 2.8. �

Theorem 2.15. The functor

γeulRJxK : End◦R −→MC◦rs(R((x))/R)

is faithful and essentially surjective. This functor is not full. Assume that 0 ∈ τ ; then
restriction of γeulRJxK to the full subcategory of all objects (V,A) such that the spectrum of
A : V/r→ V/r is contained in τ , is indeed full.

Proof. Essential surjectivity is already verified by Theorem 2.14, while faithfulness is ob-
vious. We then concentrate on the verification of the last claim. Let (V,A) and (W,B)
be objects of End◦R and suppose that the eigenvalues of the C-linear endomorphisms
A0 : V/r → V/r and B0 : W/r → W/r associated respectively to A and B lie in τ . On
H = HomR(V,W ), consider the endomorphism T : h 7→ hA − Bh; we then obtain an
object (H,T ) of End◦R. The spectrum of the C-linear endomorphism T0 : H/r → H/r is
built up from the differences of eigenvalues of A0 and B0 [Was76, II, Problem 4.1], so that
SpT0∩Z ⊂ {0}. Consequently, for each k ∈ N, the spectrum of the C-linear endomorphism
Tk : H/rk+1 → H/rk+1 contains no integers except perhaps 0. This is because SpTk = SpT0
[HdST23, Prp. 8.11]. It is a simple matter to see that HomMC(γeul(V,A), γeul(W,B)) cor-
responds to the horizontal elements of γeul(H,T ). After picking a basis of H, a horizontal
section of γeul(H,T ) amounts to a vector h ∈ R((x))r such that

ϑh = −Th.

Writing h =
∑

i≥i0 hix
i, we see that

Thi = −ihi.

Now, let i 6= 0. Then the image of hi in R⊕rk must be zero, since i 6∈ SpTk . Hence, hi = 0
[Mat86, Theorem 8.10(i)] except perhaps for i = 0. This proves that any arrow

h : γeul(V,A) −→ γeul(W,B)

comes from an arrow V →W . �

2.3. The case where R is a DVR. Previously, we described the objects of MC◦rs, but
we still have no conclusions in general. So let us, in this section, add to the assumption
that R is Henselian the hypothesis

R is a DVR and r = Rt.

In this setting, we shall show that the functor γeulRJxK : EndR → MCrs(R((x))/R) is
essentially surjective. See Corollary 2.17. Part of this result was already achieved by
Theorem 2.15. It is a technique from [DH18], expressed in Proposition 2.16 below, which
allows the deduction of the general case.

Proposition 2.16. Each object of MCrs(R((x))/R) is a quotient of a certain (E,∇) ∈
MCrs(R((x))/R) such that E is a free R((x))-module.

Proof. The proof is almost identical to that of [DH18, Proposition 5.2.2], but some care
has to be taken to assure that the connections constructed are regular-singular.

Let (M,∇) ∈ MCrs(R((x))/R) be given. The reader should recall that in view of
Proposition 2.2, a necessary and sufficient condition for N ∈MCrs(R((x))/R) to belong to
MC◦rs(R((x))/R) is that (0 : t)N = 0.
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Let us introduce, for a given finite R((x))-module W , the submodule

Wtors =
∞⋃
k=1

(0 : tk)W

= {w ∈W : some power of t annihilates w}.

Noetherianity assures that Wtors = (0 : t`)W for some ` and we define

r(W ) = min{k ∈ N : tkWtors = 0}

= min{k ∈ N : Wtors = (0 : tk)W }.

The proposition is to be proved by induction on r(M). (Note that for each k, the submodule
(0 : tk)M is stable under ∇.) If r(M) = 0, then Mtors = 0 and there is nothing to be done.
Assume r(M) = 1, so that (tM)tors = 0. Let q : M → Q be the quotient by tM ; since Q is
annihilated by t, this is an object of MCrs(C((x))/C) and as such has the form γeul(V,A),
where V is a C-vector space [HdST23, Cor. 4.3]. This connection is certainly a quotient
of the Euler connection

Q̃ := γeul(R⊗C V, idR ⊗A),

which is an object of MCrs(R((x))/R). We then have a diagram with exact rows:

0 // tM // M
q // Q // 0

0 // tM

∼

OO

// M̃

�

OO

// Q̃

OOOO

// 0,

where the rightmost square is cartesian and M̃ →M is in fact surjective. Since (tM)tors =

Q̃tors = 0, we have M̃tors = 0. Since M̃ is a subobject of Q̃⊕M , we can appeal to [HdST23,
Proposition 8.3] to assure that it is regular-singular. In conclusion, M̃ ∈MC◦rs(R((x))/R).

Let us now assume that r(M) > 1. Let N = (0 : t)M and observe that r(N) = 1.
Denote by q : M → Q the quotient by N . It then follows that tr(M)−1Qtors = 0, so that
r(Q) ≤ r(M)−1. By induction, there exists Q̃ ∈MC◦rs(R((x))/R) and a surjection Q̃→ Q.
We arrive at a commutative diagram with exact rows

0 // N // M
q // Q // 0

0 // N

∼

OO

// M̃

�

OO

// Q̃

OOOO

// 0,

where the rightmost square is cartesian so that M̃ →M is surjective. Since Q̃tors = 0, we
conclude that M̃tors = N , so that r(M̃) = 1. We can therefore find M̃1 ∈MC◦rs(R((x))/R)

and a surjection M̃1 → M̃ and consequently a surjection M̃1 →M . �

Corollary 2.17. The functor γeulRJxK : EndR → MCrs(R((x))/R) is essentially surjec-
tive.

Proof. We assume that 0 ∈ τ . Let M ∈MCrs(R((x))/R) be given; because of Proposition
2.16, we can find an exact sequence in MCrs(R((x))/R):

E
Φ−→ F −→M −→ 0

where E and F belong to MC◦rs(R((x))/R). According to Theorem 2.15, we can assume
that

E = γeulRJxK(V,A) and F = γeulRJxK(W,B),
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where (V,A) and (W,B) belong to End◦R and the spectra of

V/(t)
A−→ V/(t) and W/(t)

B−→W/(t)

are all contained in τ . In this case, Φ = γeulRJxK(ϕ : V → W ), again by Theorem 2.15,
and hence M is isomorphic to γeulRJxK(Cokerϕ). �

3. Structure of MCrs(R[x±]/R)

Our aim in this section is to relate EndR and MCrs(R[x±]/R) and obtain the equivalent
of Corollary 2.17 in this setting. Our strategy is different from the one in the previous
section. Instead of using the shearing technique, we rely on Popescu’s approximation
theorem to descend from R̂ to R.

We fix a choice of local coordinates of P1
R as follows: write P1

R as the union of two affine
lines A0 and A∞, where A0 = Spec(R[x]) and A∞ = Spec(R[y]), with the transition
function on their intersection R[x±] = R[y±] being y = x−1.

By the equality y = x−1 we have

x
d

dx
= −y d

dy
,

and therefore ϑ : R[x±] → R[x±] can be extended canonically to a global section, still
denoted by ϑ, of the tangent sheaf of P1

R.

Definition 3.1 (Connection on the punctured affine line). The category of R–connections
on R[x±], or of connections on R[x±]/R, or on the punctured affine line P1

R \ {0,∞}, etc,
denoted MC(R[x±]/R), has for
objects those couples (M,∇) consisting of a R[x±]–module of finite presentation and an

R–linear endomorphism ∇ : M →M satisfying Leibniz’s rule

∇(fm) = ϑ(f)m+ f∇(m);

arrows between (M,∇) and (M ′,∇′) are just R[x±]–linear maps ϕ : M → M ′ satisfying
∇′ϕ = ϕ∇.

It is well-known that for a connection (M,∇) on R[x±]/R, a necessary and sufficient
condition for M to be R[x±]–flat is that it be R-flat, cf., e.g. [dS09, p.82] or [DH18,
Proposition 5.1.1]. (We profit to note that in the proof of Proposition 5.1.1 in [DH18],
we need to employ the “fiber-by-fiber flatness criterion” [EGA, IV3, 11.3.10] and not the
“local flatness criterion.”) Moreover, although these references are written in the context
where R is a DVR, the idea of proof applies in more generality since it is a consequence
of the “fiber-by-fiber flatness criterion” [EGA, IV3, 11.3.10] and the well-documented case
of a base field of characteristic zero. See [HdST23, Remark 8.20] for more details and
references.

Definition 3.2 (Logarithmic connections on the punctured affine line). The category of
logarithmic connections on the punctured affine line, denoted MClog(P1

R/R), has for
objects those couples (M,∇) consisting of a coherent OP1

R
–module and an R–linear endo-

morphism ∇ : M → M satisfying Leibniz’s rule ∇(fm) = ϑ(f)m + f∇(m) on all
open subsets; and

arrows between (M,∇) and (M′,∇′) are OP1
R
–linear maps ϕ : M → M′ satisfying ∇′ϕ =

ϕ∇.

We let
γ : MClog(P1

R/R) −→MC(R[x±]/R)

be the natural restriction functor.
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Definition 3.3 (Regular-singular connections on the punctured affine line).
(1) A connection (M,∇) in MC(R[x±]/R) is regular-singular if γ(M) ' M for a certain

M ∈MClog(P1
R/R); in this case, any such M is a logarithmic model of M .

(2) The full subcategory of MC(R[x±]/R) having regular-singular connections as objects
is denoted by MCrs(R[x±]/R).

(3) The full subcategory of MC(R[x±]/R) having as objects those connections (M,∇)
with M being a flat R[x±]-module is denoted by MC◦rs(R[x±]/R).

The prime example of regular-singular connections is described now:

Example 3.4 (Euler connections). For an object (V,A) ∈ EndR, we set

eulP1
R

(V,A) := (OP1
R
⊗R V,DA),

where DA : OP1
R
⊗R V → OP1

R
⊗R V is R−linear and defined by

DA(f ⊗m) = ϑ(f)⊗ v + f ⊗Av

on any open subsets of P1
R.

Thus we have a functor eulP1
R

: EndR −→ MClog(P1
R/R) and, composing it with γ,

another the functor
γeulP1

R
: EndR −→MCrs(R[x±]/R).

For the next theorem, we shall require the notion of G-rings [Mat86, Section 32]. A field
is a G-ring as is a discrete valuation ring of characteristic zero. Other relevant G-rings are
noetherian complete local rings [Mat86, Theorem 32.3], rings of finite type over G-rings
[Mat70, 33.G] and Henselizations of local G-rings (use [Mat86, Theorem 32.1] and [Mat86,
Theorem 32.2]). That this concept is necessary here comes from its role in the Popescu
approximation theorem.

Theorem 3.5. We assume that R is Henselian in all that follows.
(i) Suppose that R is a G-ring. Then the functor

γeulP1
R

: End◦R −→MC◦rs(R[x±]/R)

is faithful and essentially surjective.
(ii) Suppose that R is a discrete valuation ring. (In which case R is also a G-ring.) Then

the functor
γeulP1

R
: EndR −→MCrs(R[x±]/R)

is faithful and essentially surjective.

Proof. Faithfulness is obvious, in any case, and we proceed to verify essential surjectivity.
We shall deal with cases (i) and (ii) at the same time. The idea is to first base change to R̂,
use the known results from [HdST23], and then descend back to R by means of Popescu’s
theorem.

The map R→ R̂ is regular, by assumption in case (i), and because R is of characteristic
zero in case (ii). According to Popescu (see [Pop86, Theorem 2.5] or [Spi99, Theorem 1.1]),

R̂ = lim−→
λ∈L

Sλ

where each Sλ is a smooth R–algebra.
Let (M,∇) ∈MCrs(R[x±]/R). For each λ ∈ L, we let (Mλ,∇λ) stand for the object of

MC(Sλ[x±]/Sλ) defined, in an evident manner, by employing the functor Sλ ⊗R (−). We
define (M̂, ∇̂) in similar fashion.
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Let us for a moment assume that (M,∇) ∈ MC◦rs(R[x±]/R) to treat case (i). Let
A : V→ V be an endomorphism of a certain finite R̂-module V such that there exists an
isomorphism

(M̂, ∇̂)
f−→ (R̂[x±]⊗

R̂
V, DA)

= γeulP1
R

(V,A)

in MC(R̂[x±]/R̂). The existence of this arrow is a consequence of [HdST23, Theorem 10.1]
and Theorem 2.15. Clearly, (V,A) ∈ End◦R in this case.

If we now drop the assumption that (M,∇) ∈ MC◦rs(R[x±]/R), but decree that R is
a DVR in order to work on case (ii), then [HdST23, Theorem 10.1], in conjunction with
Corollary 2.17, ensure the existence of the isomorphism f as before. Granted the existence
of f, the hypothesis in (i) and (ii) now have little bearing on what follows.

There exists α such that A : V→ V is of the form

id
R̂
⊗
Sα
Aα : R̂ ⊗

Sα
Vα −→ R̂ ⊗

Sα
Vα

where Aα is an Sα-linear endomorphism of the finite Sα-module Vα, see [EGA, IV3, 8.5.2(i)-
(ii), p.20]. Given λ ≥ α, let Aλ : Vλ → Vλ be the base-changed endomorphism

id⊗Aα : Sλ ⊗
Sα
Vα −→ Sλ ⊗

Sα
Vα.

This allows us to define objects

(Sλ[x±]⊗Sλ Vλ, DAλ)

from MC(Sλ[x±]/Sλ), for all λ ≥ α, along the lines of Example 3.4.
There exists β ≥ α such that f is obtained from a certain mapping of Sβ[x±]–modules

fβ : Mβ −→ Sβ[x±] ⊗
Sα
Vα

by base change Sβ → R̂, see [EGA, IV3, 8.5.2.1, p.20]. Note, in addition, that fβ can be
taken to be an isomorphism of Sβ[x±]-modules. Let fλ be the base change of fβ for λ ≥ β.

Let now {mi} ∈ M be a set of R[x±]-module generators for M and write mλ
i for the

image of mi inMλ via the natural arrowM →Mλ. Consider, for each λ ≥ β, the elements

δλi := fλ(∇λ(mλ
i ))−DAλ(fλ(mλ

i ))

of Sλ[x±]⊗Sα Vα. We then conclude that for some γ ≥ β, the elements δγi are all zero, and
hence the arrow

fγ : Mγ −→ Sγ [x±]⊗Sα Vα
is horizontal, as is verified without much effort.

Because C is algebraically closed, it is clear that C → C⊗RSγ has a section C⊗RSγ → C
and hence “Hensel’s Lemma” [EGA, IV4, Theorem 18.5.17] shows that R→ Sγ also has a
section ξγ : Sγ → R. Base changing the morphism fγ through ξγ , we obtain an isomorphism
of connections M → R[x±]⊗ V . It is clear that if M is R-flat, then V is also R-flat. �

Corollary 3.6. Let us instate the assumptions of Theorem 3.5. Then, if (M,∇) is an
object of MC◦rs(R[x±]/R), it follows that M is in fact a free R[x±]–module. �

Corollary 3.7. Let us instate the assumptions of Theorem 3.5-(ii). Then, each object of
MCrs(R[x±]/R) is a quotient of an object of MC◦rs(R[x±]/R).

Proof. Any object of EndR is a quotient of an object of End◦R and the result follows from
Theorem 3.5. �
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4. Deligne’s equivalence

In this section, we put things together to obtain an analogue of Deligne’s equivalence in
the case of a strict Henselian discrete valuation ring. Recall that Deligne proved in [Del87,
Proposition 15.35] that for any field k of characteristic 0, the functor

r : MCrs(k[x±]/k) −→MCrs(k((x))/k)

given by base change is indeed an equivalence. When k is replaced by a C-algebra of
the form CJt1, . . . , trK/a, the analogous equivalence has been established in [HdST23]. We
want to establish an analogue in the case where k is replaced by our R (assumptions on it
will be made as needed).

Theorem 4.1. Let R be Henselian G-ring. Then the restriction functor

r : MC◦rs(R[x±]/R) −→MC◦rs(R((x))/R)

is an equivalence.

Proof. Essential surjectivity. This follows from Theorem 2.15 without much difficulty since
rγeulP1

R
(V,A) = γeulRJxK(V,A).

Faithfulness. This is simple, as for any N ∈MC◦rs(R[x±]/R), the natural map

R[x±]⊗R[x±] N −→ R((x))⊗R[x±] N

is injective.
Fullness. By Theorem 3.5-(i), we need to prove the following. Let (V,A) and (W,B) be

objects of End◦R. Then the natural map

Hom(γeulP1
R

(V,A) , γeulP1
R

(W,B)) −→ Hom(γeulRJxK(V,A) , γeulRJxK(W,B))

is surjective. Fixing bases {vi}mi=1, resp. {wi}ni=1, of V , resp. W , over R, any

ϕ ∈ Hom(γeulRJxK(V,A) , γeulRJxK(W,B)

is defined by an n × m matrix Φ with coefficients in R((x)). On the other hand, after
base-changing to R̂((x)), [HdST23, Theorem 10.1] tells us that Φ ∈ Matn×m(R̂[x±]). Since
R((x)) ∩ R̂[x±] = R[x±], we are done. �

As as consequence, we obtain a “full” Deligne equivalence as follows.

Corollary 4.2. If R is a Henselian discrete valuation ring, then the restriction functor

r : MCrs(R[x±]/R) −→MCrs(R((x))/R)

is an equivalence.

Proof. It is clear that Corollary 2.17 implies that the functor r is essentially surjective.
Further, using Theorem 3.5, it sends non-zero objects to non-zero ones. Since the mapping
R[x±]→ R((x)) is flat, the functor is exact and the standard criterion to verify faithfulness
is assured.

To end the proof, we establish fullness by following the idea behind the proof of Propo-
sition 2.16. Let then M and N be objects of MCrs(R[x±]/R) and let

rM,N : HomMC(M,N) −→ HomMC(rM, rN)

be the map which we want to show is surjective. We proceed in several steps. Let ϕ ∈
HomMC(M,N).

First case: M and N are R-flat. Surjectivity of rM,N was verified in Theorem 4.1.
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Second case: M is R-flat. Let q : N ′ → N be a surjection with N ′ ∈MC◦rs(R[x±]/R),
see Corollary 3.7. We then construct the commutative diagram with exact rows

0 //M′′
U //

∼
��

M′
P //

�ψ
��

rM //

ϕ

��

0

0 // rN ′′
rv
// rN ′

rq
// rN // 0,

where the rightmost square is cartesian. (We slightly abuse notation and denote by r the
map between sets of morphisms if no confusion is likely.) It follows that (0 : t)M′ = 0,
so that M′ = rM ′ for some M ′ ∈ MC◦rs(R[x±]/R) and ψ = r(Ψ), and U = ru, by the
preceding case. It is also true that P = rp, so that we conclude that ϕ belongs to the
image of rM,N .

Most general case. Let p : M ′ → M be a surjection in MCrs(R[x±]/R) with M ′ ∈
MC◦rs(R[x±]/R) (cf. Corollary 3.7). From the first case, there exists an arrow Ψ : M ′ → N
such that

rM ′

rΨ ""

rp // rM

ϕ

��
rN

commutes. Now, let ι : M ′′ → M ′ be the kernel of p and note that r(Ψ)r(ι) = 0 and
hence Ψι = 0. Let Φ : M → N be the unique arrow rendering commutative the following
diagram:

M ′
Ψ //

p !!

N

M.

Φ

OO

Because rp is an epimorphism, we conclude that rΦ = ϕ. �
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