
HAL Id: hal-04562830
https://hal.science/hal-04562830v1

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

peerannot: A framework for label aggregation in
crowdsourced datasets

Axel Dubar, Tanguy Lefort, Joseph Salmon

To cite this version:
Axel Dubar, Tanguy Lefort, Joseph Salmon. peerannot: A framework for label aggregation in crowd-
sourced datasets. JDS 2024 - 55es Journées de Statistique, Société Française de Statistique (SFdS),
May 2024, Bordeaux, France. �hal-04562830�

https://hal.science/hal-04562830v1
https://hal.archives-ouvertes.fr

peerannot: A framework for label aggregation in
crowdsourced datasets

Axel Dubar1 & Tanguy Lefort2 & Joseph Salmon3

1Univ. Montpellier, IMAG, France, axel.dubar@umontpellier.fr
2Univ. Montpellier, CNRS, IMAG, Inria, LIRMM, France, tanguy.lefort@umontpellier.fr

3Univ. Montpellier, CNRS, IMAG, IUF, France, joseph.salmon@umontpellier.fr

Résumé. Ce travail présente peerannot, une librairie de classification de données dont
les étiquettes sont générées par production participative. Elle est écrite en Python et per-
met d’établir une comparaison des méthodes de classification par agrégation avec d’autres
librairies de référence.

Mots-clés. Statistique Computationnelle, Classification et modèles de mélange

Abstract. This work presents peerannot, an image data classification library of image
data whose labels are generated by crowdsourcing. It is written in Python and allows a
comparison of aggregation classification methods with other reference libraries.

Keywords. Computational statistics, Classification, Clustering, mixture models.

1 Introduction

Crowdsourcing is a way of building large datasets faster, cheaper, and more easily than
relying on experts. It consists of leveraging multiple workers to annotate data samples,
where each worker considers a subsample of the dataset. It is a methodology that has been
gaining in importance for the last two decades. Nowadays, many datasets (ImageNet[1],
LabelMe[2], . . .) have been collected through crowdsourcing. Yet, the use of multiple and
often untrained workers can lead to wrong answers and disagreement among the collected
labels. This is why a cleaning step is needed to identify an estimate of the correct label
(hard label case) or a probability vector of the correct label (soft label case). Crowdsourced
datasets pose significant problems for which the peerannot [3] library proposes a framework
to handle this. In this work, we focus on the following: How can we effectively aggregate
multiple labels into a single label from crowdsourced tasks?

2 peerannot: a framework for crowdsourced datasets

We introduce peerannot, https://github.com/peerannot/peerannot, an open-source Python
library developed to address crowdsourced dataset annotation problems. Its main objective

1

https://github.com/peerannot/peerannot

is to provide a standardized library to ensure reproducibility and accessibility. We focus
here on the aggregation methods, but peerannot also provides identification methods that
allow the user to detect ambiguous tasks and possibly prune them from the dataset before
training a classifier. Deep learning strategies (such as the CoNAL [4] or CrowdLayer [5])
are also available in the toolbox and can be used to classify images directly from the crowd-
sourced dataset. Finally, it provides a simulation module to generate crowdsourced datasets
for testing purposes.

2.1 Notation

Before presenting the aggregation methods, we define some notation. A dataset D =
(xi, y

⋆
i)

ntask

i=1 is composed of ntask tasks xi ∈ X (the feature space) with unknown true la-
bels y⋆i ∈ [K] = {1, . . . , K}, with K the number of classes. The indicator function is denoted
by 1(.) We use the i index notation to range over the different tasks and the j index notation
for the workers. As the true label of the task xi is denoted by y⋆i . The answer of the worker

wj to the task xi is denoted by y
(j)
i and the aggregated label from these answers is denoted

by ŷi. We define the set of workers answering the task xi:

A(xi) = {j ∈ [nworker] : wj answered xi} .

2.2 Aggregation methods

2.2.1 Peerannot methods

Focusing mainly on aggregation methods, we present the available strategies in peerannot.

• Majority vote (MV)
This is the most basic model, it takes the label with the highest number of votes. It
can be defined as:

ŷMV
i = argmax

k∈[K]

∑
j∈A(xi)

1{y(j)i =k} .

• Naive Soft (NS)
The Naive Soft model keeps the same intention as the Majority Vote but produces a
soft label. By doing so it keeps track of the ambiguity among the workers for a task, a
piece of information possibly discarded by the MV.

ŷNS
i =

(
1

|A(xi)|
∑

j∈A(xi)

1{y(j)i =k}

)
j∈[K]

.

• Dawid and Skene (DS)
The first two models do not take the worker’s abilities into account. The Dawid and

2

Algorithm 1 DS (EM version)

Input: D: crowdsourced dataset
Output: (ŷDS

i)i∈[ntask] = (T̂i,·)i∈[ntask]: estimated soft labels and {π̂(j)}j∈[nworker]: estimated
confusion matrices

1: Initialization: ∀i ∈ [ntask],∀ℓ ∈ [K], T̂i,ℓ =
1

|A(xi)|
∑

j∈A(xi)
1{y(j)i =ℓ}

2: while Likelihood not converged do
3: Get π̂ and ρ̂ assuming T̂ s are known

4: ∀(ℓ, k) ∈ [K]2, π̂
(j)
ℓ,k ←

∑
i∈[ntask]

T̂i,ℓ·1{y(j)
i

=k}∑
k′∈[K]

∑
i′∈[ntask]

T̂i′,ℓ·1{y(j)
i′

=k′}

5: ∀ℓ ∈ [K], ρ̂ℓ ← 1
ntask

∑
i∈[ntask]

T̂i,ℓ

6: Estimate T̂ s knowing π̂ and ρ̂

7: ∀(i, ℓ),∈ [ntask]× [K], T̂iℓ ←
∏

j∈A(xi)

∏
k∈[K] ρ̂ℓ·

(
π̂
(j)
ℓ,k

)1
{y(j)

i
=k}

∑
ℓ′∈[K]

∏
j′∈A(xi)

∏
k′∈[K] ρ̂ℓ′ ·

(
π̂
(j′)
ℓ′k′

)1
{y(j

′)
i

=k′}

8: end while

Skene’s (DS) model [6], assumes each worker wj answers independently from one an-
other. It assigns to each worker a confusion matrix π(j) ∈ RK×K that represents the
ability of a worker to answer a task given its label denoted as π

(j)
k,. . It represents the

probability of the worker j answering a task labeled k correctly.
The associated likelihood can be written as:

argmax
ρ,π,T

∏
i∈[ntask]

∏
k∈[K]

[
ρk

∏
j∈[nworker]

∏
ℓ∈[K]

(
π
(j)
k,ℓ

)1
{y(j)

i
=ℓ}

]Ti,k

.

With ρk = P(y⋆i = k) the probability of tasks labeled k to appear in the dataset
and Ti,k = 1{y⋆i =k} the vectors of label class indicators for each task the true label y⋆i is
unknown. The estimation procedure associated relies on the Expectation-Maximization
(EM) algorithm, as described in Algorithm 1.

• Variations of DS model (FDS and WDS)
The DS model is one of the most studied models in the literature and variations have
been proposed such as a Fast Dawid and Skene’s (FDS) [7] or a Weighted Dawid and
Skene’s (WDS) model (described in [8]).

• Generative model of Labels, Abilities, and Difficulties (GLAD)
Now that workers’ abilities are taken into account, the GLAD model also takes the task
difficulty into account in the model to recover the soft label ŷGLAD

i .
Defining αj ∈ R as the worker ability and βi ∈ R+

∗ as the task’s difficulty, the GLAD
model can be defined as:

∀k ∈ [K], P(y(j)i = k|y⋆i ̸= k, αj, βi) =
1

K − 1

(
1− 1

1 + exp(−αjβi)

)
.

3

Algorithm 2 GLAD (EM version)

Input: D: crowdsourced dataset
Output:α = {αj}j∈[nworker]: worker abilities, β = {βi}i∈[ntask]: task difficulties, aggregated
labels

1: while Likelihood not converged do
2: Estimate probability of y⋆i
3: ∀i ∈ [ntask], P(y⋆i |{y

(j)
i }i, α, βi) ∝ P(y⋆i)

∏
j P(y(j)i |y⋆i , αj, βi)

4: Maximization step
5: Maximize auxiliary function Q(α, β) in Eq. 1 w.r.t. α and β
6: end while

The auxiliary function for the binary GLAD model is:

Q(α, β) = E[logP({y(j)i }i,j, {y⋆i }i)] =
∑
i

E[logP(y⋆i)] +
∑
i,j

E[logP(y(j)i |y⋆i , αj, βi)] .

(1)

2.2.2 Other methods

Other competitors we compared with include the following:

• MMSR [9]: The Matrix Mean-Subsequence-Reduced strategy considers the reliability of
all workers as a vector s ∈ Rnworker . Each entry sj represents the reliability of the worker
j. This strategy assumes that each worker answers independently. It also assumes that
a worker is correct with probability pj ∈ [0, 1] and the worker’s probability of being
wrong is uniform across classes, i.e.:

∀(i, j) ∈ [ntask]× [nworker],

{
P(y(j)i = k) = pj if y⋆i = k,

P(y(j)i = k) =
1−pj
K−1

if y⋆i ̸= k
.

The reliability of a worker is linked to its probability of answering correctly: sj =
K

K−1
pj− 1

K−1
. This reliability can be estimated by solving a rank-one matrix completion

problem defined as:

E

[
K

K − 1
C − 1

K − 1
11⊤

]
= ss⊤ ,

where C is the covariance matrix of the workers’ answers. More precisely, given two
workers j, j′ ∈ [nworker], the covariance between them is Cj,j′ = 1

Nj,j′

∑ntask

i=1 1(y
(j)
i =

y
(j′)
i), with Nj,j′ the number of tasks in common: Nj,j′ = |{i ∈ [ntask]|j, j′ ∈ A(xi)}|.
The final label is a weighted majority vote:

ŷM-MSR
i = WMV(i,W) with Wj,k = log

(K − 1)pj
1− pj

, (2)

where the form of the weights is derived from a maximum a posteriori formulation of
the model, see [10, Corollary 9].

4

• WAWA [11]: This strategy, also known as the inter-rater agreement, weights each user
by how much they agree with the MV labels on average. More formally, given a task i:

ŷWAWA
i = WMV (i,W) , with Wj,: =

(
1

|{y(j)i′ }i′ |

ntask∑
i′=1

1
(
y
(j)
i′ = ŷMV

i′

))
1K . (3)

where ∀i ∈ [ntask], ŷi = WMV(i,W) := argmaxk∈[K]

∑
j∈A(xi)

Wj,k1(y
(j)
i = k), and

W ∈ Rnworker×K is the matrix assigning the weight of worker j when answering class k.
It allows us to instantiate a weight that can vary for each worker (but not per task)
and it usually improves on the MV strategy.

3 benchopt: a benchmark framework for optimization

benchopt is an optimization benchmark library designed to facilitate comparing and re-
producing optimization problems across different frameworks. It is an open-source library
available at https://github.com/benchopt/benchopt that facilitates efficient and collabo-
rative benchmarking by providing a standardized platform for researchers. With benchopt,
users can easily explore, assess, and compare the performance of optimization algorithms on
diverse problem sets. benchopt is designed for efficiency, enabling users to measure the
performance of optimization algorithms by assessing the cumulated time taken to reach
an optimum during the optimization steps. A list of already available implementation
benchmarks such as OLS optimization or the LASSO optimization is available at https:

//benchopt.github.io/available_benchmarks.html.

4 Comparisons

To compare different strategies and different implementations across libraries, a crowdsourc-
ing benchmark has been implemented with the benchopt library, this benchmark can be
found at https://github.com/benchopt/benchmark_crowdsourcing. For each strategy,
we measure the cumulated time taken to reach an optimum in the accuracy metric. Each
strategy is run 5 times until convergence. We measure the accuracy with the AccTrain metric,
a metric defined as:

AccTrain(D) = 1

|D|

|D|∑
i=1

1{yi=argmaxk∈[K](ŷi)k}.

It computes the number of correct predictions assuming that the ground truth is known, a
condition that is not always guaranteed with crowdsourced datasets. It is important to note
that some strategies such as the MV and NS are computed and do not need optimization
steps so their presence in the benchmark is to be viewed differently. Their representation is
not shown in the figures below but if necessary they would need to be viewed as points and
not dotted lines. Another library focused on crowdsourcing has been implemented named
crowd-Kit which can be used to perform comparisons with peerannot.

5

https://github.com/benchopt/benchopt
https://benchopt.github.io/available_benchmarks.html
https://benchopt.github.io/available_benchmarks.html
https://github.com/benchopt/benchmark_crowdsourcing
https://github.com/Toloka/crowd-kit

10 2 10 1 100

Time (s)

8 × 10 1

9 × 10 1

bl
ue

bi
rd

s

AccTrain score against computational time

(a) Bluebirds dataset

10 2 10 1 100 101

Time (s)

7.4 × 10 1

7.5 × 10 1

7.6 × 10 1

7.7 × 10 1

7.8 × 10 1

7.9 × 10 1

8 × 10 1

La
be

lM
e

AccTrain score against computational time

crowd-kit[strategy=DawidSkene]

FDS[strategy=FDS]

peerannot[strategy=WDS]

crowd-kit[strategy=GLAD]

peerannot[strategy=DS]

crowd-kit[strategy=Wawa]

peerannot[strategy=GLAD]

(b) LabelMe dataset

Figure 1: Comparison of computational time (in seconds) for all aggregation strategies

To perform the measure of the computational time and accuracy of the strategies we run
a benchmark on two datasets. The first is the Bluebirds dataset. A small dataset composed
of 39 workers, 108 tasks, and K = 2 classes. The second is the LabelMe dataset [2]. Bigger
than Bluebirds with 77 workers, 1000 tasks, and K = 8. The benchmark can be reproduced
with the following command from the crowdsourcing benchopt branch:

benchopt run ./benchmark_crowdsourcing

As we can see in Figure 1a, the DS implementation from peerannot is the first to reach
its convergence followed by the FDS, then the DS from crowd-Kit. The fact that the DS
from peerannot is faster than the DS from crowd-Kit is not guaranteed for every dataset
as it is not the case in Figure 1b. crowd-Kit implementation is based on aggregations using
vanilla pandas which can be slower. Slowness can also be explained by initialised priors which
can lead to a faster convergence.
Strategies not based on DS reach lower performance as it is a binary classification problem
with a low number of workers. It can be noted that using confusion matrices, a worker’s
answers that are consistently wrong are still informative.

6

https://github.com/welinder/cubam/tree/public/demo/bluebirds

5 Conclusion

We have presented a new library to address crowdsourced dataset annotation problems and an
extension of benchopt to allow users to compare different aggregation strategies. peerannot
and crowd-kit libraries can both handle classification crowdsourced datasets. We presented
their aggregation methods, however, other modules allowing the identification of poorly per-
forming workers or hardest tasks are also proposed. On these tasks, both libraries differ,
with peerannot proposing more diverse strategies for identification.

Acknowledgments: This work was supported in part by the French National Research
Agency (ANR) through the grant ANR- 20-CHIA-0001-01 (Chaire IA CaMeLOt).

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR. 2009.

[2] F Rodrigues, F Pereira, and B Ribeiro. “Gaussian process classification and active
learning with multiple annotators”. In: ICML. PMLR. 2014, pp. 433–441.

[3] T. Lefort, B. Charlier, A. Joly, and J. Salmon. “Peerannot: classification for crowd-
sourced image datasets with Python”. In: Computo (2024). url: https://tanglef.
github.io/computo_2023/.

[4] Z Chu, J Ma, and H Wang. “Learning from Crowds by Modeling Common Confusions.”
In: AAAI. 2021, pp. 5832–5840.

[5] F Rodrigues and F Pereira. “Deep learning from crowds”. In: AAAI. Vol. 32. 2018.

[6] AP Dawid and AM Skene. “Maximum Likelihood Estimation of Observer Error-Rates
Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1 (1979), pp. 20–
28. (Visited on 10/10/2021).

[7] V B Sinha, S Rao, and V N Balasubramanian. “Fast Dawid-Skene: A fast vote aggrega-
tion scheme for sentiment classification”. In: arXiv preprint arXiv:1803.02781 (2018).

[8] T Lefort, B Charlier, A Joly, and J Salmon. “Identify ambiguous tasks combining
crowdsourced labels by weighting Areas Under the Margin”. In: arXiv (2022).

[9] Q Ma and A Olshevsky. “Adversarial crowdsourcing through robust rank-one matrix
completion”. In: NeurIPS. Vol. 33. 2020, pp. 21841–21852.

[10] Hongwei Li and Bin Yu. “Error rate bounds and iterative weighted majority voting for
crowdsourcing”. In: arXiv preprint arXiv:1411.4086 (2014).

[11] Appen Limited. Calculating Worker Agreement with Aggregate (Wawa). 2021. url:
https://success.appen.com/hc/en- us/articles/202703205- Calculating-

Worker-Agreement-with-Aggregate-Wawa-.

7

https://tanglef.github.io/computo_2023/
https://tanglef.github.io/computo_2023/
https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa-
https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa-

	Introduction
	peerannot: a framework for crowdsourced datasets
	Notation
	Aggregation methods
	Peerannot methods
	Other methods

	benchopt: a benchmark framework for optimization
	Comparisons
	Conclusion

