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Data-Driven Nonlinear System Identification of a
Throttle Valve Using Koopman Representation
Nicolas Bongiovanni1 Bojan Mavkov1 Renato Martins2, 3 Guillaume Allibert1

Abstract—Electrical Throttle Bodies (ETBs) are massively used
in the automotive industry and their modeling and control are
challenging because of their high nonlinearity and stochasticity.
In this paper, we present a data-driven method grounded on the
Koopman operator for the identification of a real ETB valve. The
model obtained is control-oriented and represented in a quasi-
linear-parameter varying framework. Different experiments are
performed to evaluate the performance of the proposed method,
including the comparison with two classical nonlinear system
identification methods.

Index Terms—System identification, Koopman operator theory,
neural networks, Electronic Throttle Body

I. INTRODUCTION

Nonlinearity is a central challenge in all the fields related
to dynamical systems. A plethora of methods have been
developed to nonlinear system control [1], but there is not
a unique systematic approach in contrast with the Linear
Time-Invariant (LTI) case. One way to use LTI control theory
for nonlinear systems is through linearization. However, this
approach has many limitations: it requires staying in the
vicinity of an equilibrium point and it can be too limited
to capture higher-order non-linearities of the dynamics. More
versatile and compact ways to capture the complexities of
nonlinear systems is through bilinear [2], Linear Parameter-
Varying (LPV) [3], [4], and quasi-LPV model representations
[4], for which various tools have been developed.

Koopman operator theory [5] is a reformulation of clas-
sical dynamical system theory with the goal of finding ap-
proximately linear representations of dynamical systems, by
lifting the state to an infinite dimensional space through so-
called observable functions. This theory was first introduced
in 1931 [5], and has recently been the subject of intense
research since the introduction of data-driven methods. The
introduction of Dynamic Mode Decomposition (DMD) [6]
and Extended DMD [7] improved the calculation of the
finite-dimensional approximation of the Koopman operator.
Moreover, new methods based on Neural Networks (NNs)
were introduced to facilitate the approximation of the lifting
functions [8]–[10]. These representations were mostly used in
an LTI framework, but also in a quasi-LPV framework [8], in
order to address systems with continuous spectrum.
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The extension of the Koopman approach to actuated systems
has proven to be difficult because the actuation signals change
the spectral properties of the Koopman operator [11]. In [12]
an approximation of Koopman representation is introduced
in a bilinear-control form for control-affine systems, named
Koopman Canonical Transform (KCT). This work was further
extended in [11], [13], [14]. In [15] LPV Koopman repre-
sentation for nonlinear systems in introduced, and [16]–[18]
introduce quasi-LPV Koopman approximations for control-
affine system. The approach developed in this work is closely
related to and inspired by the method presented in [17],
however, we design distinct loss functions aiming to enhance
the estimation of the studied system.

In this work, a learning-based identification method is
applied to an Electrical Throttle Body (ETB). This type of
valve is used in the industry for flow control, typically in
the automotive, chemical, pharmaceutical, and food industries.
Performing system identification and control on these devices
is challenging because of static friction effects and non-
linearities of the gearbox, and the return spring. This results
in particularly complex dynamics usually modeled with an
asymmetric hysteresis [19]. Furthermore, even if dynamical
models have been developed, each valve has different param-
eters [20], [21]. Finally, ETBs are known for their stochasticity.
This leads us to address the challenge of applying NNs-based
Koopman theory to represent the nonlinear dynamics of an
ETB. An ETB can be modeled as a control-affine system
[22], and thus, the state-of-the-art methods for Koopman
representation can be directly applied to it. The resulting quasi-
LPV model is relevant because it can be adapted for a control
design [23], [24]. To the best of our knowledge, this is the first
time that Koopman theory has been used to perform system
identification of this kind of experimental dynamical system.

The remaining of this paper is structured as follows. The
identification problem and core concepts of Koopman the-
ory for control systems are recalled in Section II. Section
III presents the proposed Koopman-based identification al-
gorithm. Finally, the experiments and results are presented
in Section IV. Section V concludes the paper and discusses
possible future directions.

II. PROBLEM SETTING

Before presenting the proposed learning-based system rep-
resentation and control method, we introduce core notions of
nonlinear systems and of the Koopman operator. Our modeling



considers discrete-time nonlinear dynamical systems of the
form:

xk+1 = f(xk,uk), (1a)

yk = h(xk), (1b)

where xk ∈ Rnx denotes the state vector, yk ∈ Rny is the
output vector of the system, uk ∈ Rnu is the input vector,
and k denotes the time step, xk = x(tk) = x(k∆t), where
∆t is the sampling time. f and h are unknown nonlinear
mapping functions, where f is assumed to be continuously
differentiable. In order to represent the unknown dynamics of
the system, a training dataset D is used, which consists of N
measurement samples of the inputs {u(t0), u(t1), . . . , u(tN )}
and the outputs of the system {y(t0), y(t1), . . . , y(tN )}. The
dataset is collected at time instants T = {t0 = 0, t1, . . . , tN}
from experiments performed on the system.

A. Background on Koopman Theory

The Koopman operator provides an alternative represen-
tation that describes the evolution of nonlinear dynamical
systems through a globally linear representation. The goal of
this work is to develop an algorithm that estimates (1) using
the dataset D in Koopman form. We start introducing the
Koopman modeling for autonomous dynamical systems. The
nonlinear dynamical system in eq. (1a) becomes:

xk = f(xk), (2)

where f : Rnx −→ Rnx . The Koopman operator K : F → F
associated with the nonlinear map f is then defined by:

(Kψ)(xk) = ψ ◦ f(xk) = ψ(xk+1), ∀ψ ∈ F , (3)

where ψ : Rn → R are called observables (functions) and
F is a Banach function space of the observables functions.
Although the linear Koopman operator is infinite-dimensional,
in practice, finite approximations must be found. In this
case, the existence of a finite-dimensional Koopman invariant
subspace Fnf

⊆ F is assumed (nf being the dimension of
Fnf

) as discussed in [25].

B. Extension to Actuated Systems

There are several ways of generalizing the Koopman oper-
ator to controlled systems [15], [17], [26]–[28]. Here, the ap-
proach of [28] is exposed. Consider the general representation
of the nonlinear system, whose actuation effects are isolated
in g:

xk+1 = f (xk,uk) = f (xk, 0) + g (xk,uk) , (4)

with uk ∈ U ⊆ Rnu , x0 ∈ X and f : Rnx × U → Rnx . It is
considered that U is given such that X is compact and forward
invariant under f .
[28] demonstrates the existence of a finite-dimensional Koop-
man representation of (4) in the following form:

Φ (xk+1) = AΦ (xk) +B (xk,uk)uk, (5a)

with A ∈ Rnf×nf and

B (xk,uk) =

∫ 1

0

∂B
∂u

(xk, λuk) dλ, (5b)

where B (xk,uk) =(∫ 1

0

∂Φ

∂x
(f (xk, 0) + λg (xk,uk)) dλ

)
g (xk,uk) .

(5c)
The conditions identified by [28] are the following: Φ is of

class C1 such that Φ(f(·, 0)) ∈ span{Φ} with Φ : X → Rnf

and X convex. Finally, Eq. 5a can be rewritten in a quasi-LPV
way, as follows:

zk = Φ(xk) , (6a)

zk+1 = Azk +Bz (pk)uk, (6b)

where the scheduling map pk = µ (zk,uk) is introduced such
that Bz ◦ µ = B. µ, zk and uk are assumed to be bounded.

C. Control-affine Systems with Unavailable State
An important class of systems can be represented in a

control-affine form. In this case, one can remove the depen-
dency of the scheduling map to uk. In the present work, the
state xk is not directly available, and thus, yk and uk are
used to estimate the lifted state. As a result, the following
formulation can be adopted:

zk = ϕe(yk,uk), (7a)

zk+1 = Azk +Bf (zk)uk, (7b)

where k ∈ N and nz = nf . This representation can represent
an ETB valve, because it can be modeled as a control-affine
system [22].

III. KOOPMAN REPRESENTATION LEARNING

In this section, we present the data-driven algorithm devel-
oped to identify and control the system (7) from data using
Koopman representation. We highlight that the structure of
ϕe in eq. (7) is unknown, and it should be approximated
directly from data. Our approach leverages a data-driven
strategy to perform this estimation, specifically utilizing NNs
to model these functions through autoencoders. In this context,
A is an unknown matrix to be identified and Bf (zk) is
similarly modeled with a NN. Finding ŷk from zk is crucial
in the context of control. In this work, we evaluate two state
reconstruction options. The first one is through a nonlinear
decoder modeling ϕd:

ŷnlin
k = ϕd(zk). (8)

The second alternative representation is a linear approximation
of the output defined as

ŷlin
k = Czk, (9)

where C ∈ Rny×nz represents the linear mapping. Although
more generic, the former nonlinear decoder representation is
less practical to be used with most classical control methods
[24], [29]. Once these mappings ϕe, ϕd, C, A, Bf are learned,
the resulting quasi-LPV model (7) with (8) or (9) is then
suitable for control as shown in our experiments.



Fig. 1: Schematic illustrating the Koopman operator for non-
linear systems by using learning techniques.

A. Koopman State Reconstruction Losses

Our approach leverages autoencoders to approximate jointly
ϕe, ϕd, and the dynamics in the latent space. The designed
autoencoder has nonlinear activation functions to approximate
ϕe. The inputs are a function of the last nb inputs and na
sensor values (Yk ∪ Uk), in order to identify the lifted states.
Similarly, an MLP is used to model ϕd in order to reconstruct
the outputs ŷk. When computing the linear reconstruction of
ŷk, a matrix C is used instead of ϕd.

The learning of the network models is done with a carefully
designed multi-objective loss function with several terms to
weigh the current state reconstruction and future states of the
dynamic system. For instance, the loss Llin is the prediction
error in the observable space, and Lpred is the prediction error
in the state space. These two losses are designed to enforce the
linearity of the estimated system in the observable space. We
also consider three regularization losses to prevent overfitting,
where Lreg1 and Lreg3 are the l2 norm of the weight of the two
MLPs, and Lreg2 is the l2 norm of Â. The full minimization
problem is thus formulated as:

min
Wϕ,WB ,Â

L(Wϕ,WB , Â), (10a)

where:

L = α1

Llin︷ ︸︸ ︷
1

bs(ns − 1)

bs∑
k=1

ns∑
k=2

∥ẑk − ϕe(yk,uk)∥2

+α2

Lpred︷ ︸︸ ︷
1

bs(ns − 1)

bs∑
k=1

ns∑
k=2

∥ŷk − yk∥2

+α3

Lreg1︷ ︸︸ ︷
∥Wϕ∥22 +α4

Lreg2︷ ︸︸ ︷
∥Â∥22 +α5

Lreg3︷ ︸︸ ︷
∥WB∥22

(10b)

with Wϕ the weights and biases of the Multi-Layer Perception
(MLP) networks that approximate ϕe and ϕd respectively
while WB represents the weights of the MLP that approx-
imates B̂f . ne is the number of epochs, ns is the number
of steps in each trajectory, bs is the batch size. To deal

Algorithm 1
Inputs: training dataset D, weights (α1-α5), number of
epochs (ne), batch size (bs), dimension of the observable
space (nz), learning rate (η)

Initialize Â as the identity and the parameters WB and Wϕ

for epoch in 1 to ne do
for batch in D do

Lpred = 0, Llin = 0
for (y1,u1, ...,yns ,uns) in batch do

ẑ1 = ϕe(yk, ...,yk−na ,uk, ...,uk−nb)
ŷ1 = ϕd(ẑ1)
for k in 1 to ns − 1 do

ẑk+1 = Âẑk + B̂f (ẑk)uk

ŷk+1 = ϕd(ẑk+1)
Lpred +=

∑ns

k=2 ∥ŷk − yk∥2
Llin +=

∑ns

k=2 ∥ẑk − ϕe(yk,uk)∥2
end for

end for
Lpred = 1

ns−1Lpred

Llin = 1
ns−1Llin

L = α1Lpred + α2Llin + α3∥Wϕ∥22 + α4∥Â∥22 +
α5∥WB∥22

update Â,WB ,Wϕ by backpropagation
end for

end for

Outputs : Â,WB ,Wϕ

with the multi-objective optimization problem (10), a linear
scalarization is used where weights α1 to α5 are used to deal
with the different scales of the individual loss functions.

The complete implementation is described in Algorithm 1,
and a scheme of the training network architecture is shown
in Fig. 1, where: Uk = [uk,uk−1, ...,uk−nb ], Yk =
[yk,yk−1, ..., yk−na ], Ŷnlin

k = [ŷnlin
k , ŷnlin

k−1, ..., ŷ
nlin
k−na

],
Ŷ lin
k = [ŷlin

k , ŷlin
k−1, ..., ŷ

lin
k−na

]. Here na and nb are respec-
tively the numbers of the last outputs and inputs taken into
account. The loss L is computed on sections of trajectories
of a number of steps ns to focus on short-term prediction
and to allow for simpler parallelization with modern batch
optimization algorithms [30].

IV. EXPERIMENTAL RESULTS

A. Data Acquisition

The data for the system representation learning were col-
lected using multiple open-loop experiments of a real valve
platform. The identification data was collected using inputs
with different forms. The first batch of inputs was formed by
45% of Pseudo-random binary sequence (PRBS) [31]. PRBS
are characterized by their randomness and binary nature, which
enable an efficient and thorough exploration of a system’s
response across its operational ranges [31]. In the present
work, PRBS was generated based on the algorithms presented



Fig. 2: Test bench and considered ETB valve system for the
data acquisition and hardware configuration of the ETB control
system.

in [20], [32], [33]. The other 45% are composed of square sig-
nals with random amplitudes and lengths (see Fig. 7). Square
signals with random varying amplitudes were used to excite
the operation mode where stochasticity is present. Finally,
10% of sinusoidal signals with random varying amplitude were
added to the inputs.

B. Considered Nonlinear Valve System

We have selected a real Electrical Throttle Body (ETB)
system to perform the experiments. The ETB is a type of valve
used in the industry for flow control in the automotive, chem-
ical, pharmaceutical, and food industries. The present work
focuses on a model that regulates air inflow into the motor’s
combustion system of cars. It is crucial for the superimposed
engine speed control system [34]. In response to a driver’s
pedal motion, it controls the throttle plate position which in
turn controls the car speed [19]. To optimize the fuel economy
and emissions, fast throttle positioning response and accurate
reference tracking are required. The exact model studied here
is “Throttle body 158T0024”, produced by Ridex®. It has
equipped some Audi®, Škoda®, Seat® and VW® models. Fig.
2 displays the test bench that was used in this work. In order
to control the opening of the valve and to recover the data, an
Arduino Mega 2560® in combination with a Rev3® Arduino
motor shield was used in serial communication with a Dell
Precision 3650® computer.

The input was generated by manipulating the duty ratio of
the Pulse-Width Modulation (PWM) signal that is sent to the
ETB by the Arduino board. The output was provided by the
position sensor that measures the opening of the valve. Data
was collected by exciting an ETB sampled at 20Hz for a total
duration of thirty minutes. In order to present the nonlinear
behaviors and the stochasticity, a series of experiments with
identical inputs were performed. The results are presented in
Fig. 3. In both figures, the asymmetric hysteresis is clearly vis-
ible. Stochasticity is observed when the input is slowly variated
by using a staircase signal (Fig. 3 (b)) when different outputs
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Fig. 3: Visualizations of control inputs for a series of openings
and closings of the valve. In (a), inputs are generated using a
staircase signal, and (b) shows the response of the system to
a ramp input signal.

are produced by repeating the identical inputs. Furthermore,
the figure illustrates that only inputs falling within the PRBS
range of [40, 80](%) trigger valve motion, and thus the input
space was restricted in this range in further experiments.

C. Implementation, Metrics and Training Details

Using the data generated from the ETB, the model was
trained using the proposed algorithm presented in Section III.
In order to compare the different obtained models, the Nor-
malised Root Mean Square Error (NRMSE) is used between
the true and predicted system outputs:

NRMSE =
RMSE

σy
=

√∑ns

k=k0
∥ŷk − yk∥22√∑ns

k=k0
∥ŷk − ȳ∥22

(11)

where σy and ȳ are respectively the standard deviation and
the mean of the measured outputs.

The networks and algorithm shown in algorithm 1 were
implemented with PyTorch. The training hyperparameters are
given in Table I. Optimizing the dimension of zk is significant
and, as shown in Fig. 4, the tuning outcomes indicate that
selecting nz = 24 gives the most favorable balance between
model complexity and the quality of the fit. This tuning was
performed using our model with linear output reconstruction
because this strategy is more suitable for control. α1 and α2

were chosen by observing the evolution of the losses while
training with a higher priority on Llin during the first few
epochs in order to find first a proper observable space. The
model was trained using a GPU GeForce RTX 3060® and
took three hours.

D. Results and Discussion

We present some qualitative results in Fig. 5. Here an
efficient estimation is obtained by applying PRBS inputs in
both cases, where nonlinear decoder and linear estimation were



TABLE I: Architecture details and training hyper-parameters.

Param. Value Param. Value Param. Value
Scheduler Exp LR # layers 4 α1 100

γ (scheduler) 0.995 layer width 60 α2 1
Batch size 32 η 1e-3 α3 1e-9

Act function ReLu nz 24 α4 0
Optimizer Adam na 3 α5 0
# epochs 1000 nb 3 ns 130

12 16 20 24 28 32

Dimension of the observable space (nz)

5.5

6.0
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Fig. 4: For several dimensions nz of zk, five pieces of training
were performed with each a different weights initialization
(determined by a manual seed). The points represent the mean
of the prediction loss Lpred for each configuration, the bars
represent their standard deviation.

performed for nz = 24. The NRMSE scores of each method
are indicated at the top of the figure. By zooming on Fig. 5,
it is observed that the nonlinear decoder captures better the
nonlinear behavior of the system in some regions where the
system was brought to a steady state. In all the trainings, a A
matrix with stable eigenvalues is obtained, which is coherent
with the stability of the original data-generating system.

Subsequently, the performance of the proposed model is
compared with some classical nonlinear system identification
methods. Fig. 6 and 7 display estimations made by our model
and by models identified using Matlab® R2022b Nonlinear
System Identification Toolbox with a discrete Nonlinear ARX
(NARX) and a discrete Neural State Space (NSS) models.
Both were outperformed, although NSS was shown to be
highly dependent on the tuning parameters. Concerning the
hyper-parameters of the NSS, 4 layers of width 128 are used,
the bias initializer is set to 0, the weights initializer is Glorot,
and the optimizer is Adam. Concerning the NARX model, the
number of delayed inputs is set to 4, the minimum input delay
to 0, and the input-output delay to 1.

The results shown in Fig. 6 indicate that, for sequences in
which the system is excited by PRBS inputs, our results are
similar to the ones obtained with the NARX model, however,
we recall that our model is more suitable for control. The
obtained results are also better than the ones obtained with
the NSS model, the latter faces difficulties in estimating the
state in the data sequences where the mechanism of the ETB
was at an angle of 90°. Finally, Fig. 7 contains sequences in
which the behavior of our ETB is stochastic, in the sense that it
is not always possible to predict if a particular input value will
be high enough to close the mechanism in case it is opened
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Fig. 5: Predictions of our model with PRBS inputs
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Fig. 6: Comparison of the two obtained models (and the two
baseline competitors) with the state prediction of a trajectory
excited by a PRBS signal.

(or if a particular input value will be low enough to open the
mechanism in the case it is closed). With our particular model,
this stochasticity is observed when the inputs are composed
of sequences of values between 53% and 67% with changes
at a frequency lower than 1Hz. In these cases, all the methods
face significant difficulties in prediction, but our method still
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Fig. 7: Comparison of the two models (and two baseline
competitors) obtained with the state prediction of a trajectory
excited by a signal with random piece-wise constant inputs.

outperforms the two classical ones.

V. CONCLUSIONS

In this work, a system identification algorithm based on
Koopman theory with NNs is presented. This algorithm is
tailored to solve the challenge of identifying a model for the
complex nonlinear system of an ETB valve. The two obtained
Koopman models (a linear one and a non-linear reconstruction
decoder) presented good performance, notably when compared
with the other two existing nonlinear identification techniques.
In future work, we plan to go further and evaluate the method
to design and perform feedback control of the ETB valve.
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