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Abstract

Imagine we want to split a group of agents into teams in the most efficient way, considering that
each agent has their own preferences about their teammates. This scenario is modeled by the extensively
studied Coalition Formation problem. Here, we study a version of this problem where each team
must additionally be of bounded size.

We conduct a systematic algorithmic study, providing several intractability results as well as multiple
exact algorithms that scale well as the input grows (FPT), which could prove useful in practice.

Our main contribution is an algorithm that deals efficiently with tree-like structures (bounded treewidth)
for “small” teams. We complement this result by proving that our algorithm is asymptotically optimal.
Particularly, even considering star-like structures (bounded vertex cover number) cannot result in an
algorithm with a better running time, under reasonable theoretical assumptions.

Keywords: Coalition formation, additive separable hedonic games, parameterized complexity

1 Introduction

Coalition Formation is a central topic in Computational Social Choice and economic game theory [14].
The goal is to partition a set of agents into coalitions to optimize some utility function. One well-
studied notion in Coalition Formation is Hedonic Games [24], where the utility of an agent depends
solely on the coalition it is placed in. Due to their extremely general nature that captures numerous
scenarios, hedonic games are intensively studied in computer science [2, 6, 11, 13, 16, 27, 39, 50, 54],
and are shown to have applications in social network analysis [51], scheduling group activities [18], and
allocating tasks to wireless agents [53].

Due to its general nature, most problems concerning the computational complexity of hedonic games
are hard [52]. In fact, even encoding the preferences of agents, in general, takes exponential space,
which motivates the study of succinct representations for agent preferences. One of the most-studied
such class of games is Additive Separable Hedonic Games [12], where the agents are represented by
the vertices of a weighted graph and the weight of each edge represents the utility of the agents joined
by the edge for each other (see also Weighted Graphical Games model of [19]). Variants where the
agent preferences are asymmetric are modeled using directed graphs. Here, the utility of an agent for
a group of agents is additive in nature. Additive Separable Hedonic Games are well-studied in the
literature [1, 3, 7].

Most literature in the Additive Separable Hedonic Games considers the agents to be selfish in nature
and hence, the notion used to measure the efficiency is that of stability [52], including core stability,
Nash Stability, individual stability, etc. Semi-altruistic approaches where the agents are concerned
about their relative’s utility along with theirs are also studied [47]. A standard altruistic approach
in computational social choice is that of utilitarian social welfare, where the goal is to maximize the
total sum of utility of all the agents. Observe that if all edge weights are positive, then the maximum
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utilitarian utility is achieved by putting all agents in the same coalition. But there are many practical
scenarios, for example, forming office teams to allocate several projects and allocating cars/buses to
people for a trip, where we additionally require that each coalition should be of a bounded size.

We consider the Additive Separable Hedonic Games with an additional constraint on the maximum
allowed size of a coalition (denoted by C), with the goal to maximize the total sum of utility of all the
agents. We formally define the problem definition, along with other preliminaries, in Section 2. This
game is known to be NP-hard even when C = 3 [46] (and hence W-hard parameterized by C). There-
fore, we consider the parameterized complexity of this problem through the lens of various structural
parameters of the input graph and present a comprehensive analysis of its computational complexity.
In parameterized complexity, the goal is to restrict the exponential blow-up of running time to some
parameter of the input (which is usually much smaller than the input size) rather than the whole input
size. Due to its practical efficiency, the paradigm of parameterized complexity has been used exten-
sively to study problems arising from Computational Social Choice and Artificial Intelligence [5, 8, 15]
(including hedonic games [33, 37]).

It is worth mentioning that C-CF (defined later) has been studied from an approximation perspective
and is shown to have applications in Path Transversals [44]. Moreover, [4] considered a Weighted
Graphical Game to maximize social welfare and provided constant-factor approximation for restricted
families of graphs. Finally, [29] considered the online version of several Weighted Graphical Games
(aiming to maximize utilitarian social welfare), in one of which they also consider coalitions of bounded
size.

Our contribution

In this paper we study the C-Coalition Formation problem, which is a version of the Coalition
Formation problem with the added constraint that each coalition should be of size at most C. We
consider two distinct variants of this problem according to the possibilities for the utilities of the agents.
In the unweighted version, the utilities of all the pairs of agents are either 0 (there is no edges connecting
them) or 1. In the weighted version, the utilities of all pairs of agents are given by natural numbers.
We will refer to the former as the C-CF and the latter as the C-CFw problems, respectively.

Recall that the C-CF is, generally speaking, a computationally hard problem. To combat this, we
propose two algorithms that are efficient in the case where the input graph has a tree-like (bounded
treewidth) or a star-like (bounded vertex cover number) structure. Such structures may seem restrictive
at first glance, but it is often the case that inputs stemming from real-world applications do exhibit
them (recall the small world phenomenon [25]). In particular, we show that:

Theorem 1.1. The C-CFw problem can be solved in time (twC)O(tw)nO(1), where tw is the treewidth
of the input graph.

The complexity in the above algorithm depends on C. It is natural to wonder whether there can be
an efficient algorithm that avoids this. We answer this question negatively.

Theorem 1.2. The C-CF problem is W[1]-hard when parameterized by the tree-depth of the input
graph.

Nevertheless, we do achieve such an algorithm by allowing the input to have a star-like structure. In
the following statements, vc denotes the vertex cover number of the input graph.

Theorem 1.3. The C-CFw problem can be solved in time vcO(vc)nO(1).

Then, we prove that both of the above algorithms are, essentially, optimal, i.e., we do not expect a
drastic improvement in their running times.
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Theorem 1.4. There is no algorithm that solves the C-CF problem in time (Cvc)o(vc+C)nO(1), unless
the ETH fails.

We then slightly shift our approach and attack this problem using the toolkit of kernelization. In-
tuitively, our goal is to “peel off” the useless parts of the input (in polynomial time) and solve the
problem for the “small” part of the input remaining, known as the kernel. Due to its profound impact,
kernelization was termed “the lost continent of polynomial time” [28]. It is specifically useful in practical
applications as it has shown tremendous speedups in practice [34, 35, 49, 55].

Theorem 1.5. C-CF admits a kernel with O(vc2C) vertices.

We complement the above result by proving that, unfortunately, there can be no such kernel for the
weighted version.

Theorem 1.6. It is highly unlikely to construct a poly{vc+C} size kernel that solves the C-CFw prob-
lem.

We close our study by considering additional structural parameters for the unweighted case. We
postpone the formal definition of these parameters until Section 2.2.

Theorem 1.7. The C-CF problem can be solved in FPT time when parameterized by the vertex integrity
of the input graph.

Theorem 1.8. The C-CF problem is W[1]-hard when parameterized by the twin-cover number of G.

The choice to focus our attention to the above two parameters is not arbitrary. Let G be a graph
with vertex integrity vi, twin-cover number twc and vertex cover number vc. Then, vi ≤ twc + ω(G)
and twc ≤ twc + ω(G), where ω(G) is the clique number of G. Finally, twc + ω(G) ≤ f(vc), for some
computable function f . Taking the above into consideration, our Theorems 1.7 and 1.8 provide a clear
dichotomy of the tractability of C-CF when considering these parameters.

2 Preliminaries

We follow standard graph-theoretic notation [20]. For any integer and n, we denote [n] the set of all
integers between 1 and n. That is, [n] = {1, . . . , n}.

Formally, the input of the C-CFw consists of a graph G = (V,E) and an edge-weight function
w : E → N. Additionally, we are given a capacity C ∈ N as part of the input. Our goal is to find
a C-partition of V , that is, a partition P = {C1, . . . , Cp} such that |Ci| ≤ C for each i ∈ [p]. For
each i ∈ [p], let Ei denote the edges of G[Ci]. Let E(P) be the set of edges of the partition P,
i.e., E(P) =

⋃p
i=1 E(G[Ci]). The value of a C-partition P is: v(P) =

∑p
i=1

∑
e∈E(Ci)

w(e). We are
interested in computing an optimal C-partition, i.e., a C-partition of maximum value. Note that we
will also use the defined notations for general (not necessarily C-)partitions.

We are also interested in the unweighted version of the C-CF problem, where each edge of the input
graph has a weight of 1; in such cases, the input of the problem will only consist of the graph and the
required capacity.
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2.1 Parameterized Complexity - Kernelization

Parameterized complexity is a computational paradigm that extends classical measures of time com-
plexity. The goal is to examine the computational complexity of problems with respect to an addi-
tional measure, referred to as the parameter. Formally, a parameterized problem is a set of instances
(x, k) ∈ Σ∗ × N, where k is called the parameter of the instance. A parameterized problem is Fixed-
Parameter Tractable (FPT) if it can be solved in f(k)|x|O(1) time for an arbitrary computable function
f : N → N. According to standard complexity-theoretic assumptions, a problem is not in FPT if it is
shown to be W[1]-hard. This is achieved through a parameterized reduction from another W[1]-hard
problem, a reduction, achieved in polynomial time, that also guarantees that the size of the considered
parameter is preserved.

A kernelization algorithm is a polynomial-time algorithm that takes as input an instance (I, k) of a
problem and outputs an equivalent instance (I ′, k′) of the same problem such that the size of (I ′, k′) is
bounded by some computable function f(k). The problem is said to admit an f(k) sized kernel, and if
f(k) is polynomial, then the problem is said to admit a polynomial kernel. It is known that a problem
is FPT if and only if it admits a kernel.

Finally, the lower bounds we present are based on the so-called Exponential Time Hypothesis
(ETH for short) [40], a weaker version of which states that 3-SAT cannot be solved in time 2o(n+m),
for n and m being the number of variables and clauses of the input formula respectively.

We refer the interested reader to classical monographs [17, 48, 30, 21, 31] for a more comprehensive
introduction to this topic.

2.2 Structural parameters

Let G = (V,E) be a graph. A set U ⊆ V is a vertex cover of G if for every edge e ∈ E it holds that
U ∩ e ̸= ∅. The vertex cover number of G, denoted vc(G), is the minimum size of a vertex cover of G.

A tree-decomposition of G is a pair (T,B), where T is a tree, B is a family of sets assigning to each
node t of T its bag Bt ⊆ V , and the following conditions hold:

• for every edge {u, v} ∈ E(G), there is a node t ∈ V (T ) such that u, v ∈ Bt and

• for every vertex v ∈ V , the set of nodes t with v ∈ Bt induces a connected subtree of T .

The width of a tree-decomposition (T,B) is maxt∈V (T ) |Bt|−1, and the treewidth tw(G) of a graph G is
the minimum width of a tree-decomposition of G. It is well known that computing a tree-decomposition
of minimum width is fixed-parameter tractable when parameterized by the treewidth [42, 9], and even
more efficient algorithms exist for obtaining near-optimal tree-decompositions [43].

A tree-decomposition (T,B) is nice if every node t ∈ V (T ) is exactly of one of the following four
types:

Leaf: t is a leaf of T and |Bt| = 0.

Introduce: t has a unique child c and there exists v ∈ V such that Bt = Bc ∪ {v}.
Forget: t has a unique child c and there exists v ∈ V such that Bc = Bt ∪ {v}.
Join: t has exactly two children c1, c2 and Bt = Bc1 = Bc2 .

Every graph G = (V,E) admits a nice tree-decomposition that has width equal to tw(G) [10].

The tree-depth of G can be defined recursively: if |V | = 1 then G has tree-depth 1. Then, G has
tree-depth k if there exists a vertex v ∈ V such that every connected component of G[V \ {v}] has
tree-depth at most k − 1.

The graph G has vertex integrity k if there exists a set U ⊆ V such that |U | = k′ ≤ k and all
connected components of G[V \ U ] are of order at most k − k′. We can find such a set in FPT-time
parameterized by k [23].

A set S is a twin-cover [32] of G V can be partitioned into the sets S, V1, . . . , Vp, such that for every
i ∈ [p], all the vertices of Vi are twins. The size of a minimum twin-cover of G is the twin-cover number
of G.
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Let A and B be two parameters of the same graph. We will write A ≤f B to denote that the
parameter A is upperly bounded by a function of parameter B. Let G be a graph with treewidth tw,
vertex cover number vc, tree-depth td, twin-cover number twc and vertex integrity vi. We have that
that twc ≤f vc. Moreover, tw ≤f td ≤f vi ≤f vc, but twc is incomparable to tw.

3 Bounded Tree-width or Vertex Cover Number

This section includes both the positive and negative results we provide for graphs of bounded tree-width
or bounded vertex cover number.

3.1 Graphs of bounded tree-width

Theorem 3.1. Given a weighted graph G, as well as a nice tree decomposition of G of width tw, there
exists an algorithm that computes an optimal C-partition of G in time (twC)O(tw)nO(1).

Proof. As the techniques we are going to use are standard, we are sketching some of the introductory
details. For more details on tree decompositions (definition and terminology), see [22]. Assuming that
we have a nice tree decomposition T of the graph G rooted at a node r, we are going to perform dynamic
programming on the nodes of T . For a node t of T , we denote by Bt the bag of this node and by B↓

t

the set of vertices of the graph that appears in the bags of the nodes of the subtree with t as a root.
Observe that Bt ⊆ B↓

t .

In order to simplify some parts of the proof, we assume that the C-partitions we look into are allowed
to include empty sets. In particular, whenever we consider a C-partition P = {C1, . . . , Cp} of a graph
G[B↓

t ], we assume that is in the following form:

• p ≥ tw + 1,

• for any set Cj ∈ P, if j ∈ [tw + 1] then either Cj = ∅ or Cj ∩Bt ̸= ∅ and

• for any set Cj ∈ P, if j > tw + 1 then Cj ̸= ∅ and Cj ∩Bt = ∅.

Note that any C-partition can be made to fit such a form without affecting its value. Also, for any node
t of the tree decomposition and any C-partition of G[B↓

t ], no more than tw + 1 sets of the C-partition
can intersect with Bt. Thus, we do not need to store more sets of P intersecting with Bt.

For all nodes t of the tree decomposition, we will create all the C-partitions of G[B↓
t ] that are needed

in order to find an optimal C-partition; this will be achieved by storing only (twC)O(tw) C-partitions for
each bag. In order to decide which C-partitions we need to keep, we first define types of C-partitions of
G[B↓

t ] based on their intersection with Bt and the size of their sets. In particular, let Col be a coloring
function Col : Bt → [tw+1] and S be a table of size |tw+1| such that 0 ≤ S[i] ≤ C for all i ∈ [tw+1].
We will say that a C-partition P = {C1, . . . , Cp} is of type (Col, S)t if:

• P is a C-partition of G[B↓
t ],

• for any i ≤ tw + 1 and u ∈ Bt, Col(u) = i if and only if u ∈ Ci ∩Bt and

• S[i] = |Ci| for all i ∈ [tw + 1].

For any C-partition P of type (Col, S)t, the function Col describes the way that P partitions the set
Bt. Also, the table S gives us the sizes of the sets of P that intersect with Bt.

Finally, for any node t, a C-partition of type (Col, S)t will be called important if it has value greater
or equal to the value of any other C-partition of the same type. Notice that any optimal C-partition
of the given graph is also an important C-partition of the root of the tree decomposition. Therefore,
to compute an optimal C-partition of G, it suffices to find an important C-partition of maximum value
among the all important C-partitions of the root of the given tree decomposition of G.

We now present the information we will keep for each node. Let t be a node of the tree decomposition,
Col : Bt → [tw+1] be a function and S be a table of size |tw+1| such that 0 ≤ S[i] ≤ C for all i ∈ [tw+1].
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If there exists an important C-partition of type (Col, S)t, then we store a tuple (Col, S,W,P) for t,
where P is an important C-partition of type (Col, S)t and W is its value. Observe that W is the value
of a partition of the whole subgraph induced the vertices belonging to B↓

t .

We now explain how to deal with each kind of node of the nice tree decomposition.

Leaf Nodes. Since the leaf nodes contain no vertices, we do not need to keep any non-trivial
coloring. Also, all the positions of the tables S are equal to 0. Finally, we keep a C-partition P =
{C1, . . . , Ctw+1} where Ci = ∅ for all i ∈ [tw + 1].

Introduce Nodes. Let t be an introduce node with c being its child node and u be the newly
introduced vertex. We will use the tuples we have computed for c in order to build one important
C-partition for each type of C-partition that exists for t. For each tuple (Col, S,W,P) of c, we create at
most tw+1 tuples for t as follows. For each color i ∈ [tw+1] we consider two cases: either 0 ≤ S[i] < C
or S[i] = C. If 0 ≤ S[i] < C, then we set Col(u) = i, increase S[i] by one, extend the C-partition P
by adding u into the set Ci and increase W by

∑
uv∈E,v∈Ci

w(uv). If S[i] = C then we cannot color u
with the color i as the corresponding set is already of size C.

First, we need to prove that, this way, we create at least one important C-partition for t for each
type of C-partition of G[B↓

t ]. Assume that for a type (Col, S)t there exists an important C- partition
P = {C1, . . . , Cp} of B↓

t .

Let Pc be the C-partition we defined by the restriction of P on the vertex set B↓
c . That is, Pc =

{Cc
1 , . . . , C

c
p} where Cc

i = Ci ∩B↓
c for all i ∈ [p]. Notice that, since c is the child of an introduce node,

there exists a k ∈ [ℓ] such that Cc
k = Ck \ {u}, and Cc

i = Ci for all i ∈ [p] \ {k}. Also, note that Cc
k may

be empty. Since P is a C-partition of G[B↓
t ], we have that Pc is a C-partition of G[B↓

c ]. Furthermore,
let Col′ : Bc → [tw + 1] such that Col′(u) = Col(u) for all u ∈ Bc and S′ be a table where S′[i] = S[i]
for all i ∈ [tw + 1] \ k and S′[k] = S[k]− 1. Observe that Pc is of type (Col′, S′)c.

Since Pc is of type (Col′, S′)c, we know that we have stored a tuple (Col′, S′,W ′,P ′) for c, where
P ′ = {C′

1, . . . , C
′
p′} is an important C-partition of G[B↓

c ]. Note that P ′ is not necessarily the same as
Pc, but both of these C-partitions are of the same type. While constructing the tuples of t, at some
point the algorithm will consider the tuple (Col′, S′,W ′,P ′). At this stage, the algorithm will add the
vertex u on any set of P ′ of size at most C − 1, creating a different tuple for each option. These options
include the set colored by k; let (Colt, St,Wt,Pt) be the corresponding tuple, where Pt = {Ct

1, . . . , C
t
p′}.

Observe that in this case, u is colored k (i.e. Colt(u) = k = Col(u)), S′[k] is increase by one (i.e.
St[k] = S′[k] + 1 = S[k]) and u is added to C′

k (i.e. Ct
k = C′

k ∪ {u}). Notice that Col′(v) = Col(v) for
all v ∈ Bt and S′[i] = S[i] for all i ∈ [tw+1]. Therefore, it suffices to show that Pt is also an important
C-partition of G[B↓

t ]. Indeed, this would indicate that val(P) = val(Pt), since P and Pt would both be
important partitions of the same type.

On the one hand, we have that:

val(P) = val(Pc) +
∑

uv∈E,v∈Ck

w(uv) =

= val(Pc) +
∑

uv∈E,v∈Bt and Col(v)=k

w(uv)

On the other hand, we have that:

val(Pt) = val(P ′) +
∑

uv∈E,v∈C′
k

w(uv) =

= W ′ +
∑

uv∈E,v∈Bt and Col′(v)=k

w(uv)

Since Col(v) = Col′(v) for all v ∈ Bt, we have that the two above sums are equal. Therefore we need
to compare W ′ with val(Pc). Note that Pc and P ′ are both C-partitions of G[B↓

c ] of the same type.
Thus, W ′ = val(P ′) ≥ val(Pc). It follows that val(P) ≤ val(Pt), and since P is important, we have
that val(Pt) = val(P) and that Pt is also important.
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Forget Nodes. Let t be an forget node, with c being its child node and u be the newly introduced
vertex. We will use the tuples we have computed for c in order to build one important C-partition for
each type of C-partition that exists for t. For each tuple (Col, S,W,P) of c we create one tuple
(Col′, S′,W ′,P ′) for t as follows. Let Col(u) = i. We consider two cases: either Ci ∩Bt = ∅ or not. In
the former, we have that the color i does not appear on any vertex of Bc \{u} = Bt. Therefore, are free
to reuse this color. To do so, we set S′[i] = 0 and we modify P. In particular, if P = {C1, . . . , Ck}, we
create a new C-partition P ′ = {C′

1 . . . , C
′
k+1} where C′

j = Cj for all j ∈ [k]\{i}, C′
i = ∅ and C′

k+1 = Ci.
Also, we define Col′ as the restriction of the function Col to the set Bt. Finally, W ′ = W . In the latter
case, it suffices to restrict Col to the set Bt. We keep all the other information the same.

We will now prove that, for any type of C-partition of t, if there exists a C-partition of that type, we
have created an important C-partition of that type. Assume that for a type (Col, S)t there exists an
important C-partition P = {C1, . . . , Cp} of Bt of value W . We consider two cases: either u ∈ Cℓ for
some ℓ ≤ tw + 1 or u ∈ Cℓ for some ℓ > tw + 1.

Case 1: u ∈ Cℓ for some ℓ ≤ tw + 1. In this case, Cℓ ∩Bt ̸= ∅. This follows from the assumption
that any C-partition P = {C1, . . . , Cp} we consider is such that for any set Cj ∈ P, if j ∈ [tw+ 1] then
either Cj = ∅ or Cj∩Bt ̸= ∅ and because {v | v ∈ Bc\{u} and Col(v) = ℓ} ̸= ∅. Let Colc : Bc → [tw+1]
be such that Colc(u) = ℓ and Colc(v) = Col(v) for all v ∈ Bt. Notice that P is of type (Colc, S)c.
Let (Colc, S,W

′,P ′) be the tuple that is stored in c for the C-partition P ′ = {C′
1, . . . , C

′
p′} of type

(Colc, S)c.

While creating the tuples of t, at some point, the tuple (Colc, S,W
′,P ′) was considered. Let

(Col′c, S
′,W ′,P ′) be the tuple that was created at that step. Notice that, since Colc is an exten-

sion of Col to the set Bc and Cℓ ∩ Bt = {v ∈ Bt | Col(v) = ℓ} ∩ Bt ̸= ∅, we have that {v ∈ Bt |
Colc(v) = ℓ}∩Bt ̸= ∅. Therefore, {v ∈ Bt | Col′c(v) = ℓ}∩Bt = {v ∈ Bt | Colc(v) = ℓ}∩Bt ̸= ∅. Thus,
it follows from the construction of (Col′c, S

′,W ′,P ′) that Col′c(v) = Col(v) for all v ∈ Bt. Also, since
{v ∈ Bt | Col′c(v) = ℓ} ∩ Bt ̸= ∅, the vertex u was not the only vertex colored with ℓ. Therefore, S′ is
the same as S. This gives us that P ′ and P are of the same type in t. That is, (Col′c, S

′)t = (Col, S)t
and we have stored a tuple for this type.

It remains to show that P ′
t is an important partition of its type in t. This is indeed the case as P and

P ′ have the same type in c and P ′ is an important partition of this type in c. Since the value of the
two partitions does not change in t and they remain of the same type, we have that P ′

t is an important
partition of its type in t.

Case 2: u ∈ Cℓ for some ℓ > tw + 1. In this case we have that Cℓ ∩ Bt = ∅ and Cℓ ∩ Bc = {u}.
Notice that, at least one of the Cis, i ∈ [tw + 1], must be empty. Indeed, since Ci ∩Bc = Ci ∩Bt ̸= ∅,
for all i ∈ [tw + 1], we have tw + 2 sets intersecting Bc (including Cℓ). This is a contradiction as these
sets must be disjoint and |Bc| ≤ tw + 1.

First, we need to modify the partition P so that it respects the second item of the assumptions we
have made for the C-partitions in c. To do so, select any k ∈ [tw+1] such that Ck = ∅ and set Ck = Ci.
Then, set Ck = Ck+1, for all k ∈ [p − 1] \ [i − 1], and remove Cp. Let Pc = {Cc,1, . . . , Cc,p−1} be the
resulting C-partition of c. We define Colc : Bc → [tw + 1] such that, for all v ∈ Bc, Colc(v) = i if and
only if v ∈ Cc,i. Notice that Col is the restriction of Colc on the vertex set Bt. Also, we define Sc to be
the table of size tw+1 such that, for all i ∈ tw+1, Sc[i] = |Cc,i|. Notice that for all i ∈ [tw+1] \ {k},
we have S[i] = Sc[i] and Sc[k] ̸= 0 and S[k] = 0.

Observe that P is of type (Col, S)t and Pc is of type (Colc, Sc)c. Therefore, let (Colc, Sc,W
′,P ′)

be the tuple we have stored in c, where P ′ is an important partition of type (Colc, Sc)c. While
constructing the tuples of t, at some point, we consider the tuple (Colc, Sc,W

′,P ′) and create a tuple
(Colt, St,W

′,Pt) for t. We claim that Pt is of the same type as P and that Pt is an important
partition of that type. Notice that u is the only vertex of Bc such that Colc(u) = k. It follows that
(Colt, St,W

′,Pt) was created by setting:

• Colt to be the restriction of Colc on the set Bt,

• St[k] = 0 and St[i] = Sc[i], for i ∈ [tw + 1] \ {k} and

• we modify the Pc following the steps described by the algorithm.
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Notice that, P ′ and Pt are the same C-partition, presented in a different way. By the construction
of Col′t and S′

t, we have that (Colt, St)t is the same as (Col, S)t. It follows that there exists a tuple
(Col, S,W ′,P ′) stored in t, where P ′ is of type (Col, S)t.

It remains to show that Pt is an important partition of its type. Notice that P and Pc are the same
C-partition. Therefore, they have the same value. The same holds for P ′ and Pt. Finally, since P ′

and Pc have the same type in c and P ′ is an important partition, we have that val(P ′) ≥ val(Pc). So,
val(Pt) = val(P ′) ≥ val(Pc) = val(P), from which follows that Pt is also an important partition.

Join Nodes. Let t be a join node, with c1 and c2 being its children nodes. We will use the
tuples we have computed for c1 and c2 in order to build one important C-partition for each type of
C-partition that exists for t. For any pair of tuples (Col1, S1,W1,P1) and (Col2, S2,W2,P2), of c1 and
c2 respectively, we will create a tuple (Col, S,W,P) for t if:

• Col1(u) = Col2(u) for all u ∈ Bt (which is the same as Bc1 and Bc2),

• for all i ∈ [tw + 1], S1[i] + S2[i]− |Ci ∩Bt| ≤ C,

where Ci is the ith set of P1. Note that the choice of P1 here is arbitrary because of the first condition.
Indeed, the first condition guarantees that P1 and P2 “agree” on the vertices of Bt. That is, the vertices
of Bt are partitioned in the same sets according to P1 and P2. The second conditions guarantees that
the sets created for P are of size at most C. The tuple (Col, S,W,P) is created as follows. We set:

• Col(u) = Col1(u) for all u ∈ Bt,

• S[i] = S1[i] + S2[i]− |Ci ∩Bt| for all i ∈ [tw + 1], and

• W = W1 +W2 −
∑

uv∈E(G[Bt]),Col(u)=Col(v) w(uv).

Once more, Ci is chosen w.l.o.g. to be the ith set of P1. Finally, we define P. Let P1 = {C1
1 , . . . , C

1
p}

and P2 = {C2
1 , . . . , C

2
p′}; we create the C-partition P = {C1 . . . , Cp+p′−tw−1} as follows. For any

i ∈ [tw + 1], set Ci = C1
i ∪ C2

i . For any i ∈ [p] \ [tw + 1], set Ci = C1
i . Last, for any i ∈ [p′] \ [tw + 1],

set Cp+i = C2
i . This completes the construction of the tuple we keep for t, for each pair of tuples that

are stored for c1 and c2.

We will now prove that, for any type of C-partition of t, if there exists a C-partition of that type,
we have created an important C-partition of that type. We assume that for a type (Col, S)t of t,
there exists an important C-partition P = {C1, . . . , Cp} of G[B↓

t ]. Let P1 = {C1 ∩ B↓
c1 , . . . , Cp ∩ B↓

c1}
and P2 = {C1 ∩ B↓

c2 , . . . , Cp ∩ B↓
c2}. Notice that P1 and P2 are C-partitions of G[B↓

c1 ] and G[B↓
c2 ],

respectively. Let (Col, S1)c1 and (Col, S2)c2 be the types of P1 and P2, respectively (recall that, by
construction, Col1 = Col2 = Col). The existence of P1 (respectively P2) guarantees that there is a
tuple (Col, S1,W1,P ′

1) (resp. (Col, S2,W2,P ′
2)) stored for the node c1 (resp. c2). By the definition of

P1 and P2, we have that S[i] = S1[i] + S2[i] − |Ci ∩ Bt| ≤ C for all i ∈ [tw + 1]. It follows that while
constructing the tuples of t, the algorithm considered, at some point, the pair of tuples (Col, S1,W1,P ′

1)
and (Col, S2,W2,P ′

2), and created the tuple (Col, S′,W ′,P ′) for t. Notice that, by the construction of
S′, we have that S[i] = S′[i] for all i ∈ [tw + 1]. Therefore the type (Col, S′)t is the same as (Col, S)t.

It remains to show that P ′ is an important partition of its type. Notice that, val(P ′) = W ′ =
W1 +W2 −

∑
uv∈E(G[Bt]),Col(u)=Col(v) w(uv) and

val(P) = val(P1) + val(P2)−
∑

uv∈E(G[Bt]),Col(u)=Col(v) w(uv). Since W1 is the weight of an important
partition of the same type as P1 in c1, we have that val(P1) ≤ W1. Also, W2 is the weight of an
important partition of the same type as P2 in c2. It follows that val(P2) ≤ W2. Overall: val(P ′) =
W1 +W2 −

∑
uv∈E(G[Bt]),Col(u)=Col(v) w(uv) ≥ val(P1) + val(P2)−

∑
uv∈E(G[Bt]),Col(u)=Col(v) w(uv) =

val(P).

Thus, P ′ is an important partition of its type in t. This finishes the description of our algorithm, as
well as the proof of its correctness.

It remains to compute the running time of our algorithm. First we calculate the number of different
types of C-partitions for a node t. We have at most (tw+1)tw+1 different functions Col and (C+1)tw+1

different tables S. Therefore, we have (twC)O(tw) different types for each node. Since we are storing
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(α) the gadget Fx,z−2y

V1(Fx,z−2y) V2(Fx,z−2y)

...
...

...

(β) the gadget Fx,y,z

V1(Fx,y,z)

V2(Fx,y,z)

V3(Fx,y,z)

Figure 1: The gadgets used in the proof of Theorem 3.2

one tuple per type, we are storing (twC)O(tw) tuples for each node of the tree decomposition. Moreover,
for the leaf nodes, we need to create just one tuple. For the introduce and forget nodes, we need to
consider each tuple of their children once. Therefore, we can compute all tuples for these nodes in
time (twC)O(tw). For the join nodes, in the worst case, we may need to consider all pairs of tuples of
their children that share the same coloring function. This still does not result in more than (twC)O(tw)

combinations. Finally, as all the other calculations remain polynomial to the number of vertices, the
total time that is required is (twC)O(tw)|V (G)|O(1).

Theorem 3.2. Let G be an unweighted graph, and C and v∗ be two integers . Deciding if there exists
a C-partition P of G with v(P) ≥ v∗ is W[1]-hard when parameterized by the tree-depth of G.

Proof. We present a reduction from the General Factors problem. In this problem, we are given
a graph H = (V,E) and a list function L : V → P({0, . . . ,∆(H)}) that specifies the available degrees
for each vertex u ∈ V . The question is whether there exists a set E′ ⊆ E such that dH−E′(u) ∈ L(u)
for all u ∈ V . It is known that the General Factors problem is W[1]-hard, even on bipartite
graphs when parameterized by the size of the smallest bipartition [36]. Let (H,L) be an instance of
the General Factors problem where H = (VL, VR, E) is a bipartite graph (V (H) = VL ∪ VR and
E(H) = E) and L : VL ∪ VR → P([|V (H)|]) gives the list of degrees for each vertex. Notice that,
normally, |L(u)| ≤ d(u) ≤ |V (H)|. Nevertheless, we can assume that |L(u)| = |V (H)| as we can allow
L(u) to be a multiset. Hereafter, we assume that the size for the smallest bipartition is m and the total
number of vertices is n = |V (H)|. Note that, m ≤ n/2. We can also assume that m > 2 as otherwise,
we could answer whether (H,L) is a yes-instance of the General Factors problem in polynomial
time.

The construction. Starting from (H,L), we will construct a graph G such that any C-partition
of G, for C = 100n3, has a value exceeding a threshold if and only if (H,L) is a yes-instance of the
General Factors problem. We start by carefully setting values that so that our reduction works. We
define the values A = n2, B = 5n2 +3m+4 and D = 2m+5 which will be useful for the constructions
and calculations that follow.

We now describe the two different gadgets denoted by Fx,5A−2y and Fx,C−y,z. The Fx,5A−2y gadget
is defined for 4xy < 5A− 2y. It is constructed as follows (illustrated in Figure 1(a)):

• We create two independent sets U and V of size x and 5A− 2y respectively,

• we add all edges between vertices of U and V and
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• we add 2xy edges between vertices of V such that the graph induced by the vertices incident to
these edges is an induced matching (we have enough vertices because we assumed that 4xy <
5A− 2y).

Hereafter, for any gadget Fx,5A−2y = F we will refer to U as V1(F ) and to V as V2(F ).

The construction of Fx,C−y,z is as follows(illustrated in Figure 1(b)):

• We create three independent sets U , V and W of size x, C − y and z respectively,

• we add all edges between vertices of U and V and all edges between vertices of U and V ,

Hereafter, for any gadget Fx,C−y,z = F we will refer to U as V1(F ), to V as V2(F ) and to W as V3(F )
Before we continue, notice that |E(Fx,5A−2y)| = 5xA and |E(Fx,C−y,z)| = (x+ z)(C − y).

We are now ready to describe the construction of the graph G, illustrated in Figure 2. First, for each
vertex v ∈ V (H), we create a copy F v of the F4,C−B,2m+10 gadget; we say that this is a vertex-gadget.
We also fix a set U(F v) ⊂ V1(F

v) such that |U(F v))| = 2. Now, for any vertex v ∈ V (H) and integer
α ∈ L(v), we create a copy Fα(v) of the Fm+6,5A−2α gadget; we say that this is a list-gadget. We add
all the edges between V2(F

α(v)) and U(F v). Recall that we have assumed |L(v)| = |V (H)|, for all
v ∈ V (H). So, for each vertex v of H, in addition to F v, we have created |V (H)| = n gadgets (one for
each element in the list). Finally for each edge e = uv ∈ E(H), where u ∈ VL and v ∈ VR, we create
a copy F e of the F1,C−D,2m gadget; we say that this is an edge-gadget. Then, we add a set of vertices
Ve = {we

L1, w
e
L2, w

e
R1, w

e
R2}. We add all the edges between V1(F

u) and Ve, all the edges between V1(F
u)

and {we
L1, w

e
L2}, all the edges between V1(F

v) and {we
R1, w

e
R2} and the edges we

Li, w
e
Rj for all i, j ∈ [2]

(i.e., Ve induces a K2,2). Hereafter, let VE =
⋃

e∈E(H) Ve and by UE =
⋃

e∈E(H) V (F e). This completes
the construction of G.

Before we continue let us introduce some notation. Observe that all the vertex-gadgets contain
the same number of edges. For every vertex v ∈ V (H), let mv = |E(F )|, where F is any vertex-
gadget. Similarly, all edge-gadgets contain the same number of edges. For every edge e ∈ E(H), let
me = |E(F )|, where F is any edge-gadget. Finally, the same holds for the list-gadgets; let mℓ = |E(F )|,
where F is any list-gadget.

Our goal is to show that an optimal C-partition P of G has value v(P) = mv|V (H)|+mℓ|V (H)|2 +
me|E(H)| + 10A|V (H)| + 8|E(H)| if and only if (H,L) is a yes-instance of the General Factors
problem.

To do so, we start by proving some properties of the optimal partitions of G.

Properties of optimal C-partitions of G. Assume that P an optimal C-partition of G. First,
we will show that for every gadget F , there exists a C ∈ P such that V (F ) ⊆ C. Then we will
prove that for any vertex-gadget F v, there exists one list-gadget F that represents an element of
the list L(v) (i.e. any u ∈ U(F v) and w ∈ V2(F ) are adjacent) and there exists a C ∈ P such
that V (F v) ∪ V (F ) ⊆ C. Finally, we will show that, in order for P to be optimal, i.e., v(P) =
mv|V (H)|+mℓ|V (H)|2+me|E(H)|+10A|V (H)|+8|E(H)|, the vertices of VE will be partitioned such
that:

• the set that includes V (F e), either includes all the vertices of Ve or none of them and

• the set that includes V (F v) and a gadget V (F ), for a list-gadget F representing the value α ∈ L(v),
will also include 2α vertices from VE .

We will show that if both the above conditions hold, then P is optimal and (H,L) is a yes-instance of
the General Factors problem. In particular, the edges E′ of the solution of the General Factors
problem are exactly the edges e ∈ E(H) such that F e and Ve are in the same set of P.

Let P be a C-partition of G. For every C ∈ P, we can assume that G[C] is connected as otherwise
we could consider each connected component of G[C] separately. We start with the following lemma:

Lemma 3.3. Let P = {C1, . . . , Cp} be an optimal C-partition of G and F be a vertex or edge-gadget.
There exists a set C ∈ P such that C ⊇ V (F ).
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V1(F
v)

F v

V1(F
u)

F u

wvu
L1

wvu
L2

wvu
R1

wvu
R2

F u

V1(F
vu)

F vu

V2(F
α1(v))

F α1(v)

V2(F
αn(v))

F αn(v)

V2(F
α1(u))

F α1(u)

V2(F
αn(u))

F αn(u)

..
.

..
.

Figure 2: The graph G constructed in the proof of Theorem 3.2

Proof. Assume that this is not true and let F be a vertex or edge-gadget such that C ∩ V (F ) ̸= V (F )
for all C ∈ P. We first show that maxC∈P{|C ∩V2(F )|} = x ≥ 2|V2(F )|/3. Assume that maxC∈P{|C ∩
V2(F )|} = x < 2|V2(F )|/3. We consider the partition P ′ = {V (F ), C1 \ V (F ), . . . , Cp \ V (F )}. We will
show that v(P) < v(P ′). Notice that any edge that is not incident to a vertex of V (F ) is either in
both sets or in none of them. Therefore, we need to consider only edges incident to at least on vertex
of V (F ). Also, since all edges in E(F ) are included in P ′ we only need to consider edges incident to
V1(F ) (as any other vertex is incident to edges in E(F )).

For any vertex v ∈ V1(F ), let d = d(v)−|V2(F )| (d is the same for any v ∈ V1(F )) and C ∈ P be the
set such that v ∈ C. We have that |C ∩N(v)| ≤ d + x, from which follows that |E(P) \ E(P ′)| ≤ 4d.
Notice that, regardless of which gadget F and vertex v ∈ V1(F ) that we consider, we have that
d ≤ 5nA + 2n < 6nA (since A = n2). Indeed, if F is an edge-gadget then d = 4. Also, if F is a
vertex-gadget, then any v ∈ V1(F ) has at most 5A neighboring vertices in each of the n list-gadgets
related to it (if it is in U(F )) and at most 2n in VE .

We will now calculate |E(P ′) \ E(P)|. Consider a v ∈ V1(F ) ∪ V3(F ) and let C ∈ P such that
v ∈ C. Notice that |C ∩ V2(F )| = x. Therefore, we have at least |V2(F )| − x edges incident to v, which
belong in E(P ′) \ E(P). Since V1(F ) ∪ V3(F ) is an independent set, it follows that |E(P ′) \ E(P)| ≥
|V1(F )∪V3(F )|(|V2(F )|−x) > (2m+4)|V2(F )|/3 > |V2(F )|. Now, in order to show that v(P ′) > v(P), it
suffices to show that 4d < |V2(F )|. This is indeed the case as |V2(F )| = C−B = 100n3−(5n2+3m+4) >
24n3 = 24nA > 4d. Thus, we can assume that maxC∈P{|C ∩ V2(F )|} = x ≥ 2|V2(F )|/3.

Let C ∈ P be the set such that |C ∩ V2(F )| ≥ 2|V2(F )|/3. We will show that C ∩ V3(F ) = V3(F ).
Assume that this is not true and let v ∈ V3(F ) such that v /∈ C. Notice that at most y = |V2(F )|−x ≤
|V2(F )|/3 edges incident to v are included in E(P). If |C| < C, then moving v from its set to C increases
the number of edges in E(P) by x−y ≥ |V2(F )|/3. Therefore, we can assume that |C| = C. Since G[C]
is connected and |C| = C, we have that C must include at least one vertex from V1(F ) and at least
one vertex from N(V1(F )) \ V2(F ). Notice that any vertex u ∈ N(V1(F )) \ V2(F ) has degree at most
m+ 10 (regardless of the value of m). Therefore, by replacing a vertex u ∈ C ∩ (N(V1(F )) \ V2(F )) in
C by v, we increase the number of edges in E(P) by at least x− y− d(u) ≥ |V2(F )|/3− d(u) > 0. This
contradicts the optimality of P. Thus, we can assume that C ∩ V3(F ) = V3(F ).

We will show that C ∩ V2(F ) = V2(F ). Assume that there exists a vertex v ∈ V2(F ) \ C. Since
C ∩ V3(F ) = V3(F ), we have that |N(v) ∩ C| ≥ |V3(F )| = 2m + 14 and N(v) \ C ≤ 4. otherwise If
|C| < C, then moving v from its set to C increases the number of edges in E(P) (recall that m > 2).
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Thus we can assume that |C| = C. Since G[C] is connected and |C| = C, we have that C must include at
least one vertex in V1(F ) and one from N(V1(F ))\V2(F ). Notice that any vertex u ∈ N(V1(F ))\V2(F )
has degree at most m + 10. Therefore, by replacing a vertex u ∈ C ∩ (N(V1(F )) \ V2(F )) in C by v,
we increase the number of edges in E(P) by at least 2m + 10 − (m + 10) = m. This contradicts the
optimality of P. Thus, we can assume that C ∩ V2(F ) = V2(F ).

We now show that C ∩ V1(F ) = V1(F ). Assume that this is not true and let v ∈ V1(F ) such that
v /∈ C. Notice that we may have up to d(v)− |V2(F )| edge in E(P) that are incident to v. If |C| < C,
then moving v from its set to C increases the number of edges in E(P) by at least 2|V2(F )| − d(v) > 0
(since V2(F ) ⊂ C and |V2(F )| = C − B). Thus, we can assume that |C| = C. Since G[C] is connected
and |C| = C, we have that C must include at least one vertex in V1(F ) and one from N(V1(F ))\V2(F ).
Any vertex u ∈ N(V1(F ))\V2(F ) can contribute at most m+10 edges in E(P). Therefore, by replacing
u in C by v, we increase the number of edges in E(P) by at least 2|V2(F )| − d(v)− (m+10) > 0. This
contradicts the optimality of P. This finishes the proof of the lemma.

Next, we will show that the same holds for the list-gadgets. In order to do so, we first need the two
following intermediary lemmas.

Lemma 3.4. Let P = {C1 . . . , Cp} be an optimal C-partition of G and F be a list-gadget in G. There
exists a set C ∈ P such that |C ∩ V2(F )| ≥ 3|V2(F )|/4.

Proof. Assume that this is not true and let maxC∈P{|C ∩ V2(F )|} = x < 3|V2(F )|/4. We create a
new partition P ′ = {V (F ), C1 \ V (F ), . . . , Cp \ V (F )}. We will show that v(P) < v(P ′). Notice that
any edge that is not incident to a vertex of V2(F ) is either in both P and P ′ or in neither of them.
Therefore, we need to consider only the edges that are incident to a vertex of V2(F ). Observe that
any edge in G[V (F )] is included in E(P ′). Thus, E(P) \ E(P ′) ⊆ E(G[V2(F ) ∪ U(F v)] \ E(G[V2(F )])
(recall that N [V2(F )] ∩ V1(F

v) = U(F v) and N [V2(F )] \ V1(F
v) ⊆ V (F )). Since maxC∈P{|C ∩

V2(F )|} = x < 3|V2(F )|/4, we have at most 3|V2(F )|/2 edges of E(G[V2(F ) ∪ V1(F
v)] \ E(G[V2(F )])

in E(P) \ E(P ′). Thus, E(P) \ E(P ′) ≤ 3|V2(F )|/2. We will now calculate the size of E(P ′) \ E(P).
Since maxC∈P{|C ∩ V2(F )|} = x < 3|V2(F )|/4, for each vertex v ∈ V1(F ) there are at least |V2(F )|/4
edges incident to v that are included in E(P ′) \ E(P). Therefore, |E(P ′) \ E(P)| ≥ |V1(F )||V2(F )|/4.
Since |V1(F )| = m+ 6 > 6 we have that v(P) < v(P ′), which contradicts to the optimality of P.

Lemma 3.5. Let P = {C1 . . . , Cp} be an optimal C-partition of G and F a list-gadget in G. There
exists a set C ∈ P such that |C ∩ V2(F )| ≥ 3|V2(F )|/4 and V1(F ) ⊆ C.

Proof. By Lemma 3.4, we have that there exists a C ∈ P such that |C ∩ V2(F )| ≥ 3|V2(F )|/4. Assume
that there exists a v ∈ V1(F ) \ C. We can assume that |C| = C, as otherwise we could move v into C
which would result in a C-partition with higher value. Since |C| = C and G[C] is connected, we know
that C includes vertices from V1(F

v), where F v is a vertex-gadget in G. Also, by Lemma 3.3, we know
that C ⊇ V (F v). Since |C| = C and G[C] is connected, we also have a vertex u ∈ C ∩ N [V1(F

v)] \
(V2(F

v) ∪ V2(F )). Notice that d(u) ≤ m+ 10. We claim that replacing u in C by v to C will result in
a C-partition with higher value. Indeed, since d(u) ≤ m+ 10, removing u from C reduces the value of
the partition by at most m+10. Moreover, v has 3|V2(F )|/4 neighbors in C. Therefore, moving v into
C increases the value of P by at least |V2(F )|/2. Since |V2(F )|/2 > m + 10, this is a contradiction to
the optimality of P. Thus V1(F ) ⊆ C.

We are now ready to show that the vertices of any list-gadget will belong to the same set in any
optimal C-partition of G.

Lemma 3.6. Let P = {C1, . . . , Cp} be an optimal C-partition of G and F be a list-gadget in G. There
exists a set C ∈ P such that V (F ) ⊆ C.

Proof. By Lemma 3.5 we have that there exists a C ∈ P such that |C ∩ V2(F )| ≥ 3|V2(F )|/4 and
V1(F ) ⊆ C. Assume that there exists a vertex u ∈ C \V2(F ). We can assume that |C| = C as otherwise
we could include u into C and this would result in a C-partition with a higher value (as most of the
neighbors of u are in C). Since |C| = C and G[C] is connected, we know that C includes vertices from
V1(F

v), where F v is a vertex-gadget in G. Also, by Lemma 3.3, we know that C ⊇ V (F v).
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Since C ⊇ V (F v), we can conclude that there is no other list-gadget F ′ in G such that V1(F
′)∩C ̸= ∅.

Indeed, since V1(F
′) ∩ C ̸= ∅ and by Lemma 3.5, we have that |C ∩ V2(F

′)| ≥ 3|V2(F
′)|/4 and, thus,

that |C| > C. Since |C| = C and G[C] is connected, we need to include vertices from N(V1(F
v)) \

(V2(F
v) ∪ V2(F )) in C. Also, since we have concluded that there is no list-gadget F ′ in G such that

V1(F
′) ∩ C ̸= ∅, any vertex w ∈ C such that w ∈ N(V1(F

v)) \ (V2(F
v) ∪ V2(F )) has |N(w) ∩ C| ≤ 6.

We claim that replacing u in C by v will result in a C-partition with a higher value. Indeed, since
|N(u) ∩ C| ≤ 6, removing u from C will reduce the value of the partition by at most 4. Also, since v
has at least d(v) − 1 of its neighbors in C, moving it into C increases the value of the partition by at
least d(v)−1 ≥ m+6+2−1 > 6. This is a contradiction to the optimality of P. Thus, V1(F ) ⊆ C.

As we already mentioned, it follows from Lemmas 3.3 and 3.6 that for any optimal C-partition P of
G, any set C ∈ P that includes a vertex-gadget F v can also include at most one list-gadget F . We will
show that any such set C must, actually, include exactly one list-gadget.

Lemma 3.7. Let P = {C1 . . . , Cp} be an optimal C-partition of G and F v a vertex-gadget in G. Let
C ∈ P be the set such that V (F v) ⊆ C. There exists a list-gadget F such that N(V1(F

v)) ∩ V (F ) ̸= ∅
and V (F ) ⊆ C.

Proof. By Lemma 3.3 we have that, for any vertex-gadget F v, there exists a set C ∈ P such that
V (F v) ⊆ C. We will show that C also includes a list-gadget F and that N(V1(F

v)) ∩ V (F ) ̸= ∅.
Assume that this is not true, and let F be any list-gadget such that N(V1(F

v)) ∩ V (F ) ̸= ∅. We can
assume that |C| ≥ C − |V (F )| as otherwise we could include V (F ) in C and create a C-partition of
higher value than P. By the size of F v, the assumption that |C| ≥ C − |V (F )|, and Lemma 3.3, we
have that C \ V (F v) ⊆ VE . Let S = V (F ) ∪ V (F v) and P ′ = {S,C1 \ S, . . . , Cp \ S}. We claim
that v(P) < v(P ′). We will calculate the values |E(P) \ E(P ′)| and |E(P ′) \ E(P)|. Notice that the
only edges that may belong in E(P) \ E(P ′) are the edges between V1(F

v) and VE . This means that
|E(P) \ E(P ′)| ≤ 8n (since there are less than n edges incident to v in H and 8 edges between V (F v)
and Ve, for any e incident to v). As for |E(P ′)\E(P)|, since the edges between |U(F v)| and |V2(F )| do
not contribute to P, we have that |E(P ′)\E(P)| ≥ |U(F v)| · |V2(F )|. Since |V2(F )| > 5A−2n > 3n (for
any list-gadget, and sufficiently large n) and |V1(F

v)| = 4, we can conclude that |V1(F
v)| · |V2(F )| > 8n.

Therefore, |E(P) \ E(P ′)| < |E(P ′) \ E(P)|, which contradicts the optimality of P.

Finally, we will show that any vertex u ∈ Ve must be in a set that includes either vertices from V (F e)
or vertices from V (Fu) ∪ V (F v), where e = uv. Formally:

Lemma 3.8. Let P = {C1 . . . , Cp} be an optimal C-partition of G, w ∈ Ve, for some e = uv ∈ E(H),
and w ∈ C for some C ∈ P. If V (Fu) ∩ C = ∅ and V (F v) ∩ C = ∅ then V (F e) ∪ {w} ⊆ C.

Proof. It follows by Lemma 3.3 that there exists a C′ ∈ P such that V (F e) ⊆ C′ ⊆ V (F e) ∪ Ve.
Indeed, assuming otherwise, C′ would include vertices from a vertex-gadget, thus, and |C′| > C, a
contradiction. Assume that V (Fu) ∩C = ∅ and V (F v) ∩C = ∅. If C′ ̸= C then w contributes 0 edges
to the value of P since N(w)∩C = ∅. Now, since C′ ⊆ V (F e)∪Ve, and |V (F e)| = C − 4 we know that
we always can move w to C′ and increase the value of the partition. Therefore, C′ = C.

Next, we will calculate the absolute maximum value of any C-partition of G. Notice that, in any
optimal C-partition, we have two kind of sets; those that include vertices of vertex or list-gadget and
those that include vertices from edge-gadgets. We separate the sets of any optimal C-partition of G
based on that. In particular, for an optimal C-partition P, we define PV and PE as follows. We set
PE ⊆ P such that C ∈ PE if and only if there exists an edge-gadget F e such that V (F e) ⊆ C. Then,
we set PV = P \ PE .

It is straightforward to see that the previous lemmas also hold optimal C-partitions P ′ of G[V (PE)]
and P ′′ of G[V (PV )]. Indeed, assuming otherwise, we could create a C-partition for G of higher value
since P is the concatenation of P ′ and P ′′.

Notice now that for any vertex in V (G) \ VE , we know whether it belongs in V (PV ) or in V (PE).
However, this is not true for the vertices of VE . We will assume that V (PV ) includes x vertices from
VE and we will use this in order to provide an upper bound to the value of |E(PV )| and |E(PE)|.
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Let us now consider an optimal partition P, let S = V (PE) ∩ VE , x = |S| and y = |VE \ S|.
We start with the upper bound of |E(PV )|. Let F v be a vertex-gadget. Recall that, there are n

list-gadgets adjacent to F v and, by Lemma 3.7, exactly one of them is in the same set as F v in any
optimal C-partition. Let F be a list-gadget that is not in the same set as F v in P (and thus in PV ). By
Lemma 3.6, we know that all vertices of F are in the same set of PV . Thus, for each one of them, we
have mℓ edges in E(PV ). Since there are n− 1 such list-gadgets for each one of the n vertex-gadgets,
in total we have n(n− 1)mℓ edges that do not belong in the same set as a vertex-gadget.

Now, let F be the list-gadget such that the vertices of V (F ) and V (F v) are in the same set C ∈ PV .
Let αv be the value represented by the list-gadget F . Since |V (F v)∪ V (F )| = C − 2αv, at most 2αv of
the y vertices of VE can be in C. Let |C ∩ VE | = yv ≤ 2αv ≤ y. Since these vertices must be incident
to V1(F

v), we have that |E(G[C])| = mv +mℓ +4yv +2(5A− 2αv) = mv +mℓ +10A+4yv − 4αv; the
2(5A− 2αv) term comes from the fact that exactly 2 vertices of V1(F

v) are adjacent to all the vertices
of V2(F ). By counting all sets that include vertices from vertex-gadgets we have that

mvn+mℓn+ 10A+ 4
∑

v∈V (H)

yv − 4
∑

v∈V (H)

αv

In total:
|E(PV )| = mvn+mℓn

2 + 10nA+ 4
∑

v∈V (H)

yv − 4
∑

v∈V (H)

αv,

where n = |V (H)|.
Now, we will calculate an upper bound of |E(PE)| and we will give some properties that must be

satisfied in order to achieve this maximum. Let S = VE ∩ V (PE). By Lemma 3.8, we have that PE

consists of the vertex sets of the connecting components of G[V (PE)]. Thus, in order compute an upper
bound of |E(PE)|, it is suffices to find an upper bound of the number of edges in G[S′∪

⋃
e∈E(H) V (F e)],

for any set S′ ⊆ VE where |S′| = |S|.
For any G[S′ ∪

⋃
e∈E(H) V (F e)], where S′ ⊆ VE , we define types of its connected components based

on the size of their intersection with VE . In particular, let X = {C1 . . . , Cp} be the vertex sets of the
connected component of G[S ∪

⋃
e∈E(H) V (F e)]. For any set C ∈ X , we have |C ∩ VE | = i, where

i ∈ {0, 1, 2, 3, 4}. We set Xi = {C ∈ X | |C ∩ VE | = i}. Notice that,
∑4

i=0 |Xi| = |E(H)|.
We claim that, in order to maximize the number of edges in G[S ∪

⋃
e∈E(H) V (F e)], we would like

to have as many sets in X4 as possible. Formally:

Lemma 3.9. For any 0 ≤ x ≤ |VE |, let S be a subset of VE such that |S| = x and |E(G[UE ∪
S])| = maxS′⊆VE ,|S′|=x |E(G[UE ∪ S′])|. Assume that X = {C1 . . . , Cp} are the vertex sets of the
connected components of G[UE ∪ S]. Then, we have that |X1| + |X2| + |X3| = 0 if x mod 4 = 0 and
|X1|+ |X2|+ |X3| = 1 otherwise.

Proof. First, we will prove that |X1| + |X2| + |X3| ≤ 1. Assume that |X1| + |X2| + |X3| > 1. We will
show that there exists a set S′ such that |S′| = x and |E(G[UE ∪ S])| < |E(G[UE ∪ S′])|. Let C1 and
C2 be two sets in X such that C1, C2 /∈ X0 ∪ X4. Let C1 ∈ Xℓ1 and C2 ∈ Xℓ2 . We consider two cases:
first, ℓ1 + ℓ2 ≤ 4 and then ℓ1 + ℓ2 > 4.

Case 1. ℓ1 + ℓ2 ≤ 4. Let F e1 and F e2 be the edge-gadgets such that V (F e1) ⊆ C1 and V (F e2) ⊆ C2.
We modify the sets C1 and C2 as follows:

• We replace C1 with C1′ = C1 \ Ve1 and

• we replace C2 with C2′ = C2 \ Ve2 ∪ Y where Y ⊇ {we
L1, w

e
R1} and |Y | = ℓ1 + ℓ2.

Let S′ = Y ∪ (S \ (Ve1 ∪ Ve2)) and let us denote the resulting partition by X ′. Notice that ℓ1 + ℓ2 ≥
2. So we can always have Y ⊇ {we

L1, w
e
R1} and |Y | = ℓ1 + ℓ2. Also, the number of vertices from

|V (X ) ∩ VE | = |V (X ′) ∩ VE | = x. It remains to show that |E(X ′)| > |E(X )|. It suffices to show
that |E(G[C1′ ])|+ |E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|. To achieve that, we need to consider three
sub-cases, ℓ1 + ℓ2 = 2, ℓ1 + ℓ2 = 3 or ℓ1 + ℓ2 = 4.
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Case 1.a. ℓ1 + ℓ2 = 2. Since ℓ1 ≥ 1 and ℓ2 ≥ 1, we have that ℓ1 = ℓ2 = 1. Thus, by the
construction of G, |E(G[C1])| = |E(G[C2])| = |E(G[F e1 ])| + 1 (as all edge-gadgets have the same
number of edges). Also, since ℓ1+ ℓ2 = 2, we get that Y = {we

L1, w
e
R1}. This, by the construction of G,

gives us that |E(G[C1′ ])| = |E(G[F e1 ])| and |E(G[C2′ ])| = |E(G[F e2 ])| + 3. Therefore, |E(G[C1′ ])| +
|E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|.

Case 1.b. ℓ1 + ℓ2 = 3. Since ℓ1 ≥ 1 and ℓ2 ≥ 1 we have that either ℓ1 = 2 and ℓ2 = 1 or
ℓ1 = 1 and ℓ2 = 2. Assume, w.l.o.g., that ℓ1 = 2 and ℓ2 = 1. By the construction of G, we
have that |E(G[C1])| ≤ |E(G[F e1 ])| + 3 and |E(G[C2])| ≤ |E(G[F e2 ])| + 1. Also, since ℓ1 + ℓ2 = 3

and Y ⊇ {we
L1, w

e
R1}, we have that |E(G[C1′ ])| = |E(G[F e1 ])| and |E(G[C2′ ])| = |E(G[F e2 ])| + 5.

Therefore, |E(G[C1′ ])|+ |E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|.
Case 1.c. ℓ1 + ℓ2 = 4. Since ℓ1 ≥ 1 and ℓ2 ≥ 1, we have that either ℓ1 = ℓ2 = 2 or one of

the ℓ1 and ℓ2 is 1 and the other 3. In the first case, |E(G[C1])| = |E(G[C2])| ≤ |E(G[F e1 ])| + 3
while in the second, |E(G[C1])| = |E(G[F e1 ])| + 1 and |E(G[C1])| = |E(G[F e1 ])| + 5. In both cases,
|E(G[C1])|+ |E(G[C2])| ≤ 6. Also, since ℓ1 + ℓ2 = 4, Y = Ve2 , we have that |E(G[C1′ ])| = |E(G[F e1 ])|
and |E(G[C2′ ])| = |E(G[F e2 ])|+ 8. Therefore, |E(G[C1′ ])|+ |E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|.

Case 2. ℓ1 + ℓ2 > 4. Let F e1 and F e2 be the edge-gadgets such that V (F e1) ⊆ C1 and V (F e2) ⊆ C2.
We modify the sets C1 and C2 as follows:

• We replace C1 with C1′ = C1 ∪ Ve1 and

• we replace C2 with C2′ = C2 \ Ve2 ∪ Y where Y ⊆ {we
L1, w

e
R1} and |Y | = ℓ1 + ℓ2 − 4.

Indeed, it suffices to have Y ⊆ {we
L1, w

e
R1} as 2 ≤ ℓ1, ℓ2 ≤ 3, and thus, ℓ1 + ℓ2 − 4 < 3. We need to

consider two cases, either ℓ1 + ℓ2 = 5 or ℓ1 + ℓ2 = 6

Case 2.a. ℓ1 + ℓ2 = 5. In this case, we have that one of ℓ1, ℓ2 is equal to 2 while the other is
equal to 3. W.l.o.g. let ℓ1 = 2 By the construction of G, we get that |E(G[C1])| ≤ |E(G[F e1 ])|+ 3 (as
all edge-gadgets have the same number of edges). Also, |E(G[C1])| ≤ |E(G[F e1 ])| + 5. Now, observe
that |E(G[C1′ ])| = |E(G[F e1 ])| + 8 and |E(G[C1′ ])| = |E(G[F e1 ])| + 1. Therefore, |E(G[C1′ ])| +
|E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|.

Case 2.b. ℓ1 + ℓ2 = 6. In this case, we have that one of ℓ1 = ℓ2 = 3. By the construction of G,
we obtain that |E(G[C1])| = |E(G[C2])| = |E(G[F e1 ])|+ 5 (as all edge-gadgets have the same number
of edges). We also have that |E(G[C1′ ])| = |E(G[F e1 ])| + 8 and |E(G[C1′ ])| = |E(G[F e1 ])| + 3 (since
Y = {we

L1, w
e
R1} in this case). Therefore, |E(G[C1′ ])|+ |E(G[C2′ ])| > |E(G[C1])|+ |E(G[C2])|.

To sum up, we have that |X1| + |X2| + |X3| ≤ 1. We will now show that |X1| + |X2| + |X3| = 0 if
x mod 4 = 0 and |X1|+ |X2|+ |X3| = 1 otherwise.

Assume that x mod 4 = 0. Notice that 4|X4| + 3|X3| + 2|X2| + |X1| + 0|X0| = x; therefore (4|X4| +
3|X3| + 2|X2| + |X1| + 0|X0|) mod 4 = 0 =⇒ (3|X3| + 2|X2| + |X1|) mod 4 = 0. This implies
that |X1| + |X2| + |X3| = 0. Indeed, assuming otherwise we get that |X1| + |X2| + |X3| = 1, and thus
(3|X3|+2|X2|+|X1|) mod 4 = i, for an i ∈ [3]. This is a contradiction to (3|X3|+2|X2|+|X1|) mod 4 = 0.

Next, assume that x mod 4 = i for i ∈ [3]. Then we have that 4|X4|+ 3|X3|+ 2|X2|+ |X1|+ 0|X0| =
x =⇒ (4|X4| + 3|X3| + 2|X2| + |X1| + 0|X0|) mod 4 = i =⇒ (3|X3| + 2|X2| + |X1|) mod 4 = i. If
|X1| + |X2| + |X3| = 0 then the previous implies that i = 0 which is a contradiction. This finishes the
proof of this lemma.

It follows that the maximum value of maxS′⊆VE ,|S′|=x |E(G[UE ∪ S′])| is

• me|E(H)|+ 8x/4, when x mod 4 = 0

• me|E(H)|+ 8(x− i)/4 + xi, when x mod 4 = i

where x1 = 1, x2 = 3, x3 = 5. Notice that maxS′⊆VE ,|S′|=x |E(G[UE ∪ S′])| ≤ me|E(H)| + 2x where
the equality holds only when x mod 4 = 0.

Thus, we have the following:

15



Corollary 3.10. Given that x = |S|, the maximum value of P is: v(P) ≤ mv|V (H)| +mℓ|V (H)|2 +
me|E(H)|+10A|V (H)|+8|E(H)|. Also, this can be achieved only when x mod 4 = 0 and x = |VE |−y =∑

v∈H(v) 2αv.

The reduction. Let P be an optimal C-partition of G. We will prove that the following two
statements are equivalent:

• v(P) = mv|V (H)|+mℓ|V (H)|2 +me|E(H)|+ 10A|V (H)|+ 8|E(H)|
• (H,L) is a yes-instance of the General Factors problem.

Assume that (H,L) is a yes-instance of the General Factors problem and let E′ ⊆ E(H) be
the edge set such that, for any vertex v ∈ V (H), we have dH−E′(v) ∈ L(v). We will create a C-
partition of G that has value mv|V (H)| + mℓ|V (H)|2 + me|E(H)| + 10A|V (H)| + 8|E(H)|. For each
edge e ∈ E(H) \ E′ we create a set Ce = V (F e) and for each e ∈ E′ we create a set Ce = V (F e) ∪ Ve.
For each v ∈ V (H), let F be the list-gadget that represents the value dH−E′(v). The existence of such
a list-gadget is guaranteed since dH−E′(v) ∈ L(v). Also, let Uv be the subset of VE such that, for
any u ∈ Uv, there exists an edge e ∈ E(H) \ E′ such that u ∈ Ve and u is incident to the vertices
of V1(F

v) (this means that e is incident to v in H). Notice that the vertices in Uv have not been
included in any set Ce, for e ∈ E(H), that we have created this far. Now, for each v ∈ V (H),
we create a set Cv = V (F v) ∪ V (F ) ∪ Uv. It remains to deal with the list-gadgets that have not
yet been included in any set. We create the sets C1, . . . , Cn(n−1), one for each one of them. We
claim that P = {Ce | e ∈ E(H)} ∪ {Cv | v ∈ V (H)} ∪ {C1, . . . , Cn(n−1)} is a C-partition of G and
v(P) = mv|V (H)| + mℓ|V (H)|2 + me|E(H)| + 10A|V (H)| + 8|E(H)|. Notice that any of the sets
C ∈ {Ce | e ∈ E(H)} ∪ {C1, . . . , Cn(n−1)} have size at most C as they are either vertex sets of a
list-gadget or a subset of V (F e) ∪ Ve, for some e ∈ E(H). Thus we only need to show that |Cv| ≤ C
for all v ∈ V (H). We have that |V (F v) ∪ F | ⊆ Cv where F is the list-gadget that represents the value
dH−E′(v) ∈ L(v). Therefore, |V (F v) ∪ F | = C − 2dH−E′(v). We claim that |Uv| = 2dH−E′(v). Recall
that Uv contains the vertices of VE for which there exists an edge e ∈ E(H) \E′ such that u ∈ Ve and
u is incident to the vertices of V1(F

v). Actually, there are exactly dH−E′(v) edges incident to v from
E(H) \E′. Also, for each such edge e, two vertices of Ve are incident to V1(F

v) (the vertices we
L1, w

e
L2

if v ∈ VL and we
R1, w

e
R2 if v ∈ VR). Thus |Uv| = 2dH−E′(v) and |Cv| = C.

It remains to argue that v(P) = mv|V (H)|+mℓ|V (H)|2 +me|E(H)|+10A|V (H)|+8|E(H)|. First,
notice that, the vertex set V (F ) of any gadget F belongs to one set. Thus, every edge of E(G[V (F )]),
contributes in the value of P. This give us mv edges for each vertex-gadget, me edges for each edge-
gadget and mℓ edges for each list-gadget. Since we have |V (H)| vertex-gadgets, |E(H)| edge-gadgets
and |V (H)|2 list-gadgets, this gives mv|V (H)|+mℓ|V (H)|2 +me|E(H)| edges (up to this point). We
also need to compute the number of edges in E(P) that do not belong in any set E(G[V (F )]), for any
gadget F . Let S be the set E(P) \

⋂
F is any gadget E(G[V (F )]). Notice that, for any C ∈ P, we have

S ∩ C ̸= ∅ if and only if there exists a vertex or edge-gadget F such that V (F ) ⊆ C.

First we consider a set C that includes a vertex-gadget. By construction, we have that C includes
the vertices of a vertex-gadget F v, the vertices of a list-gadget F that represents an integer αv and 2αv

vertices from the set VE . There are exactly |Uv| · |V1(F )| edges between F v and F . Also, for any vertex
u ∈ C ∩ VE , we have that N(u) ∩ C = V1(F

v). Thus, we have |Uv| · |V1(F )| + |C ∩ VE | · |V1(F
v)| =

2(5A− 2α) + 2α · 4 = 10A+ 4αv edges. Also, notice that, by construction, C ∩ VE is an independent
set. Thus we have no other edges to count. This give us 10nA+ 4

∑
v∈V (H) αv.

Now we consider a set C that includes an edge-gadget. By the construction of C we have that
there exists an edge e ∈ E(H) such that either C = V (F e) or C = V (F e) ∪ Ve. Therefore, if e ∈ E′

then C = V (F e) ∪ Ve and E(G[C]) includes 8 edges incident to vertices of VE , while if e /∈ E′, then
C = V (F e) and E(G[C]) does not include edges incident to vertices of VE . This give us 8|E′| extra
edges.

In order to complete the calculation of |S| we need to observe that the values αv, v ∈ V (H) and |E′|
are related. In particular, by the selection of αv, we have that

∑
v∈V (H) dH−E′(v) =

∑
v∈V (H) αv =

2|E(H) \ E′|. It follows that: |S| = 10nA + 4
∑

v∈V (H) αv + 8|E′| = 10nA + 8|E(H) \ E′| + 8|E′| =
10nA+ 8|E(H)|.
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In total, |E(P)| = mv|V (H)|+mℓ|V (H)|2 +me|E(H)|+ 10A|V (H)|+ 8|E(H)|.
For the reverse direction, assume that we have a C-partition P of G such that v(P) = mv|V (H)| +

mℓ|V (H)|2 +me|E(H)|+ 10A|V (H)|+ 8|E(H)|. By the calculated upper bounds, we have that,

• |E(PE)| = me|E(H)|+ 2x and

• |E(PV )| = mvn+mℓn
2 + 10nA+ 4

∑
v∈V (H) yv − 4

∑
v∈V (H) αv.

Also, in order to achieve mv|V (H)| + mℓ|V (H)|2 + me|E(H)| + 10A|V (H)| + 8|E(H)|, we have that∑
v∈V (H) αv = (|VE |−x)/2. Recall that in order to achieve the maximum value, for any edge e ∈ E(H),

either Ve ⊂ PV or Ve ⊂ PE . Let E′ = {e ∈ E(H) | Ve ⊂ PE}. We claim that for any v ∈ V (H), we
have dH−E′(v) ∈ L(v). Let V (F v) ⊆ C, for some C ∈ P, F be the list-gadget such that F ⊆ C and
|C ∩ VE | = xv. By Corollary 3.10 we obtain that 2αv = xv where av is the value represented by F , if
the partition is of optimal value. Observe that, for any edge e ∈ E(H) \ E′ incident to v, two vertices
of Ve are in C ∩ VE . Thus, 2dH−E′(v) = xv. Since 2αv = xv and αv ∈ L(v) (by the construction of
list-gadgets) we obtain that dH−E′(v) = αv ∈ L(v). Thus (H,L) is a yes-instance of the General
Factors problem.

The tree-depth of G is bounded. The only thing that remains to be shown is that the tree-depth
of G is bounded by a computable function of m. Recall that m is the size of one of the bipartitions of H.
W.l.o.g., assume that |VL| = m. We start by deleting the set V1(F

v), for all v ∈ VL. This means that
we have deleted 4m vertices. Now, we will calculate an upper bound of the tree-depth of the remaining
graph. In the new graph, there are connected components that include vertices from vertex-gadgets
F v, for v ∈ VR, but no connected component includes two such gadgets. For each such a component,
we delete the vertices V1(F

v), for each v ∈ VR. Since these deletion are in different components, they
are increasing the upper bound of the tree-depth of the original graph by 4. Also, after these deletion,
any connected component that remains is:

• either a list-gadget F ,

• or isomorphic to G[Ve ∪ V (F e)] (for any e ∈ E(H)),

• or isomorphic to G[V2(F
v) ∪ V3(F

v)] (for any e ∈ E(H)).

We claim that, in any of these cases, the tree-depth of this connected component is at most O(m).
Consider a list-gadget F . Any G[V (F )] had tree-depth at most m + 1. This holds because, if we
remove V1(F ), we remain with a set of independent vertices plus a matching. Consider a connected
component isomorphic to G[Ve ∪ V (F e)]. Observe that G[Ve ∪ V (F e)] has tree-depth 2m+ 5 because
removing V1(F

e) ∪ V3(F
e) ∪ Ve results to an independent set and |V1(F

e) ∪ V3(F
e) ∪ Ve| = 2m+ 5 for

all e ∈ E(H). Finally, consider a connected component isomorphic to G[V2(F
v)∪V3(F

v)]. In this case,
the tree-depth of this component is upperly bounded by 2m since by deleting V3(F

v), we end up with
an independent set.

In total, the tree-depth of G is upper bounded by 3m+ 9. This completes the proof.

3.2 Graphs of bounded vertex cover number

Theorem 3.11. Given a weighted graph G = (V,E) with vertex cover number vc, there exists an
algorithm that computes an optimal C-partition of G in time vcO(vc)nO(1).

Proof. Let U be a vertex cover of G of size vc and let I be the independent set V \ U . If such a
vertex cover is not provided as input, we can compute one in time 2vcnO(1) time [17]. First, observe
that there can be at most vc many coalitions in G which can have a positive contribution (since the
contribution comes from edges and each edge in G is incident to some vertex in U). Next, we guess
P ′ = {C1, . . . , Cp} (here, p ≤ vc), the intersection of the sets of an optimal C-partition of G with U ;
let W = v(P ′). Notice that we can enumerate all vcO(vc) partitions of U in vcO(vc) time.

Next, for each P ′ we do the following (in nO(1) time). We create a new graph G′ as follows. First,
we create the vertex sets Si, where |Si| = C − Ci for each i ∈ [p]. Then, we add all the edges between

17



the vertices of x ∈ I and Si if v ∈ N(Ci), for every i ∈ [p]. Formally, Si = {ui
1, . . . , u

i
Si
} for i ∈ [p],

V (G′) =
⋃

i∈[p] Si, and E(G′) = {ui
jx | x ∈ N(Ci)∩ I, i ∈ [p], j ∈ [Si]}. Finally, for every edge xy, with

x ∈ Si and y ∈ I, we set the weight w(xy) =
∑

u∈Ci∧uy∈E w(uy), i.e., to be equal with to much W
would increase if y was added to Ci. Now, observe that in order to compute an optimal C-partition of
G whose intersection with U is P ′, it suffices to find a maximum weighted matching of G′, which can be
done in polynomial time [26]. Since we do this operation for each possible intersection of the C-partition
with U , all of which can be enumerated in vcO(vc) time, we can compute an optimal C-partition of G
in time vcO(vc)nO(1).

The following theorem establishes that our algorithm from Theorem 3.11, which enumerates all
possible intersections of a smallest size vertex cover with an optimal solution, is optimal asymptotically
assuming ETH.

Theorem 3.12. Given an unweighted graph G of vertex cover number vc, there is no algorithm that
computes an optimal C-partition of G in time (Cvc)o(vc)nO(1), unless the ETH fails.

Proof. We will present a reduction from a restricted version of 3-SAT problem.

Definition 3.13 (R3-SAT). In this version of SAT, the input consists of a 3-SAT formula ϕ defined
on a set of variables X and a set of clauses C. Additionally, we have that:

• each variable appears at most four times in C and

• the variable set X is partitioned into X1 ∪X2 ∪X3, such that every clause includes at most one
variable from each one of the sets X1, X2 and X3.

The question is whether there exists a truth assignment to the variables of X that satisfies ϕ.

Lemma 3.14. The R3-SAT problem is NP-hard. Also, under the ETH, there is no algorithm that
solves this problem in time 2o(n+m), where n is the number of variables and m is the number of clauses.

Proof. The reduction is from 3-SAT. First we make sure that each variable appears at most four times.
Assume that variable x appears k > 3 times. We create k new variables x1, . . . , xk and replace the
i-th appearance of x with xi. Finally, we add the clauses (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) . . . (xk ∨ ¬x1). This
procedure is repeated until there is no variable that appear more than 3 times.

Next, we create an instance where the variables are partitioned in the wanted way. First, we fix the
order that the variables appear in each clause. Let x be any variable that appears in the formula. If x
appears only in the i-th position of every clause it is part of (for some i ∈ [3]), then we add x into Xi.
Otherwise, we create three new variables x1, x2, x3 and, for each clause c ∈ C, if x appears in the i-th
position of c, we replace it with xi. Notice that, at the moment, xi appears at most twice for each i ∈ [3].
We add xi in the set Xi, for all i ∈ [3]. Also, we add the clauses (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x1).
Thus, in any satisfying assignment of the formula, the variables x1, x2 and x3 have the same assignment.
Notice that in each one of the original clauses, the i-th literal contains a variable from Xi. Therefore,
each one of the original clauses have at most one variable from Xi for each i ∈ [3]. This is also true for
all the clauses that were added during the construction.

It is easy to see that the constructed formula is satisfiable if and only if ϕ is also satisfiable.

Finally, notice that the number of variables and clauses that were added is linear in regards to n+m.
Therefore, we cannot have an algorithm that runs in 2o(n+m) and decides whether the new instance is
satisfiable unless the ETH is false.

The construction. Let (X,C) be an instance of the R3-SAT problem, and let X = X1 ∪X2 ∪X3

be the partition of X as it is defined above. We may assume that |X1| = |X2| = |X3| = n = 2k for
some k ∈ N. If this is not the case, we can add enough dummy variables that are not used anywhere
just to make sure that this holds. We can also assume that k is an even number; if not, we can
double the variables to achieve that. Notice that the number of additional dummy variables is at most
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Figure 3: The gadget Gi,j used in the construction of Theorem 3.12

2max{|X1|, |X2|, |X3|}, so that the number of variables still remains linear in regards to n + m. The
construction is illustrated in Figure 3.

We start by partitioning each variable set Xi in to k = logn sets Xi,1 . . . , Xi,k, with |Xi,j | ≤
⌈n/ logn⌉ for every j ∈ [k].

For each set Xi,j , we construct a variable gadget Gi,j as follows:

• First, we create a vertex set Vi,j with 2N = 2⌈n/ log2 n⌉ vertices. Each vertex in Vi,j represents
at most logn

2
variables. To see that we have enough vertices to achieve this, observe that Xi,j

represents a set of ⌈n/ logn⌉ variables. Thus:

⌈
⌈ n
log n

⌉
2⌈ n

log2 n
⌉

⌉
=

⌈
n

2 logn⌈ n
log2 n

⌉

⌉
≤

⌈
n

2 logn n
log2 n

⌉
=⌈

logn
2

⌉
= logn

2
where the last equality holds because logn is assumed to be an even number.

Hereafter, let X(v) be the variable set that is represented by v. Also notice that X(v) ⊆ Xi,j ⊆ Xi

for all v ∈ Vi,j .

• Then we create the set of vertices Ui,j = {uℓ | ℓ ∈ [
√
n]}. Hereafter, we will call these assignment

vertices. Now, for each vertex v ∈ Vi,j and each assignment over the variable set X(v), we want
to have a vertex of Ui,j represent this assignment. Since |X(v)| ≤ logn

2
, there are at most 2

log n
2

different assignments over the variable set X(v). Therefore, we can select the variables of Ui,j to
represent the assignments over X(v) in a way such that each assignment is represented by at least
one vertex and no vertex represents more than one assignment. Notice that Ui,j contains enough
vertices to achieve this since |Ui,j | =

√
n. We are doing the same for all vertices in Vi,j .

• We proceed by creating four copies u1, . . . , u4 of each vertex u ∈ Ui,j . For each assignment vertex
u, let Uu be the set {u, u1, . . . , u4}. For each set Uu, we add an independent set Iu of size
30N logn. Then, for each vertex v ∈ Iu we add all the edges between v and the vertices of Uu.

• Finally, for each pair (v, u) ∈ Vi,j ×Ui,j , we create an independent set Iv,u of 3 logn vertices and,
for all w ∈ Iv,u and x ∈ Uu ∪ {v}, we add the edge wx.

This concludes the construction of Gi,j , which corresponds to the set Xi,j . We repeat this process
for all sets Xi,j .

Let VC be the set of clause vertices, which contains a vertex vc for each c ∈ C. We add the vertices
of VC to the graph we are constructing. The edges incident to the vertices of VC are added as follows.

Let c ∈ C, l be a literal that appears in c, x be the variable that appears in l and v the variable
vertex such that x ∈ X(v). We first add the edge vcv. Now, consider the (i, j) ∈ [3]× [logn] such that
v ∈ Vi,j . For each vertex u in Ui,j we add the edge uvc if and only if l becomes true by the assignment
over X(v) represented by u.
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Let G be the resulting graph. Finally, set C = 42N logn to be the capacity of the cars, where, recall,
N = ⌈n/ log2 n⌉. This finishes our construction.

Properties of optimal C-partitions of G. First, we identify the structural properties of any
optimal C-partition of G that are going to be used in the reduction. In particular we will show that for
any optimal C-partition {C1, . . . , Cp} of G, we have that:

• for any k ∈ [p], if {u} ⊆ Ck for some assignment vertex u, then Uu ⊆ Ck;

• for any k ∈ [p], |Ck ∩
⋃

(i,j)∈[3]×[logn] Ui,j | ≤ 1;

• for any (i, j) ∈ [3]× [logn] and v ∈ Vi,j , if v ∈ C then C ∩ Ui,j ̸= ∅.

Lemma 3.15. Let P = {C1, . . . , Cp} be an optimal C-partition of G. Let u ∈ Ui,j for some (i, j) ∈
[3]× [logn] and u ∈ Ck for some k ∈ [p]. Then, Uu ∩ Ck = Uu.

Proof. Assume that, for some (i, j) ∈ [3] × [logn], there exists a set Uu for an assignment vertex
u ∈ Ui,j such that u ∈ Ck, for some k ∈ [p], and Uu ∩ Ck ̸= Uu. We will show that, in this case,
P is not an optimal C-partition of G. Indeed, consider the following C-partition of G. First set
C = Uu ∪N(Uu) \VC . Then, let P ′ = {C,C1 \C, . . . , Cp \C}. Notice that P ′ is a C-partition. Indeed,
|C| = 5 + 30N logn+ 2N3 logn ≤ 42N logn = C and |Ci \ C| ≤ |Ci| ≤ C as Ci ∈ P for all i ∈ [p].

Now, we will show that v(P ′) > v(P). First observe that for every v ∈ C, we have that:

• v ∈ Uu, or

• v ∈ Vu where Vu = {v | N(v) = Uu}, or

• v ∈ V ′
u where V ′

u = {v | N(v) = Uu ∪ {v} for some v ∈ Vi,j}.

By construction, we know that |Vu| = 30N logn and |V ′
u| = 2 · 3N logn.

We now consider P. Observe that the vertices of Uu are assigned to different components of P.
Thus, we have that:

• at most 4 · 30N logn = 120N logn of the edges incident to vertices of Vu are included the E(P),
and

• at most 5 · 2N · 3 logn = 30N logn of the edges incident to vertices of V ′
u are included in E(P).

Also, since |N(u) ∩ VC | ≤ 4N logn and |N(ui) ∩ VC | = 0, for all i ∈ [4], we have that E(P) contains
at most 4N logn edges between Uu and VC . Therefore, by removing C for all Ci, i ∈ [p], we have
reduced the value of P by at most (120 + 30 + 4)N logn = 154N logn. Let us now count the number
of edges in G[C]. Since Uu ∪ Vu ⊆ C, we have that E(G[C]) includes all the 150N logn edges between
vertices of Uu and Vu. Also, we have that E(G[C]) contains 5

6
of the edges incident to V ′

u. Indeed,
N(V ′

u) ∩ C = Uu. This gives another 5 · 2N3 logn = 30N logn edges. Furthermore, no other edge
appears in G[C]. Thus, E(G[C]) contains (150 + 30)N logn = 180N logn edges. Therefore, we have
that v(P ′) ≥ 26N logn+ v(P). This is a contradiction to the optimality of P, as v(P ′) > v(P).

Lemma 3.16. Let P = {C1, . . . , Cp} be an optimal C-partition of G. For any k ∈ p, there is no pair
(u, u′) of vertices such that:

• u ∈ Ui,j for some (i, j) ∈ [3]× [logn],

• u′ ∈ Ui′,j′ for some (i′, j′) ∈ [3]× [logn] (it is not necessary that (i, j) ̸= (i′, j′)) and

• {u, u′} ⊆ Ck.

Proof. Assume that this is not true and let k ∈ [p] be an index for which such a pair (u, u′) exists in
Ck. By the optimality of P and Lemma 3.15, we have that Uu ∪ Uu′

⊆ Ck. By construction, we have
that |Iu| = |Iu′ | = 30N logn. Since u and u′ belong in the same Ck and C = 42N logn, we know that
there are at least (2 · 30− 42)N logn = 18N logn vertices from the sets Iu and Iu′ that do not belong
in Ck. Notice that these vertices do not contribute at all to the value of P as they are not in the same
partition as any of their neighbors. Consider the sets C1 = Uu ∪ Iu, C2 = Uu′

∪ Iu′ and C = C1 ∪C2.
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We create the C-partition P ′ = {C1, C2, C1 \ C, . . . , Cp \ C}. Notice that P ′ is indeed a C-partition as
|C1| = |C2| = 5 + 30N logn ≤ 42N logn and |Ci \ C| ≤ |Ci| ≤ 42N logn as Ci ∈ P for all i ∈ [p]. We
will show that v(P) < v(P ′).

First, we will deal with the edges incident to vertices of Iu and Iu′ . Notice that C1 and C2 include
all the edges between Uu and Iu as well as the edges between Uu′

and Iu′ . Therefore, |E(P ′)\E(P)| ≥
5(2 · 30 − 42)N logn = 90N logn. Indeed, each vertex of Iu ∪ Iu′ has exactly five neighbors in the
set C1 ∪ C2 and at least 18N logn edges do not contribute any value to P. Now we consider the
edges incident to vertices in W = N(Uu ∪ Uu′

) \ (Iu ∪ Iu′). Observe that, in the worst case, all the
edges between vertices of W and Uu ∪ Uu′

are included in E(P) while none of them is included in
P ′. Also, any edge that is not incident to Uu ∪ Uu′

is either included in both E(P) and E(P ′) or
in none of them. Notice that any vertex in Uu (respectively in Uu′

) has 2N · 3 logn neighbors in
V (Gi,j) \ Iu (resp. in V (Gi′,j′) \ Iu′). Furthermore, u (resp. u′) has at most 4N logn neighbors in
VC . Also, there are no other neighbors of these vertices to be considered. Therefore, in the worst
case, |E(P) \ E(P ′)| = 2N · 3 logn+ 8N logn = 68N logn. Since 90N logn > 68N logn we have that
v(P ′) > v(P) which contradicts the optimality of P.

Lemma 3.17. Let P = {C1, . . . , Cp} be an optimal C-partition of G. For any (i, j) ∈ [3]× [logn] and
u ∈ Ui,j, if u ∈ C then any v ∈ N(u) ∩ V (Gi,j) also belongs in C.

Proof. Assume that for an (i, j) ∈ [3] × [logn] there exists a u ∈ Ui,j and w ∈ (N(u) ∩ V (Gi,j)) such
that u ∈ Ck and w /∈ Ck. We will show that P is not optimal.

It follows from Lemma 3.15 that Uu ⊆ Ck. We will consider two cases, either |Ck| < C or not.

Case 1: |Ck| < C. In this case, either w ∈ Iu or w ∈ Iv,u for some v ∈ Vi,j . Since w has at most one
neighbor that does not belong in Ck, moving w to the partition of Ck will create a C-partition that
includes more edges than P. This is a contradiction to the optimality of P.

Case 2: |Ck| = C. In this case, it is safe to assume that G[Ck] is connected as otherwise we can
partition it in to its connected components. This does not change the value of the partition, and the
resulting set that contains u has a size less than C. We proceed by considering two sub-cases, either
Ck ∩ VC ̸= ∅ or not.

Case 2.a: Ck ∩ VC ̸= ∅. We claim that, in this case, either there exists a vertex c ∈ Ck ∩ VC such
that u /∈ N(c) or G[Ck] has a leaf x such that u /∈ N(x). Indeed, in the second case, |Ck ∩ VC | (by
construction) and the existence of w is guaranteed by the fuct that no other assignment vertex can be
in Ck. In the first case we set y = c while in the second y = x We create a new partition as follows:

• we remove y from Ck,

• move w from its set to Ck and

• add a new set C = {c} in the partition.

Let P ′ be this new C-partition. We have that v(P ′) > v(P). Indeed, w has at most one neighbor that
does not belong in Ck. Therefore, moving w to Ck increases the number of edges by at least 4 (w is
adjacent to all vertices of Uu and Uu ⊆ Ck). We consider the case where y is a vertex c ∈ Ck ∩ VC

such that u /∈ N(c). Since u is the only assignment vertex in Ck, and there are at most 3 edges
connecting c to variable vertices, removing c from Ck reduces the value of P by at most 3. Therefore,
v(P ′)− v(P) = |E(P ′)| − |E(P)| ≥ 1. This is a contradiction to the optimality of P. Similarly, in the
case where y a leaf such that u /∈ N(y), removing y from Ck reduces the value of P by at most 1. This
again contradicts the optimality of P.

Case 2.b: Ck ∩ VC = ∅. Notice that, since G[Ck] is connected, |N(u)∪Vi,j | < C and Ck ∩VC = ∅,
there exists a pair (v, x) ∈ Vi,j × Ui,j such that x ̸= u and Ck ∩ Iv,x ̸= ∅. Also, by Lemmas 3.16
and 3.15, we have that Ux ∩Ck = ∅. Therefore, any vertex y ∈ Ck ∩ Iv,x contributes at most one edge
in E(P). We create a new partition as follows:

• select a vertex y ∈ Ck ∩ Iv,x and remove it from Ck,

• move w for its set to Ck and
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• add a new set C = {y} in the partition.

This is a contradiction to the optimality of P, since the removal of y from Ck reduces the value of the
partition by at most 1, while moving w to Ck increases the value by at least 4.

Summing up the previous lemmas, we can observe that in any optimal C-partition P of G, there is one
component for each vertex u ∈

⋃
(i,j)∈[3]×[logn] Ui,j and if u ∈ C, for some C ∈ P, then N(u) \VC ⊆ C.

Lemma 3.18. Let P = {C1, . . . , Cp} be an optimal C-partition of G. For any (i, j) ∈ [3]× [logn] and
v ∈ Vi,j, if v ∈ Ck, for some k ∈ [p], then |Ck ∩ Ui,j | = 1

Proof. Recall that by Lemma 3.16, |Ck∩Ui,j | is either 1 or 0. Assume that there exist (i, j) ∈ [3]×[logn]
and v ∈ Vi,j such that v ∈ Ck and |Ck∩Ui,j | = 0. By this assumption and Lemma 3.17, we can conclude
that N(v) ∩ Ck ⊆ VC . Also, since each variable has at most 4 appearances and v represents at mots
logn
2

variables, we have that |N(v) ∩ Ck| ≤ 2 logn.

Let u ∈ Ui,j be an arbitrary assignment vertex. Also, let Cℓ ̸= Ck be the set of P such that u ∈ Cℓ.
By Lemma 3.17, we know that Cℓ ∩ Iv,u = Iv,u. Now we consider two cases, either |Cℓ| < C or not.

Case 1: |Cℓ| < C. We create a new partition as follows:

• remove v for Ck and

• add v for Cℓ.

Let P ′ be the new partition; notice that this is a C-partition as |Cℓ ∪{v}| < C+1. Also, the removal of
v from Ck reduces the value of the partition by at most 2 logn while the addition of v to Ck increases
the value by 3 logn. This is a contradiction to the optimality of P.

Case 2: |Cℓ| = C. Similarly to the proof of Lemma 3.17, we assume that G[Cℓ] is connected. Also,
since any set Iv′,x, for (v′, x) ∈ Vi,j ×Ui,j is a subset of the set of the partition that includes x, we have
that Cℓ ∩ VC ̸= ∅. Indeed, assuming otherwise we get that either |Cℓ| < C or G[Cℓ] is not connected.
We create a new partition as follows:

• select (arbitrarily) a vertex c ∈ Cℓ ∩ VC and remove it from Cℓ,

• move v from Ck to Cℓ and

• add a new set C = {c} in the partition.

We will show that the value of the new partition is greater than the original. First, notice that c has
at most four neighbors in Cℓ, as Cℓ can include only one assignment vertex, and v has at most 2 logn
neighbors in Ck, as N(v)∩Ck ⊆ VC). Therefore, removing c from Cℓ and v from Ck reduces the value
of the partition by at most 2 logn+ 4. Also, since u ∈ Cℓ and by Lemma 3.17, we get that Iv,u ⊆ Cℓ.
Thus, moving v into Cℓ increases the value of the partition by |Iv,u| = 3 logn > 2 logn + 4. This is a
contradiction to the optimality of P.

Now, we compute the range in which the value of any optimal C-partition belongs in.

Lemma 3.19. Let P = {C1, . . . , Cp} be an optimal C-partition of G. We have that 3N log2 n(180
√
n+

6) ≤ v(P) ≤ 3N log2 n(180
√
n + 6) + 2m, where m = |VC |. Furthermore, if a vertex c ∈ VC belongs

to C ∈ P and |N(c) ∩ C| = 2, then N(c) ∩ C = {v, u}, where v ∈ Vi,j and u ∈ Ui,j, for some
(i, j) ∈ [3]× [logn].

Proof. First, we calculate the number of edges that E(P) includes from any Gi,j . Notice that W =
Vi,j ∪ Ui,j is a vertex cover of Gi,j and no edge is incident to two vertices of this set. Therefore, we
can compute |E(P) ∩ E(Gi,j)| by counting the edges of P that are incident to a vertex of W . First,
for any vertex u ∈ Ui,j , if u ∈ C, for a C ∈ P, we have that N(u) ∩ VC ⊆ N(u) ∩ C. Also, we know
that Uu ⊆ C. Therefore, all the edges that are incident to vertices in Uu, are in E(P). So, for each
u ∈ Ui,j we have 5(30 + 2 · 3)N logn = 180N logn edges in E(P) that are incident to vertices in Uu.
Also, it follows by Lemma 3.18 that for any vertex v ∈ Vi,j , there exists a (unique) u ∈ Ui,j such that
{v, u} ⊆ C for some C ∈ P. Furthermore, by Lemma 3.17, we have that N(v) ∩ C ⊆ Iv,u. Thus, for
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each v ∈ Vi,j , E(P) includes 3 logn edges and no other edge (from E(Gi,j)) is incident to it. Since
we have not counted any edge more than once, we have that |E(P) ∩ E(Gi,j)| = (180

√
n + 6)N logn

for any (i, j) ∈ [3] × [logn]. Therefore, for any optimal C-partition P of G, we have that |E(P) ∩⋃
(i,j)∈[3]×[logn] E(Gi,j)| = 3N log2 n(180

√
n+ 6).

Since there are no edges between V (Gi,j) and V (Gi′,j′) for (i, j) ̸= (i′, j′), it remains to count
the edges incident to vertices of VC . For any (i, j) ∈ [3] × [logn] and any c ∈ VC , we have that
|N(c)∩Vi,j | ≤ 1 as the clause represented by c has at most one variable from the vertex set Xi and the
vertices of any Vi,j represent variables from Xi. Assume that c ∈ C, for C ∈ P. If C ∩ Ui,j = ∅ for all
(i, j) ∈ [3] × [logn], then c has no neighbors in C. Indeed, by Lemma 3.18 we have that any variable
vertex appears in the same set as one assignment vertex. Now, assume that C includes a u ∈ Ui,j

for some (i, j) ∈ [3] × [logn]. By Lemma 3.16, there is no other assignment vertex in C. Also, by
Lemma 3.18, only variable vertices from Vi,j can be in C. Therefore, c has at most 2 neighbors in C
(one variable vertex and one assignment vertex). Since the sets of edges are disjoint, we have at most
2 extra edges per clause vertex c ∈ VC . This concludes the proof of this lemma.

The reduction. We are now ready to show that the starting formula ϕ is satisfiable if and only
if G has a C-partition of value 3N log2 n(180

√
n + 6) + 2m, where recall that C = 42N logn and

N = ⌈n/ log2 n⌉.
Assume that ϕ is satisfiable and let α : X → {true, false} be a satisfying assignment. We will

construct a C-partition of G of the wanted value.

First, for each assignment vertex u, create a set Cu = Uu ∪ (N(u) \ VC). We then extend these
sets as follows. Consider a variable vertex v and restrict the assignment α on the vertex set X(v). By
construction, there exists an assignment vertex u that represents this restriction of α. Notice that there
may exist more than one such vertex; in this case we select one of them arbitrarily. We add v into the
set Cu that corresponds to u. We repeat the process for all variable vertices. Next, we consider the
vertices in VC . Let c ∈ VC be a vertex that represents a clause in ϕ. Since α is a satisfying assignment,
there exists a literal in this clause that is set to true by α. Let x be the variable of this literal. We
find the set Cu such that v ∈ Cu and x ∈ X(v). We add c in Cu, and we repeat this for the rest of the
vertices in VC .

We claim that the partition P = {Cu | u is an assignment vertex} is an optimal C-partition of
G. We first show that this is indeed a C-partition. By construction, for any C ∈ P we have a pair
(i, j) ∈ [3]× [logn] and a vertex u ∈ Ui,j such that C ⊆ Vi,j ∪N [Uu]∪VC . Notice that |Vi,j ∪N [Uu]| =
2N + 2N · 3 logn + 30N logn + 5. We now calculate |C ∩ VC |. By construction, if c ∈ C ∩ VC , there
exists a vertex v ∈ Vi,j such that v ∈ C. Therefore, N(Vi,j) ∩ VC ⊇ C ∩ VC . Since each v ∈ Vi,j

represents logn
2

variables and each variable appears in at most 4 clauses, we have that |N(Vi,j)∩VC | ≤
|Vi,j |2 logn ≤ 4N logn. Thus |C| ≤ 2N + 2N3 logn + 30N logn + 4N logn + 5 < 42N logn = C for
sufficiently large n.

We now need to argue about the optimality of P. Using the same arguments as in Lemma 3.19, we can
show that E(P)∩E(Gi,j) includes exactly 3N logn(180

√
n+6) edges. Thus, |E(P)∩

⋃
(i,j)∈[3]×[logn] E(Gi,j)| =

3N log2 n(180
√
n + 6). Therefore, we need to show that there are 2m additional edges in E(P) that

are incident to vertices of VC . Notice that, for any c ∈ VC , there exists a Cu such that c ∈ Cu and
there exist vertices v, u in Cu that are both incident to c (which holds by the selection of Cu), with v
being a variable vertex and u an assignment vertex. Finally, by construction, there are at most 2 edges
incident to c in E(P). Therefore, the v(P) = 3N log2 n(180

√
n+ 6) + 2m.

For the reverse direction, assume that we have a C-partition P of G, with v(P) = 3N log2 n[180
√
n+

6] + 2m. By Lemma 3.19 we have that each vertex c ∈ VC must be in a set C ∈ P such that:

• |N(c) ∩ C| = 2 and

• there exist (i, j) ∈ [3]× [logn] such that v ∈ Vi,j ∩ C, u ∈ Ui,j ∩ C and {v, u} ⊆ N(c).

We construct an assignment α of ϕ that corresponds to this partition as follows. For each variable x,
consider the variable vertex v such that x ∈ X(v). By Lemma 3.18 there exists a unique assignment
vertex u such that v and u belong in the same component of P. Let σv,u be the assignment represented
by u for X(v). We set α(x) = σv,u(x). Notice that each variable appears in the set of one variable
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vertex and for each such vertex we have selected a unique assignment (represented by the assignments
vertex in its set). Therefore the assignment we create in this way it is indeed unique.

We claim that α is a satisfying assignment. Consider a clause of ϕ and assume that c is the cor-
responding clause vertex in VC . Assume that c ∈ C for some C ∈ P. By Lemma 3.19 we have that
|N(c)∩C| = 2 and there exist (i, j) ∈ [3]× [logn] such that v ∈ Vi,j∩C, u ∈ Ui,j∩C and {v, u} ⊆ N(c).
Since v ∈ N(c), we know that there exists a variable x ∈ X(v) that appears in a literal l of the clause
represented by c. Observe that v is unique. Moreover, since u, v ∈ V (Gi,j), and u ∈ N(c), we have
that σv,u(l) = α(l) satisfies the clause represented by c. This finishes the reduction.

In order for the claimed lower bound to hold, we need to bound vc(G) = vc, i.e., the size of the
vertex cover number of G, appropriately. Notice that the vertex set containing the Vi,js, the Ui,js and
the copies of the vertices in the Ui,js, for every (i, j) ∈ [3] × [logn]}, is a vertex cover of the graph.
Therefore, vc ≤ 3 logn(2N + 5

√
n) ∈ O( n

logn
). Additionally, C ∈ O( n

logn
).

To sum up, if we had an algorithm that computed an optimal solution of the C-CF problem in time
(Cvc)o(C+vc), we would also solve the R3-SAT problem in time

(
n

logn

)o( n
log n

). This contradicts the

ETH since
(

n
logn

)o( n
log n

)

= 2
(logn−log logn)o( n

log n
)
= 2

o(n−n log log n
log n

)
= 2o(n).

4 Kernelization

In this section, we establish that C-CF admits a polynomial kernel parameterized by vc + C. We will
use an auxiliary bipartite graph H that we construct as follows. Let U be a vertex cover in G and let
I = V (G) \ U . Then, V (H) contains two partitions X and Y such that V (Y ) = I and for each u ∈ U ,
we add t = vc×C+ C many vertices u1, . . . , ut. Moreover, if uv ∈ E(G) such that u ∈ U and v ∈ I, we
add the edge uiv in H for each i ∈ [t]. Now, we compute a maximum matching M in H. Let Y ′ ⊆ Y
be the set of vertices that are not matched in M. We have the following reduction rule (RR).

(RR): Delete an arbitrary vertex w ∈ Y ′ from I.

Lemma 4.1. RR is safe.

Proof. First, observe that in any C-partition P of G, at most vc × C many vertices can participate in
sets C ∈ P such that C ∩ U ̸= ∅ and these are the only vertices of I that can contribute in the value
of P.

Now, let G′ = G[V (G)\{w}]. Since any C-partition, P ′ of G′ can be easily extended to a C-partition
of G by adding to it a singleton set C = {w}, it suffices to show that the value of the optimal partition
of G and value of the optimal partition of G′ are equal.

Let P = {C1, . . . , Cp} be an optimal C-partition of G. We claim that there exists a C-partition P∗

such that {w} ∈ P∗ and v(P∗) = v(P). Notice that, by proving that P∗ exists, we also prove that any
optimal C-partition of G′ has the same value as any optimal C-partition of G. Indeed, P∗ \ {w} is a
C-partition of G′ and v(P∗) = v(P∗ \ {w}) = v(P); thus P∗ \ {w} is a C-partition of G′ (otherwise, P
is not an optimal C-partition of G). It remains to prove that such a C-partition exists.

In the case that {w} is a singleton in P then P∗ = P. Therefore, we assume that w participates
in some set C ̸= {w} of P. Let x ∈ U ∩ C such that xw ∈ E(G). Then, observe that x1, . . . , xt are
matched to t = vc × C + C many vertices of I by the maximum matching in H (as w /∈ Y ); let Sx be
the set of these vertices.

Observe that at least C of the vertices in Sx are not contributing in the value of P (since at most
vc × C many vertices can participate in sets C ∈ P such that C ∩ U ̸= ∅). We create a new set C′ by
moving C−1 of these vertices (which contain vertices that are connected to x) into C′ and move x from
C to C′. Observe that after this step, we have that v(P ′) ≥ v(P) as we remove at most C − 1 edges
incident on x in C and add exactly C − 1 edges incident on x in C′. We can keep repeating this step
until w is no longer connected to any vertex in C, and at this point, we can delete w from C (since its
contribution is 0) and add it as a singleton. Hence, we get the P∗. This completes our proof.
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Figure 4: The graph G constructed in the proof of Theorem 4.3

We argue about the size of our kernel in the next lemma.

Lemma 4.2. Once we cannot apply RR anymore, |V (G)| = O(vc2C).

Hence, we have our poly kernel parameterized by vc + C. We want to mention that this kernel can
be further improved to O(vcC) vertices by matching each vertex of U to at most C vertices in I, but
the analysis is highly non-trivial. Hence, in this preliminary version, we provide the above, simpler,
kernel.

Theorem 4.3. Given an edge-weighted graph G of vertex cover number vc, it is highly unlikely to find
a poly{vc + C} size kernel that computes an optimal C-partition of G.

Proof. The reduction is from the k-Multicolored Clique problem, where given a graph H = (V,E)
and a partition (V1, . . . , Vk) of V into k independent sets, the question is whether there exists a set
S ⊆ V such that G′[S] is a clique. We may additionally assume that |V1| = . . . = |Xk| = n = 2m for
some m ∈ N as, otherwise, we can add independent vertices in each set. It is known that k-MC does
not admit a kernel of size poly(k + logn), unless the Polynomial Hierarchy collapses [38].

The construction. We construct an instance of C-Coalition Formation, for C =
(
k
2

)
+k logn+1,

as follows (illustrated in Figure 4). For each set Vi, we first create a clique of 2 logn vertices V i =
{ui

j , v
i
j | j ∈ [logn]}. We proceed by creating a vertex ui and an independent set Ii of size C− logn−1.

Finally, we add all edges between ui and vertices from V i ∪ Ii.

Before we continue, we will relate the vertices for each set Vi with a subset of vertices of V i. Let
vi, . . . , vn be an enumeration of the vertices in Vi. We assign to each vj ∈ Vi a binary string of length
logn such that the string assigned to vj represents the number j in binary form. Let s(v) be the string
assigned to a vertex v of the original graph. Also, for each i and v ∈ Vi, we use s(v) in order to define
a set S(v) ⊆ V i as follows; for each ℓ ∈ [logn],

• if the ℓ-th letter of s(v) is 0, we add ui
ℓ in S(v),
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• otherwise, we add viℓ in S(v).

We continue by creating one vertex ve for each edge e ∈ E. We call this set Ve. We add edges
incident to ve as follows: Let e = uv where u ∈ Vi and v ∈ Vj for some i, j ∈ [k]; notice that i ̸= j. We
add all edges vew, where w ∈ S(u) ∪ S(v).

Finally, we add a vertex x add we add edges between x and any vertex in Ve ∪
⋃

i∈[k] V
i. We will

call this new graph G.

We complete the construction by defining the weight function w : E(G) → N as follows.

• For any edge e = uiv where v ∈ Ii, we set w(e) = 4C3.

• For any edge e = uiv where v ∈ V i, we set w(e) = 3C2.

• For any edge e = xv where v ∈ V i, we set w(e) = 2C.

• For any other edge e we set w(e) = 1.

We will show that finding a clique of order k in H is equivalent of finding a C-partition P of G of
value v(P) = k

(
4C3(C − logn− 1) + (3C2 + 2C) logn+ 2

(
logn
2

))
+

(
k
2

)
(2 logn+ 1).

Properties of optimal C-partitions of G. Before we proceed with the reduction, we will prove
some properties for any optimal partition of G.

Lemma 4.4. Let P = {C1 . . . , Cp} be an optimal C-partition of G. For any i ∈ [k], there exists a
j ∈ [p] such that ui ∪ Ii ⊆ Cj.

Proof. Assume that there exists an i ∈ [k] such that Cj ∩ (ui ∪ Ii) ̸= (ui ∪ Ii), for any j ∈ [p]. Let C
be the set {ui} ∪ Ii. We claim that the partition P ′ = {C1 \C, . . . Cp \C,C} has higher value than P.
Indeed, by separating C from the rest of the partition, we only lose the weights of the edges incident
to ui and vertices of V i (as all the other neighbors of ui are in C). Since all these edges have weight
3C2, we are reducing the value of the partition by at most C3C2. On the other hand, notice that there
exists at least one edge e = uiv for some v ∈ Ii such that w(e) is counted in P ′ but not in P. Since
4C3 > C3C2, we have that v(P ′) > v(P), which contradicts the optimality of P.

Lemma 4.5. Let P = {C1 . . . , Cp} be an optimal C-partition of G. If ui ∈ Cj, for some (i, j) ∈ [k]×[p],
then |Cj ∩ V i| = logn.

Proof. Assume that there exists a ui ∈ Cj , for some (i, j) ∈ [k]× [p] such that |Cj ∩V i| < logn. Notice
that |Cj ∩ V i| is at most logn by Lemma 4.4. Select (arbitrarily) a set U such that V i ⊃ U ⊃ Cj ∩ V i

and |U | = log n. We set C = U ∪ Ii ∪{ui}. Them, we create the partition P ′ = {C1 \C, . . . , Cp \C,C}.
We claim that v(P ′) > v(P). Indeed, there is at least one edge uiv ∈ E(P ′) \ E(P). Also, this edge
has weight 3C2. Now, consider an edge in e ∈ E(P) \ E(P ′). It is not hard to see that w(e) = 1 or
w(e) = 2C. Also, since any edge with weight 2C is incident to x, we may have less than C−1 such edges
in E(P) \ E(P ′). Thus, the total weight of the edges in E(P) \ E(P ′) is less than C2C +

(C
2

)
< 3C2.

Therefore, v(P ′) > v(P), which contradicts the optimality of P.

Lemma 4.6. Let P = {C1 . . . , Cp} be an optimal C-partition of G and x ∈ Cℓ, for an ℓ ∈ [p]. Then
|Cℓ ∩ V i| = logn for all i ∈ [k].

Proof. It follows from Lemmas 4.4 and 4.5 that, for each i ∈ [k], we have exactly logn vertices from Vi

that are in the same set as {ui} ∪ Ii. Let Ci ∈ P be the set that includes {ui}. Observe that |Ci| = C.
Thus, no other vertex has been included to Ci. Therefore, for all i ∈ [k], there are exactly logn vertices
that are not in the same set as ui; let Si be this subset of V i. That is, Si = V i \ Ci. We will show
that, for all i ∈ [k], we have that Si ⊆ Cℓ. Assume that there exists an i such that Si ⊈ Cℓ and let
u ∈ Si \ Cℓ. We consider two cases, either |Cℓ| < C or not.

Case 1 |Cℓ| < C: Then we create the following partition.

• Remove u from its current set and

26



• add u to Cℓ.

Since u was not in the same set as ui or x in P, any edge e ∈ E(P) that is incident to u has weight 1.
Also, since P is a C-partition, we have at most C − 1 neighbors of u in the same set as u in P. Thus,
moving u to a different set reduces the value of the partition by at most C − 1. On the other hand, in
E(P ′) we have at least included the edge xu and w(xu) = 2C > C. This contradicts the optimality of
P.

Case 2 |Cℓ| = C: Then we have at least one edge vertex ve in Cℓ. We create a new C-partition by
swapping u and ve. Again, moving u to a different set, reduces the value of the partition by at most
C − 1. Also, recall that by construction, d(ve) = 2 logn + 1 and all of theses edges are of weight 1.
Therefore, moving ve to a different set reduces the value of the partition by at most 2 logn + 1. The
fact that E(P ′) includes at least the edge xu and w(xu) = 2C > C+2 logn+1 leads to a contradiction
to the optimality of P.

The reduction. We are now ready to prove the theorem. In particular, we will show that H
has a clique of order k if and only if any optimal C-partition P for G has value at least v(P) =
k
(
4C3(C − logn− 1) + (3C2 + 2C) logn+ 2

(
logn
2

))
+

(
k
2

)
(2 logn+ 1).

Assume that H has a clique of order k and let vi be the vertex of this clique that also belongs to
Vi, for each i ∈ [k]. For each i ∈ [k], we create the set Ci = {ui} ∪ Ii ∪ (Vi \ S(vi)). Then we create
a set C = {x} ∪

⋃
i∈[k] S(v

i) ∪ {ve | e = vivj for all 1 ≤ i < j ≤ k}. Finally we add one set for each
remaining vertex ve. Let P = {C1, . . . , Cp}, p > k + 1, be the resulting partition. We claim that
v(P) = k

(
4C3(C − logn− 1) + (3C2 + 2C) logn+ 2

(
logn
2

))
+

(
k
2

)
(2 logn+ 1).

Indeed, we have that, for any i ∈ [k], the sum of the weights of the edges of G[Ci] is exactly
4C3(C − logn − 1) + 3C2 logn +

(
logn
2

)
. Also, by construction, the sum of the weights of the edges of

G[C] is exactly k2C logn + k
(
logn
2

)
+

(
k
2

)
(2 logn + 1). Finally, all the other sets are singletons. Thus

v(P) = k
(
4C3(C − logn− 1) + (3C2 + 2C) logn+ 2

(
logn
2

))
+

(
k
2

)
(2 logn+ 1).

For the reverse direction, assume that we have a partition P that has value v(P) = k
(
4C3(C− logn−

1) + (3C2 + 2C) logn + 2
(
logn
2

))
+

(
k
2

)
(2 logn + 1). By Lemmas 4.4 and 4.5, we know that, for each

i ∈ [k], there exists a set C ∈ P such that C ⊇ {ui}∪ Ii and C \ ({u}∪ Ii) ⊆ V i. Let us reorder the sets
of P such that P = {C1, . . . , Cp} and ui ∈ Ci, for all i ∈ [k]. First, we calculate the maximum value of
{C1, . . . , Ck}. Notice that for any i, Ci includes exactly logn vertices from V i and the set {ui} ∪ Ii.
Therefore, we need to take into account:

•
(
logn
2

)
edges of weight 1, between the vertices of V i,

• logn edges of weight 3C2, between the vertices of V i and ui and

• C − logn edges of weight 4C3 between the vertices of Ii and ui.

In total, this gives us a value of
(
logn
2

)
+ logn3C2 + (C − logn)4C3, and this holds for all i ∈ [k].

By Lemma 4.6, we also know that there exists a set C in P that includes the vertex x together with
the remaining vertices from the sets V i, i ∈ [k]. Notice that C may also include up to

(
k
2

)
vertices from

Ve. Actually, C must include all these vertices, as otherwise the edges incident to them will contribute
nothing to the value of P.

We will calculate the value of the edges in E(C \ Ve). Notice that these edges are either between
two vertices in the same set V i or between a set V i and x. Since for each i ∈ [k] we have logn vertices
from V i, we have:

•
(
logn
2

)
edges of weight 1, between the vertices of V i, for each i ∈ [k] and

• logn edges of weight 2C, between the vertices of V i and x, for each i ∈ [k].

Therefore, by adding these with the value from the sets Ci, i ∈ [k], we have calculate a value of
k
(
4C3(C − logn) + (3C2 + 2C) logn+ 2

(
logn
2

))
.

Observe that the assumed value of P higher than the one that we have calculate for the moment,
by

(
k
2

)
(2 logn + 1). Notice also that this extra value can be added only by the vertices from Ve that
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can be in the same set as x. Finally, any vertex v ∈ Ve ∩ C can contribute at most 2 logn + 1 since
d(v) = 2 logn + 1 and all these edges have weight 1. Therefore, in order to achieve the wanted value,
we have that |C ∩ Ve| =

(
k
2

)
and for each vertex v ∈ C ∩ Ve, N(v) ⊆ C.

Next, we will show that there is no pair (i, j) for which there exist two edges e, e′ such that {ve, ve′} ⊆
C, e = uv, where u ∈ Vi and v ∈ Vj , e′ = u′v′, where u′ ∈ Vi and v′ ∈ Vj . Notice that, N(ve) ⊆ C
and N(ve) = S(u) ∪ S(v) ∪ x. Therefore, C ∩ V i = S(u) and C ∩ V j = S(v). Since the same holds for
ve′ , we can conclude that S(u) = S(u′) and S(v) = S(v′). Thus, e = e′. This cannot happen because
these vertices represent edges of H and there are no parallel edges in H. We can conclude that no two
of vertices ve and v′e in C can represent edges between vertices of the same sets. Also, since we have(
k
2

)
such vertices, for each pair (i, j) we have a vertex ve that represents an edge uv where u ∈ Vi and

v ∈ Vj .

Now, consider the set of vertices U = {v ∈ V (H) | S(v) = C ∩ V i for some i ∈ [k]}. We claim that
U is a clique of order k in H. We will first show that for each i ∈ [k], we have that C ∩ V i = S(v) for
some v ∈ Vi. As we mentioned, for each pair (i, j) there exists one e = uv, where u ∈ Vi, v ∈ Vj and
ve ∈ C. Also, N(ve) ⊆ C and N(ve) = S(u)∪ S(v)∪ x. Therefore, C ∩ V i = S(u). Since this holds for
any i ∈ [k], we have that U indeed represents a set of k vertices in H. We need to show that U induces
a clique. Consider two vertices u, v ∈ U and let u ∈ Vi and Vj . Recall that for each pair (i, j), we have
a vertex ve ∈ C such that e = u′v′, u ∈ Vi and v ∈ Vj . Also, we have shown that S(u′) = C ∩ V i and
S(v′) = C \ V j . Therefore, S(u′) = S(u) and S(v′) = S(v), from which follows that e = uv. Thus,
there exists an edge between the two vertices. Since we have selected u and v arbitrarily, we have that
U is indeed a clique.

To fully prove the statement, it remains to be shown that the parameter that we are considering is
bounded by a polynomial of k+ logn. Notice that the set U = {x} ∪

⋃
i∈[k](V

i ∪ {ui} is a vertex cover
of G. Also, |V i| = 2 logn for all i ∈ [k]. Therefore, we have that |U | ∈ O(k logn). Recall that we have
set C = 1 +

(
k
2

)
+ k logn. Therefore, vc + C ∈ poly(k + logn).

5 Additional Structural Parameters

Theorem 5.1. Given an unweighted graph G = (V,E) with vertex integrity k, there exists an FPT
algorithm that computes an optimal C-partition of G, parameterized by k.

Proof. Let U ⊆ V be such that |U | = k′ ≤ k and S1, . . . , Sm be the vertex sets of the connected
components of G[V \ U ]. It follows that |Sj | ≤ k, j ∈ [m]. Let P ′ = {C′

1, . . . , C
′
p} be the strict

restriction 1 of an optimal C-partition P of G on the set U (there are at most |U ||U| ≤ kk possible
restrictions of P on U). We will extend P ′ into an optimal C-partition of G. To do so, we will organize
the connected components of G[V \ U ] into a bounded number of different types, and run an ILP.

We begin by defining the types.Two graphs Gi = G[U ∪ Si] and Gj = G[U ∪ Sj ], i, j ∈ [m], are of
the same type if there exists a bijection2 f : U ∪ Si → U ∪ Sj such that f(u) = u for all u ∈ U and
NGi(u) = {f−1(v) | v ∈ NGj (f(u))} for all u ∈ Si. Note that if such a function exists, then Gi is
isomorphic to Gj .

Let T1, . . . , Tℓ be the different types that were defined. Observe that ℓ is at most a function of k since
|U | ≤ k. For each i ∈ [ℓ], we define the representative of Ti to be any connected component of G[V \U ]
that is contained in a graph of type Ti; we will denote this graph by GTi . For each i ∈ [ℓ], we will store
a set of vectors τ i

j , for j ∈ [q], which contain all possible orderings of all possible partitions of V (GTi)
into p+ k sets (some of which may be empty). If GTi follows the vector τ i

j = (α1, . . . , αp+1, . . . , αp+k),
then α1, . . . , αp+k is a partition of V (GTi), and Pi

j = {C′
1∪α1, . . . , C

′
p∪αp, αp+1, . . . , αp+k} is a possible

extension of P ′ including the vertices that belong in any component of type i, according to the vector
τ i
j .

1a restriction is strict if it only contains non-empty sets.
2Recall that a function f : A → B is a bijection if, for every a1, a2 ∈ A with a1 ̸= a2, we have that f(a1) ̸= f(a2) and for

every b ∈ B, there exists an a ∈ A such that f(a) = b. Recall also that the inverse function of f , denoted as f−1, exists if and
only if f is a bijection, and is such that f−1 : B → A and for each b ∈ B we have that f−1(b) = a, where f(a) = b.
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For every i ∈ [ℓ] and j ∈ [q], let Ei
j = {E(Pi

j) \ E(P ′)} be the important edges according to τ i
j . be

the edges of the subgraph of G induced by Pi
j . All that remains to be done is to search through these

vectors and find the optimal ones among those that result in C-partitions. This is achieved through the
following ILP.

Variables

xi i ∈ [ℓ]
number of components

of type i

yi,j i ∈ [ℓ], j ∈ [q]
number of important
edges according to τ i

j

vi,j,l i ∈ [ℓ], j ∈ [q], l ∈ [p]
number of vertices in the
lth position of vector τ j

i

zi,j i ∈ [ℓ], j ∈ [q]
number of components

of type i following
the vector τ i

j

Constants

wl l ∈ [p] number of vertices in C′
l

Objective

max

ℓ∑
i=1

q∑
j=1

yi,jzi,j (5.1)

Constraints
q∑

j=1

zi,j = xi ∀i ∈ [ℓ] (5.2)

ℓ∑
i=1

q∑
j=1

vi,j,zzi,j + wl ≤ C ∀l ∈ [p] (5.3)

In the above model, the constraint 5.2 is used to make sure that every component of type i follows
exactly one vector τ i

j . Then, the constraint 5.3 is used to make sure that the resulting partition is
indeed a C-partition. Finally, since the number of variables of the model is bounded by a function of
k, we can and obtain a solution in FPT time, parameterized by k (by running for example the Lenstra
algorithm [45]).

Theorem 5.2. Let G be an unweighted graph and C and v∗ be two integers. Deciding if there exists a
C-partition P of G with v(P) ≥ v∗ is W[1]-hard when parameterized by the twin-cover number of G.

Proof. The reduction is from the Unary Bin Packing (UBP for short) problem. This problem takes
as input a set of items A = {a1, . . . , an}, a size function s : A → N which returns the size of each item
in unary encoding, and two integers B and k. The question that interests us is whether the items of A
can fit into k bins, so that every bin contains items of total size exactly B, and every item is assigned
to exactly one bin. This problem was shown to be W[1]-hard when parameterized by k in [41].

Let (A, s,B, k), where A = {a1, . . . , an}, be an instance of UBP. We construct an instance of C-
CF as follows: for each j ∈ [n], construct the clique Kj , which is of order s(aj). Then, for each i ∈ [k],
add one vertex bi and all the edges between bi and all the vertices of the cliques Kj , for all j ∈ [n].
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Let G be the resulting graph, and set C = B + 1. Observe that the twin-cover number of G is at most
k, as the set {b1, . . . , bk} is a twin-cover of G. We will show that any optimal partition P of (G, C) has
value v(P) =

∑n
j=1

s(aj)(s(aj)−1)

2
+ kB if and only if (A, s,B, k) is a yes-instance of UBP.

For the first direction of the reduction, let (A, s,B, k) be a yes-instance of UBP and let f : A → [k]
be the returned function assigning items to bins, such that every bin contains items with total size
exactly equal to B. We define a partition P of V (G) into k sets C1, . . . , Ck as follows. For every i ∈ [k],
the set Ci contains bi and all the vertices of the clique Kj such that f(aj) = i, for all j ∈ [n]. Clearly,
|Ci| = B + 1 = C for every i ∈ [k] and, thus, P is a C-partition of (G, C). Moreover, E(P) contains all
the edges that belong in the clique Kj , for every j ∈ [n], and exactly B edges incident to bi, for each
i ∈ [k]. In total, v(P) = |E(P)| =

∑n
j=1

s(aj)(s(aj)−1)

2
+ kB.

For the reverse direction, let (G, C) be an instance of C-CF and P = C1, . . . , Cp be a partition
of (G, C) with value v(P) =

∑n
j=1

s(aj)(s(aj)−1)

2
+ kB. Let G′ = G − {b1, . . . , bk} and observe that

|E(G′)| =
∑n

j=1

s(aj)(s(aj)−1)

2
.

Claim 5.3. For each i ∈ [k], there exists a unique ℓ ∈ [p] such that bi ∈ Cℓ. Moreover, p = k and
|Cℓ| = B + 1.

Proof of the claim. In order for v(P) to have the correct value, and by the construction of G, each one
of the vertices b1, . . . , bk contributes exactly B edges to v(P). Indeed, since |Ci| ≤ B + 1, i ∈ [p], no
vertex can contribute more than B edges towards v(P). Assume now that there exist i < i′ ∈ [k] and
ℓ ∈ [p] such that bi and bi′ both belong to Cℓ. Then, since C = B+1 and by the construction of G, we
have that Cℓ contains at most B − 1 edges incident to bi and bi′ , which is a contradiction. Finally, for
all i ∈ [p], if Ci contains a vertex from {b1, . . . , bk}, then |Ci| = B + 1. It also follows that p = k. ⋄

Claim 5.4. For each j ∈ [n], all the vertices of Kj belong in the same set of P.

Proof of the claim. In order for v(P) to have the correct value, and by the construction of G, we have
that for each j ∈ [n], each vertex of Kj contributes all of its incident edges in G′ towards v(P). ⋄

We are now ready to show that (A, s,B, k) is a yes-instance of the UBP problem. Let P be an
optimal partition of (G, C). It follows from Claim 5.3 that P consists of k sets {C1, . . . , Ck}. We create
the bins B1, . . . , Bk. For each j ∈ [n], we insert the item aj in the bin Bi, i ∈ [k], if and only if Kj ⊆ Ci.
It follows from Claim 5.4 that each item of A has been assigned to exactly one bin. Recall that for each
j ∈ [n], the item aj has size equal to the order of Kj (by construction). Moreover, for each j ∈ [n], the
item aj corresponds exactly to the clique Kj . Thus, from Claim 5.4, we have that for each i ∈ k, |Ci|
is equal to the sum of the orders of the cliques contained in Ci, which is exactly equal to B.

It remains to show that
∑

aj∈Bℓ
s(aj) = B for all ℓ ∈ [k]. Recall that |V (Kj)| = s(aj), for j ∈ [n].

Let ℓ ∈ [k]. We have that
∑

aj∈Bℓ
s(aj) =

∑
aj∈Bℓ

|V (Kj)|. Also, |Cℓ| =
∑

aj∈Bℓ
|V (Kj)| + 1 since

Cℓ contains the cliques that correspond to the items contained in Bℓ and one vertex from {b1, . . . , bk}.
Thus,

∑
aj∈Bℓ

s(aj) = |Cℓ| − 1 = B.

6 Conclusion

In this paper, we studied the C-Coalition Formation problem, considering both its weighted and
unweighted versions, through the lens of parameterized complexity. The main takeaway message is that
the problems behave relatively well in regards to many widely used parameters, despite the multiple
intractability results that we provided. On the one hand, our intractability results provide motivation
towards a more heuristic-oriented approach. On the other hand, there are many rather interesting
theoretical questions that are born from our research. In particular, we are wondering about the
existence of an FPT algorithm for C-CFw parameterized by the vertex integrity. Other examples of
interesting parameters that are left untouched by our work are the neighborhood diversity and the
feedback vertex set of the input graph.
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