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Discussion on classification methods for lifetime evaluation of a lab-

scale SiC MOSFET power module  

Malorie Hologne-Carpentier · Bruno Allard · Guy Clerc · Hubert Razik 

 

Abstract This paper focuses on classification methods for 

evaluating the lifetime consumption (LC) of power 

electronics modules. The generalization of power 

electronics devices introduces new issues concerning the 

reliability of equipment, especially in the transportation 

field. To meet these expectations, this paper discusses an 

approach to evaluate the percentage of lifetime of a lab-scale 

SiC MOSFET power module, designed for an aircraft 

application. This module is based on a planar technology, 

and presents typical failure modes concerning the SiC 

MOSFET chip itself and its environment. The modules have 

been aged on a specific instrumented test bench to trigger 

the expected failure modes. Thanks to this test campaign, a 

large database of 50 parameters have been obtained in order 

to find a relevant failure signature. Once the signature was 

obtained, a comprehensive solution is required to classify 

the signatures into relevant classes related to the module 

lifetime consumption. To meet the issue, three types of 

classification have been tested with learning data set: 

Support Vector Machine, k-Nearest Neighbors and neural 

network. The last contribution of this paper is a discussion 

on the evaluation of the percentage of lifetime consumption 

of a new test module thanks to the most promising model 

obtained from the learning data set. 

1 Introduction  

In the last decades, the electrification of systems in the field 

of transportation has been generalized. The motor drives are 

now mostly electrical and are constituted of electrical 

motors controlled by power electronics converters. The 

electric mobility required more and more compact and light 

systems to be easily embedded for a higher and higher 

power density. This trend for power density has led the 

industrials to develop new technologies of semiconductor 

devices as Silicon Carbide (SiC) components and new 

designs of planar power module. Such a power density in a 

confined environment can lead to failure mechanisms 

mainly due to CTE mismatching [1]. Besides, when the SiC 

component is a MOSFET, a certain failure mode has been 

identified as being a weakness of this technology: the Gate 

Oxide issues [2].  

Power electronics technologies will be more and more used 

in the transportation system drives and will require a 

particular attention to allow a relevant maintenance strategy 

and a large availability of the systems. In this challenging 

context, another way to think the maintenance is to realize 

an online tracking of pre-determined parameters that 

constitute a signature of potential failure mechanisms. By 

the way, health monitoring of power electronics could be 

achieved online to avoid scheduled maintenance, which 

creates unavailability of the systems, or avoid failure 

without warning. 

Relevant online-compatible failure signature have to be 

determined for each new technology. This paper proposes 

to make this preliminary work for an SiC MOSFET based 

power module, whose description and failure modes will be 

briefly given in part 2. In this part, we will see also how to 

automatically select the relevant parameters to constitute a 

failure signature. The 3rd part will be dedicated to the issues 

of classification with a reduced signature or not to evaluate 
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the lifetime consumption of the power module thanks to 

learning data set. Finally, a 4th part will show how it is 

possible to estimate the percentage of lifetime consumption 

of a new power module thanks to the most promising model 

of diagnosis obtained in the learning phase. 

2 From the module failure study to the signature  

2.1. SiC MOSFET based power modules 

The DUT is a lab-scale power module created to model the 

behavior of the final full module, which will be inserted in 

a compact 45kW inverter for an aircraft application. It is 

constituted of one SiC MOSFET (C2M0025120D, 63A, 

1200V) and one power diode and tested in a chopper 

configuration. The focus of reliability has been directed on 

the MOSFET and its environment; so we will let the diode 

apart in the analysis. 

 

Fig. 1 Lab-scale power module at real dimensions. 

Module dimensions being minimized, many failure 

mechanisms can occur and are briefly described in the 

following subpart. 

2.2. Possible failure mechanisms  

The different failure mechanisms expected in similar power 

module have been reviewed in [3] and the most relevant 

ones for this technology are the Gate Oxide degradation and 

the top metallization lift-off. 

Ten power modules have been tested and their post-mortem 

analysis has shown three identified failure causes: Drain-to-

Source short-circuit (DSSC), Gate oxide perforation (GOP) 

and metallization lift-off (MLO). These failure mechanisms 

are certainly not the only ones that can occur but the lot of 

ten Test Modules (TM) and the available equipment of post-

mortem analysis allow identifying precisely only these three 

ones.  

The level of stress was imposed thanks to a self-heating of 

the MOSFET according to the following pattern: 1s of self-

heating under a constant current until reaching a maximum 

health junction temperature, 4s of cooling thanks to a forced 

air cooling. At this level of stress, the lifetime of each 

module is varying along the test campaign and has been 

gathered in Tab.1. 

Table 1 Test campaign synthesis 

TM Lifetime 

(cycles) 

DSSC GOP ML

O 

Stress profile 

Tjmax/IDC 

1 6 400 Yes No No 145°C/ 50A 

2 75 600 No Yes No 125°C/48A 

3 176 000 Yes No Yes 120°C/46A 

4 93 700 No Yes Yes 130°C/48A 

5 31 400 Yes No Yes 125°C/46A 

6 69 000 Yes No No 115°C/46A 

7 11 500 No Partial No 111°C/46A 

8 20 200 Yes No No 115°C/46A 

9 23 000 No No Yes 115°C/46A 

10 35 000 Yes No No 114°C/46A 

 

Such a variety of results on a small lot of test modules (10) 

needs a high attention in the signature constitution. The 

following subpart will detail the main issues of this work. 

2.3. How to constitute a relevant failure signature? 

As detailed in [4], the constitution of a relevant failure 

signature meets the following issues: 

- What is the best strategy of accelerated ageing tests to 

trigger the most expected failure modes? 

- Among all the measurable parameters, which ones are 

monotonous and are correlated with at least a failure 

mechanism? 

- Among correlated parameters, how to select the ones 

carrying the most relevant information (most important 

drift from an initial value)?  

- Are the selected parameters sensitive to one or several 

failure mechanisms? 

- Can we constitute a signature for each mechanism in this 

study or only a signature representative of at least one of 

them? 

In this study, Active Power Cycling of the module leg was 

selected as the accelerated lifetime test. A chopper 

configuration using a DC current to trigger self-heating is 

readily available as well as a forced cooling phase in passive 

electrical conditions. The cooling phase was used to realize 

two characterization tests in order to obtain 50 potential 

candidates for the signature: Thermal Sensitive Parameters 

(TSEP) measurement and a Double Pulse test. The 

parameters obtained during these tests are given in [4]. To 

select the most relevant parameters to constitute a failure 

signature, a methodology, given in Fig.2, has been adopted 

to meet all the issues previously cited. 

By using this methodology, the parameters selected for each 

TM has been different. This result could be expected 
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knowing that the observed failure mechanisms were 

different. 

 

Fig. 2 Methodology to select relevant parameter in order to constitute 

the failure signature 

The issue is now to choose the suitable strategy to build the 

signature. We can even choose to build several signatures 

for each failure mechanism or to build a general signature 

composed of parameters which are, together, discriminative 

enough to indicate a potential failure mechanism in 

progress. Since this study has been led on lab-scale TM, no 

relevant signature has been identified to deal with each 

failure mode distinctly. For example, TM 1, 6, 8 and 10 

show the same failure mode (DSSC) and their most sensitive 

parameter is the Junction Temperature (TM1, TM6), the 

On-state resistance (TM8) or the Rise Time to VGSTH 

(TM10). Therefore, it has been decided to keep all the 

parameters that present a sufficient Shannon Entropy [5] 

(2.3 minimum) for at least two TMs. The obtained signature 

(1) is a 10-dimension signature constituted of parameters 

more or less sensitive to each failure mechanism but which 

is a good image of the TM health state along its lifetime. 

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

(
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𝑇𝑚𝑒𝑎𝑛𝑝𝑙𝑎𝑡𝑒𝑎𝑢 )

 
 
 
 
 
 
 
 

 (1) 

The next part details different solutions to obtain the 

diagnosis of the TM by classifying the signature for several 

percentage of consumed lifetime with learning data set. 

3 Classification of a 10-dimension signature 

Classical approaches for lifetime evaluation are reported in 

[6]. The classification of signature obtained thanks to a 

learning phase have been chosen in this study. This choice 

is justified by the non-maturity of the technology and the 

lack of relevant model that can be used online. TM 2, TM3, 

TM5, TM6, TM8 and TM9 have been chosen to construct 

the learning classes of the supervised classification. In a first 

approach, we have decided to construct only four classes 

among the lifetime consumption, knowing that the more 

numerous the classes, the more difficult it is to discriminate 

them. Signatures extracted from the six TM signals in a 

random way following the above limits define the chosen 

classes: 

- Class 1: between 0% and 5% of the lifetime. 

- Class 2: between 28% and 33% of the lifetime. 

- Class 3: between 58% and 63% of the lifetime. 

- Class 4: between 95% and 100% of the lifetime. 

For the learning phase, 5 signatures of each period of time 

(class) have been extracted of each learning TM (6). The 

extraction is a matrix of dimension 120x10 and is noted 𝑆10. 

3.1. Reduction of the signature 

Several methods of classification are faster if they are used 

in a 2D or 3D space and use hyperplane to discriminate each 

class. To test these methods in this study we have to reduce 

the signature into a 3-dimension one at least. To avoid a too 

large loss of information, we have to keep the most 

important parameters by reducing the size of the signature 

by creating only three variables issued from a linear 

combination of the ten initial parameters. This reduction 

method is called Principal Component Analysis (PCA) and 

allows to represent each signature of the learning database 

in a 3D-space (Fig. 3). The first step to obtain this 3D 

signature, is to create a covariance matrix from the 10-

column data matrix 𝑆10 (2): 

𝐴 = 𝑆10
′ × 𝑆10 (2) 

 

With 𝑆10
′ the transposed of 𝑆10 data matrix. 

The eigenvalues of the obtain matrix A (λi, with i from 1 to 

10) are extracted and ordered. The three higher values will 

be named λ1, λ2 and λ3. The next step is to find out the new 

vector V, defining the new basis, that verifies (3): 

𝐴. 𝑉 = 𝑉 × [

λ1 0 0
0 λ2 0
0 0 λ3

] (3) 

With 𝑠𝑖𝑧𝑒(𝑉) = (10,3). 

To obtain the signature in the new basis, we have to project 

𝑆10 thanks to the vector V (4).   

𝑆3 = 𝑆10 . 𝑉 (4) 

 

With 𝑆𝑖𝑧𝑒(𝑆3) = (120, 3). 
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Fig. 3 Representation of the database signatures after a PCA in a 3D-

space 

Fig.3 indicates that obtaining hyperplanes allowing a 

discrimination of the four classes is not trivial. To try to 

meet this issue, two methods have been tested in the next 

subpart: the Support Vector Machine (SVM) [7] and k-

Nearest-Neighbors (kNN) [8] methods.  

3.2. Classification with SVM and kNN using S3 and S10 

In a first approach, we have tested the SVM method. SVM 

method proposes to share the hyperspace in different part 

separated by borders, which can be lines, plans, spheres, etc, 

according to the dimension. The algorithm places the 

borders by clustering all the data of one class together and 

maximizing the margin between class points and the border. 

The shape of the border is various and for this study, the 

most common solutions have been tested thanks to a 

supervised classification: try to discriminate signature of the 

learning base in the four known classes. We have realized 

the learning phase with the two signatures S3 and S10, and 

the better border type is not the same: Fine Gaussian (85%) 

with a reduced signature and Cubic Gaussian (97.5%) with 

the complete one. Fig. 4 details the performance of 

classification of each SVM method on S3 and S10 signature 

respectively. 

 
Fig. 4 Comparison of the discrimination level with several SVM 

border types for 3D and 10D spaces. 

A result at 85% on learning data set is not very satisfying 

and choosing this type of classification is risky, as we want 

to discriminate in classes unknown signatures from other 

modules. We can firstly conclude that the SVM with a 

reduced signature presenting many advantages in terms of 

simplicity and calculation time will not be efficient to 

discriminate a new signature in classes. If we want to use 

SVM, a 10-Dimension signature classification is finally the 

most promising and will be tested in the next part. 

To continue the investigations, we have decided to test the 

classification with the kNN method. This method lays on an 

attribution of a point to a class thanks to its proximity to 

another point belonging to this specific class. It requires also 

a learning phase. As previously, different types of the kNN 

method have been tested: global and subspace kNN. The 

first method realizes a learning phase on all the signatures 

and the second one makes successive learning phase (30 on 

the 120 values of S10). As in SVM, the kNN borders can be 

various and have been exanimated for the first method and 

results are gathered in Fig. 5. 

 

Fig. 5 Comparison of the discrimination level with several kNN border 

types for 3D and 10D spaces. 

The best level of discrimination is obtained for the same 

type of border for both reduced and complete signature: Fine 

kNN. The level of discrimination for the reduced signature 

is not satisfying (83.3%) compared to the one with the 

complete signature (99.2%). The second method, the 

subspace kNN, has been tested with reduced (88,3%) and 

complete signature (96,7%), the level related to the best 

result obtained previously (99,2%), the next investigations 

for diagnosis will focus on the classical kNN approach. 

 

3.3. With the neural network 

The Neural Network (NN) approach presents a high 

adaptability to physic model [9] and can be a good candidate 

for classifying the learning data of module lifetime. The 
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principle, pictured in Fig. 6, 

shows that the NN works with 

the complete signature (10-

dimension). The 10 features 

are treated in 10 parallel 

hidden layers. For each one, a 

weight (W) and a bias (B) are 

attributed to each point. Next, 

an activation function is 

applied (Boolean, linear or 

sigmoid). After several tests, 

the sigmoid function gives 

better results. After the 

hidden layer, the data reaches 

the 4D output layer linked to 

the four predetermined 

classes. In this layer, the 

learning phase helps to 

choose a weight and a bias to 

align data from a class to this 

specific class. 

The algorithm proposes to 

work with the 120 extracted 

signatures in several steps: 

learning (84 signatures), 

validation (18 signatures) and 

test (18 signatures). By the 

way the algorithm adjusts the 

values of weight and bias and propose a classification of an 

excellent performance: 100%. 

At the end of this part, we can say that three models of 

classification are promising: the Cubic SVM (98.3%), the 

Fine kNN (99.2%) and the Neural Network (100%). Before 

testing these methods with a new module, we have to look 

at the result of performance with precautions. All the 

previous models have been obtained after several trainings, 

the level of performance changes with the initial learning 

signature chosen to establish the model settings. The given 

performances are the maximum ones obtained after 30 

trainings. The settings have been recorded to test new 

signature from an unknown module. 

4 Discussion on the lifetime evaluation of a new 

module 

In this part, data of TM10 has been considered to test the 

previous methods. We have extracted some signatures in the 

same intervals of lifetime than the ones of the learning 

phase. By the way, the selected models will normally 

attribute the five first signatures to the class 1, the 5 

following ones to the class 2, etc. 

4.1. Test of Cubic SVM, Fine kNN and Neural Network 

approach on data from a new module  

Although the models of performance were promising on the 

learning data set, the test realized with the TM10 signatures 

extracted at known periods of lifetime corresponding to the 

specified classes is not very satisfying. Fig. 7 gives the 

expected classes knowing the lifetime of extraction (dash 

line) and the class attribution according to the previous 

methods. We can see that Fine kNN mismatches nine 

signatures what gives a performance of 55%. The Cubic 

SVM mismatches only three signatures what gives a 

performance of 85%. Finally, the NN mismatches five 

signatures and thus gives a performance of 75%. 

 

Fig. 7 Classification of 20 signatures from TM10 extracted 

at known lifetime percentage (0%, 30%, 60% and 100%) 

Cubic SVM and Fine kNN attribute a class with a binary 

approach: the signature is in a class or not. It is difficult to 

explain the bad result obtained with Fine kNN in particular.  

However, NN method gives for each signature a confidence 

level in the class attribution. This confidence level can open 

a track to analyze the previous results obtained for TM10 

data and more generally, to understand the mismatching of 

such classifiers. 

4.2. How to interpret the classification of the neural 

network model? 

When we look at Fig.7, it appears clearly that the signatures 

of class 2 are not well discriminated and are attributed to 

class 3. We can begin the investigation by looking at the 

confidence level of attribution of each signature to each 

class. Fig.8 gives the confidence level of class attribution for 

extracted signatures at predetermined dates from TM10 

data. We observe that class 1 and class 4 for the beginning 

and the end of the lifetime are well discriminated. Class 3, 

around 60% of lifetime, is discriminated with a very good 

level after 60% and with a relative confidence level under 

60% but the attribution can be acted with the study of 

neighbor signatures. However, if we look at the signatures 

around 30% of lifetime, we see that the higher confidence 

level attributes it to class 3 (and not class 2 as expected).  

The trend of attribution lets think that the class 2 of TM10 

will be earlier in the percentage of lifetime. That is why we 

have tested signatures between 18% and 27%. As expected, 

the model discriminates the major part of signatures 

between 19% and 27% as being in class 2.

Fig. 6 Neural Network 

principle 
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Fig. 8 Classification confidence level of 30 signatures from TM10 extracted at known lifetime percentage  

The observation shows the non-robustness of the model 

constructed with only six modules for the learning phase. 

The evolution of the learning signals around these values of 

lifetime obviously contain not enough information (not 

enough drift). To confirm this assumption, we can check the 

time evolution of the signals for learning and test modules 

(Fig. 9). The drift of the time signal between 30% and 60% 

is less important for TM10 than other TMs. It can be a clue 

to understand the non-robustness of the model on this test 

module. 

 

Fig. 9 Evolution of one parameter of the signature according 

to time  

It could be interesting to test also TM1, TM4 and TM7 but 

the data obtained for these TMs are partial (recording issues 

or noise during the measurements) and cannot be used to test 

the NN approach. 

5 Conclusion  

In this study, we have experimented a lifetime estimation 

approach for a new technology of planar SiC MOSFET 

power module. The data have been obtained through an 

accelerated ageing process applied to only 10 TMs. The 

observed failure modes are various and required an 

investigation on the diagnosis method to better discriminate 

them. Three classification methods have been compared 

based on the same learning data set: SVM, kNN and Neural 

Network. Finally, the Neural Network is not the best method 

to obtain the lifetime consumption estimation but this 

approach is interesting. Thanks to the obtained confidence 

level, the model and the diagnosis strategy could be 

improved. For example, on this study, the drift being very 

small under 50%, maybe it could be interesting to construct 

classes only between 50% and 100% of the lifetime to 

obtain a robust indicator. 
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