
HAL Id: hal-04562691
https://hal.science/hal-04562691

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Longevity of Artifacts in Leading Parallel and
Distributed Systems Conferences: a Review of the State

of the Practice in 2023
Quentin Guilloteau, Florina M Ciorba, Millian Poquet, Dorian Goepp, Olivier

Richard

To cite this version:
Quentin Guilloteau, Florina M Ciorba, Millian Poquet, Dorian Goepp, Olivier Richard. Longevity
of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the
Practice in 2023. REP 2024 - ACM Conference on Reproducibility and Replicability, ACM, Jun 2024,
Rennes, France. pp.1-14, �10.1145/3641525.3663631�. �hal-04562691�

https://hal.science/hal-04562691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Longevity of Artifacts in Leading Parallel and Distributed
Systems Conferences: a Review of the State of the Practice in 2023

Quentin Guilloteau

Florina M. Ciorba

Quentin.Guilloteau@unibas.ch

Florina.Ciorba@unibas.ch

University of Basel

Basel, Switzerland

Millian Poquet

Millian.Poquet@irit.fr

Univ. Toulouse, CNRS, IRIT

Toulouse, France

Dorian Goepp

Olivier Richard

Dorian.Goepp@inria.fr

Olivier.Richard@inria.fr

Univ. Grenoble Alpes, Inria, CNRS, LIG

Grenoble, France

ABSTRACT
Reproducibility is the cornerstone of science. Many scientific com-

munities have been struck by the reproducibility crisis, and com-

puter science is no exception. Its answer has been to require artifact

evaluations along with accepted articles and award badges to re-

ward authors for their efforts to support ‘reproducibility.’ Authors

voluntarily submit artifacts associated with a submission to review-

ers who decide their ‘reproducibility’ properties. We argue that the

notion of ‘reproducibility’ considered by such badges is limited and

misses important aspects of the reproducibility crisis. In this article,

we survey almost 300 articles from five leading conferences on par-

allel and distributed systems held in 2023 (CCGrid, EuroSys, OSDI,

PPoPP, and SC). For each article, we gather information about its

artifacts (how it was shared, under which experimental setup, and

how the software environment was generated and shared), as well

as the reproducibility badges awarded. By reviewing the methods

and tools used to create and share artifacts in a technical, in-depth,

and article content-agnostic manner, we found that the state of prac-

tice does not address reproducibility in terms of artifact longevity
and we expose eight observations that support this finding. To ad-

dress the longevity of artifacts, we propose a new badge based on

source code, experimental setup, and software environment. These

criteria will allow rewarding artifacts expected to withstand the

test of time. This work aims to shed light on the issue of long-term

reproducibility in parallel and distributed systems and to start a

discussion in the community towards addressing the issue.

CCS CONCEPTS
• General and reference→ Empirical studies.

KEYWORDS
Reproducibility, Artifact Evaluation, Badges, Longevity

ACM Reference Format:
Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp,

and Olivier Richard. 2024. Longevity of Artifacts in Leading Parallel and Dis-

tributed Systems Conferences: a Review of the State of the Practice in 2023.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM REP’24, June 18-20, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

In Proceedings of 2024 ACM Conference on Reproducibility and Replicability
(ACM REP’24). ACM, New York, NY, USA, 14 pages. https://doi.org/XXXX

XXX.XXXXXXX

1 INTRODUCTION
The scientific community as a whole is traversing a reproducibility

crisis for the last decade. Computer science is not an exception

to this crisis [66, 4]. The reproducibility of research is essential to

build solid knowledge and increase reliability and confidence in

the results, while limiting the methodology and analysis bias. In

2015, Collberg et al. [15] studied the reproducibility of 402 exper-

imental articles published in system conferences and journals of

2011 and 2012. Each of the articles studied linked the source code

used to perform their experiments. Of the 402 articles, 46% were

not reproducible. The main causes were: (i) the source code was not
available, (ii) the code did not compile or run, (iii) the experiments

required specific hardware.

To reward authors of reproducible articles, several publishers,

such as ACM or Springer, set up a peer review-based artifact evalu-

ation for each submission. This peer review process of the exper-

imental artifact can award one or several badges to the authors

based on the level of reproducibility of their artifacts.

The term reproducibility is often used in a broad sense and

gathers several concepts. ACM proposed definitions for the re-

producibility terminology, which are used to validate the artifacts

submitted [1]. These definitions themselves are based on the Inter-

national Vocabulary of Metrology [8], and comprise three levels:

(i) Repeatable: the measurements can be obtained again by the peo-

ple at the origin of the work. (ii) Reproducible: the measurements

can be obtained again by people who do not belong to the original

work team but have the original artifact of the authors. (iii) Replica-
ble: the measurements can be obtained again by people who do not

belong to the original work team but with artifacts they developed

independently.

Reproducibility is harder to achieve when the artifacts of an

experiment do not include the software environment in which it

was conducted. Indeed, side effects due to the environment can

occur and change the results of the experiment. It is easy to forget

to include an element in the software environment that has an

impact on the performance of the experiment. For instance, per-

formance but also the result of a simple C application may depend

on the compilation options [76] or also from the quantity of UNIX

environment variables [57].

Most of the current solutions in terms of ‘reproducibility’ involve

storing artifacts (system images, containers, virtual machines) and

1

https://orcid.org/0009-0003-7645-5044
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-1368-5016
https://orcid.org/0009-0007-3738-5919
https://orcid.org/0009-0005-8679-2874
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

the replay of experiments [69, 10, 11]. Even if this is an important

step towards reproducibility, there is no guarantee that the software

environment can be re-built in the future, and thus no guarantee

that the experiments can be re-run if the artifacts disappear.

Evaluation of artifacts from conference papers is typically con-

ducted soon after their initial construction. Thus, it is highly likely

that the construction of the artifacts uses package mirrors (apt, rpm,
etc.) in a state or version similar to that of the submitted artifacts.

This raises the question of: What will happen when someone

tries to rebuild the artifact environment 1, 5, or 10 years into the

future? The objective of science is to be based on robust work to

advance the frontiers of knowledge (Stand on the shoulders of gi-
ants [58]). Such ‘short-term reproducibility’ is a major obstacle

to scientific progress and is in complete opposition to Open Sci-

ence [82]. No one would expect a mathematical proof to change

over time or even completely disappear. We believe that artifact

description currently mainly targets artifact reviewers, but, more
importantly, it should target future readers and researchers.

We believe that the concept that should be highlighted here is

variation [55, 31]. This means allowing a third party to use the en-

vironment defined for an experiment to investigate the same idea or

another research idea. An example of variation would be to change

theMPI implementation used in an experiment (e.g.,MPICH instead

of OpenMPI). Being able to introduce such a variation requires the

initial environment to be correctly defined.

However, even if variation is the end goal, we claim that the

current state of practice in Artifact Description (AD) and Evalua-

tion (AE) does not yet fulfill the main reproducibility properties,

in particular in terms of the reproducibility of the experimental

software environment.

This article analyzes the longevity of existingADs of the surveyed
articles and exposes seven observations summarizing our findings.

The key novelty of this article is to propose a badge that comple-

ments existing reproducibility badges and supports the longevity

of artifacts to withstand the test of time.

This article is structured as follows. Section 2 presents the con-

text and work related to artifact evaluation. The objectives and

methodology of this study are presented in Section 3. In Section

4, we review almost 300 articles from five leading parallel and dis-

tributed systems conferences (CCGrid, EuroSys, OSDI, PPoPP, and

SC) of 2023, and discuss the state of the practice of artifact sharing.

Based on the findings described in Section 4, in Section 5 we pro-

pose a new badge that accounts for artifact longevity and discuss the
limitations of this study in Section 6. Finally, Section 7 summarizes

the work and presents final remarks and perspectives.

2 BACKGROUND AND RELATEDWORK
The reproducibility-related definitions proposed by ACM [1] carry

some confusion, and the community did not reach a clear con-

sensus [65, 6]. In this paper, we modify the definition from [70]

to add the dimension of the experimental platform: "An experi-

ment is reproducible if the source code, the raw data, the analysis

scripts are available, their usage sufficiently described for some-

one to reproduce the experiments and analysis, and the access to

the experimental platform used is open". An artifact is a result of
self-contained work with a context-specific purpose [54].

In 2015, Hunold [50] conducted a survey among participants at

the Euro-Par conference to assess the vision of the parallel comput-

ing community on reproducibility questions. When asked about

the main reasons for not making the source code/raw data/data

processing available, the participants answered that: "it is irrelevant
because evolution is too fast" (90%), "it is not rewarding" (87%), "I
want to retain a competitive advantage" (84%). The second most

popular answer is quite interesting, since the AE processes were

not very popular at the time of the survey (the very first was in

2011 at the ESC/FSE conference). Since then, the sharing of artifacts

and their evaluation has become an established and accepted prac-

tice with benefits for the community [46]. The work by publishers

with the badging system aimed to reward authors for sharing their

artifacts. It would be interesting to conduct the survey again today

to quantify the impact of AE on this question, as we believe that re-

producibility and its challenges have since gained greater visibility.

Badges have been shown to be an effective strategy to incentivize

authors to make their research data available [52, 71], but have not

yet shown a significant impact on the visibility of the articles [84,

33, 48].

In [47], the authors surveyed the members of the artifact eval-

uation committees of computer science conferences about their

expectations of artifacts and the artifact review process. They found

that despite the call for artifacts that expressed expected observ-

able qualities of the submitted artifacts, there was no consensus on

what the expected qualities should be. The authors of [12] proposed

a global "quality indicator" for research artifacts with a detailed

framework, but it is not focused on reproducibility and does not

integrate with the current badge system. This lack of consensus

leaves reviewers without guidelines for correctly and uniformly

evaluating artifacts, which has been shown to be frustrating for

reviewers [7]. Furthermore, the study showed that there is a lack

of reviewer experience for reviewing artifacts.

Reviewing and reusing artifacts require two different points of

view. Reviewing focusesmore on the overall "quality" of the artifacts

(i.e., completeness, documentation), while the readers are more

interested in their reusability. An answer in the survey conducted

by Hermann et al. [47] explains that the experiments presented in

an article should be reproducible and that good documentation and

ease of setup are only bonuses.

Reusing artifacts poses problems when used in comparison with

othermethods.When researcherswant to compare their newmethod

with a method from the state-of-the-art, they either need to reim-

plement the method from scratch if no artifact is available, or, if the

artifact is available, researchers need to adapt the code of the arti-

fact to enable a comparison between the methods. In both cases, it is

not the original work that is being compared but a modified version

of it, which might lead to different results. An artifact with all repro-

ducibility badges might not be reusable and comparable "as is" by

other researchers. A solution that should be promoted by commit-

tees is the implementation of the authors’ solutions on collaborative

benchmarking frameworks. Some examples of such collaborative

frameworks exist for optimization problems [56], Edge-to-Cloud

experiments [68], or networking experiments [73].

The survey participants [47] also stated that the most important

thing is the availability of artifacts, rather than its reproducibility.

2



Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

The last decade has seen the creation of independent online scien-

tific journals to reward software and reproducibility. The most pop-

ular example is probably the Journal of Open Source Software (JOSS)
[75] that publishes articles about open source research software.
The review process, openly accessible as GitHub issues, includes a

thorough inspection of a submission’s source code, the documenta-

tion of the software, and a run-through of some examples. In the

field of Image Processing, the online journal Image Processing On
Line (IPOL) [16] requires the authors to implement the algorithms

proposed in their article and to make the implementation available

through an online demonstration for readers to explore and play

with. This requirement forces the authors to share their code along

with their article. IPOL noted that this requirement also helped

authors to improve their algorithms, as actually implementing the

algorithms might raise some undetected edge cases. As the review

process for journals is often much longer than for conferences,

reviewers have more time to investigate the artifacts and iterate

with the authors ways to improve the artifacts. In 2021, the journal

on Transactions on Parallel and Distributed Systems (TPDS) started
a program where researchers can submit short "critique" articles
that present their experiences in reproducing published results, and

that will be linked to the original publication if accepted [80].

Studies on the artifact process focus mainly on high-level char-

acteristics, as well as on the availability and citations of artifacts

[52, 71, 84, 33, 48]. In this work, we propose a technical, in-depth,

and article content-agnostic review of the methods and tools used

to create and share artifacts.

3 METHODOLOGY FOR EVALUATING
ARTIFACT SHARING

In this section, we survey 296 articles from 5 of the leading parallel
and distributed systems conferences of 2023, namely, CCGrid, Eu-

roSys, OSDI, PPoPP, and SC. These conferences used an Artifact

Description/Artifact Evaluation (AD/AE) process for the accepted
articles. This AD/AE process usually consists of the authors writing

an AD as an appendix of the article to show how to get and use

the artifact, how to install the dependencies, what the different

experiments are, and their estimated duration [63, 23, 49]. The AD

section is typically one or two pages long (in a double column lay-

out). This AD is complemented in practice by a web link provided

by the authors to a more detailed description of the artifact.

We selected five of the leading parallel and distributed systems

conferences held in 2023 that had a AD process and examined their

published proceedings. We formulated the questions below to guide

the survey of all articles in the proceedings. For each article, we

note the answer to these questions:

(1) How many reproducibility badges were awarded and which

badges were awarded to the article?

(2) Does the article have an AD section?

(3) Whether the article shared the URL of the artifact (it does

not have to be in the AD), and whether the URL is still valid?

(4) Howwas the source code shared: git repository (e.g.,GitHub,
GitLab), Zenodo, or a combination of solutions?

(5) If the source code has been shared via a git repository, we
record the number of commits and check whether a precise

commit was specified by the authors.

38.9%

37.7%

18%

1.8%

1.2%

0.6%

0.6%

0.6%

0.6%

git

git+zenodo

zenodo

swh

globus

a4os

a4os+cloud

git+figshare

indirect

0 20 40 60
Number of artifacts

2023 Conferences

CCGRID EUROSYS OSDI

PPOPP SC

Figure 1: Methods used by the authors to share artifacts. The
analysis characterizes the 154 artifacts available (Table 1).
The state-of-the-practice is dominated by git URLs, Zenodo
archives, and a combination of the two (git+zenodo).

(6) How were the experiments performed (e.g., local machines,

shared test-beds, proprietary machines, supercomputers,

simulation)?

(7) How was the software environment described and shared?

(8) What was the workflow of the experiments? (initially not

part of the survey questions)

In the following, we study five aspects of the ADs: artifact badges

and availability in Section 4.1 (points 1, 2, 3 above), source code

availability in Section 4.2 (points 4, 5 above), experimental platform

used in Section 4.3 (point 6 above), description and sharing of the

software environment in Section 4.4 (point 7 above), and workflow

of the experiments in Section 4.5 (point 8 above). Note that the

initial survey was not designed to record the workflow used in the

experiments and that this question arose during the analysis of the

artifacts.

4 RESULTS
4.1 Artifact badges and availability
Table 1 summarizes our evaluations, including the number of ar-

ticles for each conference and how many of them have AD. The

first surprising observation is that only about 20% of the articles

with the "Artifact available" badge also have an AD section in the

corresponding conference proceedings version. We presume that

the authors either forgot or declined to include this section in the

final version of the article. This is an unfortunate finding, as we

believe that the AD is valuable both for the artifact reviewer
and for future readers of the article.

Observation 1: Artifact badges and availability

Not all the papers rewarded with the "Artifact available"

badge have an artifact description in the proceeding ver-

sion.

4.2 Source code availability
Figure 1 shows how the artifacts were shared in the articles. Note

that several articles shared a link to their artifacts without having

3



ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

Table 1: Papers by considered conferences. The CORE rank [17] is in between parenthesis.

Papers Badges Artifact URL

Conference Accepted Found PDF Artifact Section Available Functional Reproduced Specified Available

CCGRID (A) 58 58 18 20 0 17 18 17

EUROSYS (A) 54 54 27 31 24 8 33 29

OSDI (A*) 55 55 13 28 30 26 26 25

PPOPP (A) 31 31 18 22 21 17 17 17

SC (A) 98 98 81 60 46 33 74 66

Total 296 296 157 161 121 101 168 154

an AD section or a badge. Most articles simply include the URL of

their git repository. Certain articles shared their code with Zenodo

[87] or Figshare [32], while others shared both with a git URL

and Zenodo. A minority of articles used Software-Heritage [45]

(abbreviated swh in Figure 1), Globus [37], or personal cloud drives.
Several authors used anonymous.4open.science [78] (abbrevi-

ated a4os in Figure 1) that allows users to share an anonymous

copy of a public repository on GitHub with reviewers. This is par-

ticularly useful for double-blind reviews. However, for all articles

surveyed, all links to this service were dead and there was no way to

retrieve the original git repository. We believe that the links simply

expired, which gives rise to issues of reproducibility by future re-

searchers. Furthermore, as long as the AE process does not count in

the accept/reject decision, having a double-blind review for the AE

only limits communication between reviewers and authors. If the

results of the AE will be taken into account for the decision, then

the community may need to investigate ways to perform the AE in

a double-blind manner. An easy solution would be to use tools such

as anonymous.4open.science [78] for the review and then replace

the URL with a (more) persistent URL in the camera-ready version

of the article. Some communities use third parties to anonymously

review artifacts, especially when they contain sensitive data [64].

A minority of authors shared their artifacts through an indirect

link. In most cases, this link points to the author’s personal Web

page, where there is the true link to access the artifact. The draw-

back of this approach is that if the author’s Web page is no longer

accessible, the link given in the article is no longer valid. Similar

comments apply to the sharing of artifacts with a link to a personal

cloud space (e.g., Google Drive).
Sharing only with a git URL can lead to traceability issues.

For instance, only 6% of the articles that shared artifacts via a

git URL mentioned the commit used for the experiments. Such a

solution could be satisfactory for the AE since the delay between

the submission of the article and the evaluation of its artifact is

short enough for the source code to be unaltered or in a similar

state. However, for future researchers aiming to build upon these

artifacts, it is nearly impossible to know which version of the code

was used. Another drawback of only using a git URL is that the

source code hosted on forges (e.g., GitHub, GitLab) might not be

available forever. For instance, authors could decide to delete or

rename their repository, invalidating the URL given in the article.

A better solution would be to use an institutional account on the

forges to store the git repository. However, in the worst case,

the entire source forge may need to close, making all repositories

unavailable (e.g., Google Code [38], GForge Inria).
One solution proposed by the conferences’ reproducibility guide-

lines is to archive the code via Zenodo or Figshare, and then refer

to the DOI generated by these archive websites in the AD section.

This has the advantage of giving a snapshot of the source code

as it was at the time of submission and allows future use of the

code. However, storing the source code on Zenodo has a simple

drawback: There is no possibility of partial code exploration. From

the point of view of future researchers, having to download poten-

tially large Zenodo archives to explore a few source files may be

cumbersome and may hinder engagement with the source code in

the artifact. Archiving can also break the link between the original

git URL if not archived correctly. Zenodo integrates with GitHub

[36], allowing to archive releases of a repository. This is why cer-

tain authors share the git URL and a Zenodo archive. If the link

between the repository and the Zenodo archive breaks (e.g., git
repository becomes unavailable), future researchers are left with a

single commit of the source code, and all the history of the project,

which contributes to the understanding and extensibility of the

project, is lost. Several artifacts shared through Zenodo are actu-

ally archives of a git repository and include the .git folder, and
thus the history of the project. Zenodo and Figshare are adapted

to archive datasets and binaries, not to the source code. Zenodo

and Figshare are heavily used because of the requirements from

the artifact review committee to have well-identified and citable

software, which goes through giving a DOI to the artifact. However,

these solutions are more appropriate for raw data and binaries, not

for source code [2, 24].

A more appropriate solution is to use Software-Heritage [45, 25].

Similarly to Zenodo, it offers permanent storage of source code,

with the same interface as usual source forges (e.g., GitHub, GitLab,
etc.). This means that future researchers can explore the source code

through an intuitive web interface without having to download

any archive. Software-Heritage also refers to the original source, so

that future researchers can access it if still available. For example,

[43] is the Software-Heritage archive of this article repository.

During this survey, we observed a surprising low number of

commits to the repositories linked in the articles when shared with

git (i.e., git, git+zenodo, git+figshare on Figure 1). We discov-

ered that 25% of the repositories have no more than 6 commits and

that 50% of the repositories have less than 20 commits. These repos-

itories appear to be a "dump" of the source code with some extra

4



Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

64.2%

16%

14.7%

4.8%

2.7%

local

proprietary

supercomputer

testbed

simulator

0 50 100 150 200
Number of papers

2023 Conferences

CCGRID EUROSYS OSDI

PPOPP SC

Figure 2: Experimental platform used in the surveyed arti-
cles. Most authors use the local machines at their disposal.
Certain authors also use supercomputers to experiment on
state-of-the-art systems. More concerning is the number of
articles relying on proprietary platforms, such as Amazon
Web Services, Google Cloud, Microsoft Azure. Finally, a small
proportion of the articles uses shared testbeds.

commits for documentation. Such practices do not allow reviewers

and future researchers to explore the "true" history of the project,

which is contrary to the traceability principle of Open Science [82].

The observations made for a standalone Zenodo archive also apply

here. It also casts doubt on the authors’ good practices in terms of

the traceability of the experiments. We believe that for certain au-

thors, the AE process and reproducibility may only be a secondary

consideration.

Observation 2: Sharing source code

The practice of sharing code through a git URL might

result in future code unavailability. Archiving via Zenodo

is a better alternative, but may introduce friction for future

exploration. Using Software-Heritage appears to be the

best available solution to permanently share source code.

4.3 Experimental platforms
A sufficiently detailed description of the hardware used for any

experiment that exhibits a particular behavior or performance eval-

uation is crucial for reproducibility.

Figure 2 shows the types of platforms on which the experiments

were performed for all the surveyed articles, with or without AD

or a badge. Note that some artefacts used several platforms. Most

of the experimental platforms were local machines (local), but
the description of the machine (i.e., CPU, GPU, disk, etc.) is given.
This still makes it difficult for reviewers and future researchers

to find the exact hardware or something closest to the hardware

used. In some ADs, we observed that the authors provided access

to their local machines by giving the IP address and the password

to connect.

A better solution would be to use open and shared platforms, also

called testbeds [60]. Chameleon [51], Grid’5000 [5], or CloudLab

[30] are examples of such testbeds. Testbeds are not frequently used,

being used only in about 5% of the articles. In practice, proprietary

platforms such as Amazon Web Services, Microsoft Azure, Google

Cloud, are used more frequently, in 16% of the articles. Even if this

allows reviewers to more easily access probably similar machines in

the short term, it locks the experiments, and thus their reproducibil-

ity, behind a paywall. This goes against the Open Science principles

[82]. Using proprietary platforms also raises the question of who

should pay to reproduce the results of the authors. Some authors

using such platforms wrote in their AD the estimated monetary

cost of rerunning the experiments.

Similarly, several articles (in particular those from the Super-

computing conference (SC)) used supercomputers to conduct ex-

periments. While supercomputers are at the bleeding edge of tech-

nology, having access to such a system is restrictive and can take

several weeks or months before obtaining access.

Observation 3: Experimental platform

Most articles use machines that are difficult to access (local,

supercomputer, or proprietary). Testbeds are underrepre-

sented in the state of the practice, but appear to be better

suited for reproducibility [60].

4.4 Software environment
After downloading the correct version of the code on the correct

platform, reviewers must configure the correct software environ-

ment to execute the experiments. Figure 3 shows the different

techniques used to describe and share the software environment in

ADs. Note that an AD may use several of these techniques.
In the following, we go through the methods observed to share

the artifact software environment and discuss their reproducibility.

4.4.1 Images. Figure 4a shows the tools used to capture the soft-

ware environment of the experiments. Contrary to predictions

made in 2017 [74], most AD do not report using any particular

tool. However, certain AD report using virtualization tools, such as

containers or virtual machines.

The entire software stack is typically encapsulated in an image.
This image can then be deployed on machines to conduct the ex-

periments. A way to generate a system image is to start from a

base image, deploy this image, execute the commands required to

set up the desired environment, and finally compress the image.

Platforms such as Grid’5000 [5] and Chameleon [51] offer such tools

to their users (respectively tgz-g5k [40] and cc-snapshot [14]). In
the context of repeatability and replicability, if the image remains

available, this method of producing system images is adequate at

best. Concerning the traceability of the build, one cannot verify the

commands that have been used to generate the image, and thus

one relies entirely on the documentation from the experimenter.

Moreover, such images are not suitable to be versioned with tools

such as git as they are in binary format. In case the image is no

longer available, re-building the exact image may be complex.

Figure 4b shows the availability state of the images for AE. We

observe that most authors who use an image make it available in a

binary cache such as DockerHub. However, DockerHub does not

offer permanent image storage. Another solution is to archive the

5



ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

35.7%
31.5%
31%

26.8%
17.9%

17.3%
14.9%

13.1%
10.1%

5.4%
4.8%

3%
2.4%

1.2%
0.6%

apt commands
pip

List (==)
Imprecise download

Precise download
Nothing
List (>=)

List
Conda

Loose image
Module

Vendoring
Spack

Nix
Verified download

0 20 40 60
Number of artifacts

2023 Conferences

CCGRID

EUROSYS

OSDI

PPOPP

SC

Figure 3: Techniques used to share the software environment in the ADs. An artifact can use several techniques.

86.1%

11.8%

1%

0.7%

0.3%

none

docker

singularity

vm−aws

vagrant

0 100 200 300
Number of artifacts

2023 Conferences

CCGRID EUROSYS OSDI

PPOPP SC

(a) Most artifacts used no tool or technology to generate/package their
software environment. Others used virtualization tools (e.g., containers
or virtual machines), the most frequent being Docker.

39%

61%

48.8%

51.2%

87.8%

12.2%

43.9%

56.1%

Image recipe available? Long−term binary cache or recipe?

Image in binary cache? Long−term binary cache?

0 10 20 30 40 0 10 20 30 40

No

Yes

No

Yes

Number of artifacts

2023 Conferences CCGRID EUROSYS OSDI PPOPP SC

(b) Questions related to the storing the prebuilt images and their
recipes for artifacts using virtualization tools.

Figure 4: Tools and technologies used to generate and package the software environment for the AE (Figure 4a), and the state of
the image and its recipe in the case of virtual tools (Figure 4b).

image in a long-term binary cache, such as Zenodo. However, this

is done rarely by the authors, only in 12% of the papers.

A better approach to (re)generate and share images is to use

recipes. Recipes, such as Dockerfiles for Docker containers or
Kameleon recipes [72] for system images, are a sequence of com-

mands to execute on a base image to generate the desired environ-

ment. The text format of the recipes makes them more suitable for

version control, sharing, and reconstructing. Base images often have

several versions, which are identified by labels called tags. In the

case of Docker, the tag for the latest version is often called ’latest’.

Basing an environment on this tag breaks traceability and, thus,

the reconstruction of the image itself. Indeed, if a newer version is

available at the time of a future rebuild of the environment, then

the image will be based on this newer version and not the original

version. Another important question is to know whether the base

image and all the versions can themselves be re-built, and if it is

not the case, what is the permanence of the platforms hosting those

images? For instance, the longevity of the Nvidia/CUDA Docker

image is only 6 months; after 6 months, the Nvidia administrators

of DockerHub delete the images [61]. However, in Figure 4b we see

6



Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

that less than half of the ADs that use an image do not share the

recipe, or we were unable to find the recipe to inspect or rebuild

the image. This means that if the image is not in a binary cache,

then it is impossible to rebuild it exactly. The row Loose image in

Figure 3 shows the articles that based their software environments

on a short longevity image.

4.4.2 List of package versions. One of the popular approaches to
share the software environment is simply to list the dependencies

of the artifact. We observed several levels of this listing approach.

The first level is to only list the name of the dependencies (List
in Figure 3). In this case, reviewers or future researchers do not

have information about the versions used or whether there is any

required feature from the dependencies. Future versions of a de-

pendency might have introduced breaking changes that make the

artifact unusable. The authors can then give a minimum version to

use (List (>=) in Figure 3), for example gcc >= 10.0.0. Although
this gives at least a lower bound on the versions, it does not offer

a guarantee that any future version will also work. Finally, the

most popular approach is to give the version used for each and all

dependencies (List (==) in Figure 3). Listing all dependencies by

hand raises several important questions. Are actually all the depen-
dencies listed? What about the dependencies of the dependencies?

How can we bring a system in the same state as the original system?

An answer to these questions is provided at the end of Section 4.4.

Observation 4: Listing dependencies

Simply listing the software dependencies and their version

is not enough to regenerate the correct software environ-

ment.

4.4.3 Package managers’ installation commands. Another popular
way to describe the software environment is to list the installation

commands in the package manager (e.g., apt, yum). These com-

mands typically take the form:

sudo apt-get update
sudo apt-get install packageA packageB

Another pertinent question arises here: What are the versions of

the installed packages? Indeed, calls to apt-get update (or equiv-

alent for other package managers) make the software environment

depend on the state of the mirror of the package manager at the

time the author did the experiments, or on the configuration of

the package manager which should thus also be included in the

artifact. For AE, the mirror may not change significantly between

the time of the experiments and the time of the review. However,

the probability that in 5 or 10 years the mirror will be in the same

state is very low, and the installed versions will not be exact the

same as in the experiments of the authors. This approach also im-

plicitly defines a dependency on the operating system distribution

that must be used to recreate the original environment.

There are "workarounds" tomake sure that the packages installed

via classical package managers are the expected ones. For example,

using a snapshot of the mirror [21]. These snapshots are a dump of

the mirror at a given time and users can then install packages from

these snapshots using the usual interface of the package manager.

However, the use of snapshots can cause issues. In particular, what

if the package installed from the snapshot creates a conflict with a

package already installed on the system? This is especially the case

for systems based on the FilesystemHierarchy Standard (FHS), such

as Debian-based distributions, where all binaries and libraries are

stored under /usr/bin and /usr/lib. Also, what happens to the

already installed packages if the artifact requires the installation

of an old version of the glibc? One solution would be to use a

virtualization tool such as a container or virtual machine, but, as

seen in Section 4.4.1, they have their own reproducibility issues.

Using snapshots makes it more difficult to introduce variation in

the software environment. Indeed, installing more recent packages

might be tedious or introduce conflicts with the installed packages.

Observation 5: Classical package managers

Installing dependencies through classical package man-

agers (e.g., apt, yum) creates a dependency on an uncontrol-
lable state: the state of the mirror of the package manager.

Freezing the state of the mirror introduces new compati-

bility problems with the underlying system and hinders

the introduction of variation.

4.4.4 pip and conda. When the software environment contains

only Python packages, freezing the dependencies with pip (pip
freeze) is not enough. pip only describes the Python environ-

ment, and ignores the system dependencies that numerous pack-

ages have. For example, freezing an environment containing zmq
Python package will not freeze the ZeroMQ system package in-

stalled on the system. Even if re-creating a Python environment

from a requirements.txt is simple, installing a list of system pack-

ages with specific version is, on the other hand, muchmore complex.

In the best case, the repository includes a requirements.txt that

lists all Python dependencies with the exact versions. However, in
practice, we observed the same issues as presented in Section 4.4.2

when the authors provided a list of dependencies without version

or with a loose version.

4.4.5 Downloading from the outside world. A common practice

when authors need to install a dependency unavailable through

classical package managers is to install it from source. For this,

the authors indicate in the AD how to download the dependency

and how to build it. However, when cloning a git repository, a

common error is not specifying the commit to use. If no commit

is specified, git will by default use the latest commit of the main

branch, which could be completely different between the moment

of artifact review and 10 years into the future. The same goes for

archives downloaded via wget/curl, typically in the form

curl https://website.com/download/release-latest.tar.gz

the outcome of which varies with time. Both of these approaches

were labeled Imprecise download in Figure 3.

Moreover, the downloaded git repository could disappear in

the future, and therefore cloning from Software-Heritage would be

more robust than cloning from a forge (e.g.,GitHub, GitLab). The
same remark applies to downloaded archives from websites.

Another important point is to check that the downloaded ob-

ject is indeed the expected one. This can be done by checking the

cryptographic hash of the downloaded object and comparing it to

7



ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

the expected one. Among all articles surveyed, we observed this

practice only once (Verified download in Figure 3).

Observation 6: Content of downloaded objects

Every object coming from outside the environmentmust be

examined to ensure that it contains the expected content. It

is more preferable that the building of the environment fails

if the content differs from the expected one, rather than

the environment silently building with different content.

4.4.6 Modules. A popular way to manage a software environment

in high performance computing (HPC) systems is through Mod-
ules [34, 13]. Modules allow users to change their environment

by "loading" and "unloading" packages and allow one to manage

different versions of applications. Under the hood, the modules

change the $PATH environment variables. One drawback is that

loading and unloading modules have side effects on the state of the

system and, therefore, might not reset the system to its initial state.

Manually loading the correct modules can also be quite error-prone

for users. Moreover, modules are system-specific (e.g.,compiled MPI

with special optimizations for the underlying system). Thus, shar-

ing a module-based environment between two systems might be

impossible. As modules are maintained by system administrators,

and allow them to limit and control the applications that can be

run by users. Moreover, modules do not have infinite longevity and

might become unavailable in the future.

4.4.7 Spack. Spack [35] is a package manager similar to pip but for
system packages and their dependencies. It is possible to export the

environment as a text file and rebuild it on another machine. How-

ever, the environment produced might not be completely identical.

Indeed, Spack uses already present applications on the machine to

build packages from the sources. In particular, Spack assumes the

presence of a C compiler on the system and will use this C compiler

to build the dependencies of the environment. Hence, if two differ-

ent machines have two different C compilers, then the resulting

environment is likely to differ from the desired environment. One

clear advantage of Spack is the ease in which one can introduce

variation into an environment through the command line. Spack

can also be run as an unprivileged user and does not require the

approval of the system administrators. Spack will download and

build dependencies into a folder located in the user’s $HOME. How-
ever, a drawback of using Spack is that this directory consumes a

lot of storage quota and inodes, which are limited in HPC systems.

4.4.8 Vendoring. One way to ensure the use of correct dependen-

cies is to "vendor" them. This means having a copy of the depen-

dencies’ source code in the artifact itself and then building the de-

pendencies from source. Authors sometimes use git submodules
to perform vendoring. However, submodules are not copies of de-
pendencies, but simply a link to a specific commit of another git
repository. Hence, if one of the dependency’s repositories disap-

pears, the artifact will not build. Furthermore, vendoring has limits

as it cannot reasonably capture all dependencies by hand (e.g., C
compiler), so it is only limited to "adjacent" dependencies.

4.4.9 Functional package managers. Tools such as Nix [28] or Guix

[19] fix most of the problems described in the previous subsections.

However, they are only used in about 1% of the artifacts examined.

As Nix and Guix share similar concepts, in the following, we will

focus on Nix, under the premise that all insights also apply to Guix.

Nix is a pure functional package manager for package repro-

ducibility. A Nix package is defined as a function where the de-

pendencies of the packages represent the inputs of the function,

and the body of the function contains the instructions to build the

package. Package building is done in a sandbox which guarantees

to build in a strict and controlled environment. First, the sources

are fetched and then their content is verified by Nix. If the hash of

the sources differs from the expected hash, Nix stops the build of

the package and yields an error. Nix also fetches and builds depen-

dencies recursively. The build commands are then executed in the

sandbox with the environment defined by the user. At this stage,

no network access or only access to the local file system is possible.

Nix can generate environments that can be assimilated as a mul-

tilanguage counterpart to Python’s virtualenvs. But it can also

create containers images (Docker, Singularity, LXC, etc.), virtual ma-

chines, or full system images with the operating system NixOS [29].

The process of building an image with classical tools (Dockerfile,
Kameleon recipe, etc.) is often iterative and arduous. Defining an

image with Nix is done in a declarative fashion. This has the advan-
tage of making the image build faster when modifying an already

built recipe [41]. It also avoids the tedious optimization of the order

of operations, which is common when building from a Dockerfile
[27]. As Nix packages are functions, introducing a variation means

changing an argument when the function is called.

Systems like Debian store all packages in the /usr/bin and

/usr/lib directories. This ordering can lead to conflicts between

different versions of the same library, and thus limits the introduc-

tion of variation in the environment without breaking the system.

Unlike FHS-based systems, Nix installs each package in its own

directory. These individual directories are stored in the Nix Store
located at /nix/store, in a read-only file-system. Each directory

name is prefixed with the hash of its sources:

/nix/store/jqvvkhzkm9irdqdqmb8m1jxahnh2j2yl-nix-2.18.1

Hence, if a user wants to install a different version of an already

installed package, its source code would be different, thus the hash

will be different, andNixwill then create a new directory to store the

new package. The advantage of this fine-grained isolation method is

the precise definition of the $PATH environment variable to manage

software environments.

The definition of packages through functions also facilitates their

sharing and distribution. There is a large base of package definitions

written by the community and hosted in a git repository called

nixpkgs [59, 67], archived in Software-Heritage. Users can easily

base their new packages or environments on those definitions. It is

also possible for independent teams and research groups to have

their own base of packages. Guix-HPC [44], NUR-Kapack [62], or

Ciment-channel [39] are examples of independent package bases

for HPC and distributed systems.

Limits of Functional Package Managers. Although tools such as

Nix and Guix greatly improve the state of reproducibilityfor soft-

ware environments, it is still possible to make an impure package

8



Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

or make it dependent on some exterior state. Nix addresses this

issue with the Flake experimental feature [81].

To ensure reproducibility and traceability of an environment,

Nix requires that all packages and their dependencies have their

source code open and that the packages be packaged with Nix. This

could seem limiting in the case of proprietary software where the

source code is unavailable (Intel compilers, for example). It is still

possible to use such proprietary packages with the impure mode

of Nix, but it breaks the traceability and thus the reproducibility of

the software environment.

The construction of packages in a sandbox goes through an

isolation mechanism of the file system using chroot system call.

This feature used to be restricted to users with root privileges.

In HPC systems, this type of restrictive permission significantly

hinders the adoption of Nix or Guix. Thankfully, the unprivileged
user namespace feature of the Linux Kernel allows users to bypass

in most cases this need of specific rights.

As Nix needs to recompile packages that are not available in

its binary cache from their source code, it is possible that future

rebuilds are impossible if the host of the source code disappears [9].

However, since Software-Heritage now performs frequent archives

of open-source repositories, it should be possible to find, when

needed, the sources of interest [18].

Finally, these tools also require a change of viewpoint in the

way software environments are managed, which might make the

learning curve steeper.

Observation 7: Functional package managers

Functional package managers (FPM), e.g., Nix [28] or Guix
[19], provide reproducibility guarantees for the software

environment produced. FPMs are extremely underused,

probably due to their steep learning curve. We believe

that such tools are the closest to solving the challenge of

reproducibility of software environments.

4.5 Workflow managers
We initially did not plan to record the workflow of the experiments

for each article. However, during the survey, we made the striking

observation that almost no artifact made use of a workflow man-

ager to conduct experiments. Authors describe the experiments

workflow primarily in two ways: using lengthy and fragile bash
scripts or a README file that requires copy-pasting the commands. In

certain articles, commands are directly included in the text, making

it even harder to read and copy-paste.

As experiments in distributed computing systems can be quite

expensive to run (especially if one needs access to a supercomputer

or a proprietary system in the cloud), having the possibility to run

a subset of the workflow is crucial for reproducibility. For example,

a reviewer or future researcher may want to rerun only the data

analysis step of the workflow in the artifact (dataset that has been

stored on Zenodo, for example) or perhaps add a new combination

of parameters to the entire workflow.

Workflowmanagers [85] have become the standard for executing

complex bioinformatic pipelines. However, despite the plethora

of available workflow systems [20, 53, 26, 22, 3, 77, 83] the stark

observation is that none of the surveyed artifacts used any of them.

Observation 8: Workflow managers

The workflows described in the artifacts are based on man-

ually copy-pasted commands from README files or on the

execution of fragile bash scripts. The community could

greatly benefit by adopting workflow managers [85].

5 ARTIFACT LONGEVITY BADGE PROPOSAL
We believe that the current badging system misses an important

aspect of the quality of artifacts: their longevity. By longevity we

mean the time an artifact will remain in the same state as the state

used by the authors. As we have seen in Section 4, the popular

tools and methods for sharing source code, the software environ-

ment package, or platforms to perform experiments differ in their

longevity longevity guarantees/quality.

Artifacts that offer longevity are much more valuable and impact-

ful to future researchers who may wish to build on them, deserve to

be rewarded, and have greater visibility. Table 2 proposes a first in-
stance of a grading framework to assess the longevity of an artifact

based on three criteria: sharing of the source code, the experimental

setup used, and the software environment. We propose to grade

each aspect on 5 levels ranging from insufficient (Level 0) to best

(Level 4). Averaging the score for each criterion yields an overall

score for the artifact.

Recommendation: Artifact Longevity Badge

Artifacts that obtain a longevity score of 3 or higher should

be awarded the Artifact Longevity Badge.

The specifics of the score for each criterion should further be
discussed in the community beyond the specifics introduced in

this work, to reach a consensus on the desired good practices. They

are also bound to change as software tools and practices evolve.

Figure 5 shows the distribution of the longevity scores for each

of the three criteria and the overall longevity score for the articles

surveyed in Section 4. Given the overall longevity scores of the 154

articles surveyed with available artifacts, only 1.2% (or 2 articles)

receive the Artifact Longevity Badge. The most penalizing criterion

is the software environment, since most articles received a score of

0 because they do not describe their software environment accu-

rately enough. In keeping with the theme of article content-agnostic

review, we refrain from identifying in this work the articles that

received the newly proposed Artifact Longevity Badge.

6 DISCUSSION
Section 4 exposes the lack of long-term reproducibility of the arti-

facts. Popular tools and methods do not provide sufficient guaran-

tees concerning the artifacts’ longevity. By reviewing the state of

the practice, we aim to raise awareness about this forgotten yet im-

portant dimension of reproducibility. Our proposal of a new badge,

in Section 5, to reward authors for creating artifacts with longevity
aims to start a community discussion on this topic.

9



ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

Table 2: Proposed grading framework for evaluating artifact longevity.

Grade Artifact Longevity Criteria

[0..4] Source Code Experimental Platform Software environment

0 imprecise version (e.g., git repository

without fixed commit)

not described not partially described (e.g., dependencies
list, apt commands, imprecise download)

1 fixed version, partial exploration (e.g.,
git with fixed commit)

high monetary cost (e.g., Proprietary plat-
forms)

long-term availability, some dependen-

cies (e.g., Vendoring, precise download)

2 long-term storage, fixed version (e.g.,
Archive of a release)

difficult access (e.g., Local machines) shorter-term availability, recipe, most de-

pendencies captured, more precise re-

build (e.g., Spack)

3 long-term storage, fixed version, history

(e.g.,Archive of a repository with history)
longer-term access, difficult access, low

monetary cost (e.g., Supercomputer)

long-term availability, available recipe,

all dependencies captured, imprecise re-

build (e.g., Long-term storage of the im-

age and recipe)

4 long-term storage, fixed version, his-

tory, partial exploration (e.g., Software-
Heritage)

longer-term access, easy access, low to no

monetary cost (e.g., Testbeds, simulator)

long-term availability, recipe, exact re-

build, all dependencies captured (e.g.,
Nix/Guix)

40.5%
20.2%

37.5%

1.8%

3% 13.7%

60.7%

14.3% 8.3%

96.4%

0.6% 1.8% 1.2%

0.6% 9.5%
26.8%19.6%

7.1%
22.6%

6% 4.2% 2.4% 1.2%

No badge Badge

Overall Longevity score

3. Software environment score

2. Experimental setup score

1. Source code score

0 1 2 3 4

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

Score

N
um

be
r 

of
 a

rt
ifa

ct
s

Figure 5: Artifact longevity score for each of the three criteria
(Table 2) - three top graphs, and the overall longevity score
for the artifact - bottom graph. We recommend a minimum
longevity score of 3 to award the Artifact Longevity Badge.
Given the overall longevity scores of the 154 surveyed articles
with available artifacts (Section 4.1), only 1.2 percent receive
the Artifact Longevity Badge.

Threats to study’s validity. This study focused only on five con-

ferences on parallel and distributed systems, all from the same year
(2023). Only one author of this study manually collected the data,

which could have introduced errors and bias. The same author in-

vested 5-10 minutes for each article to collect the aforementioned

information, and may have missed details about the artifacts.

7 SUMMARY AND PERSPECTIVES
Summary. Awarding reproducibility badges to authors for their

reproducibility efforts is an effective practice to encourage sharing

of work and improving its quality. However, the notion of "repro-

ducibility" considered by the badges is limited and does not cover

important aspects of the reproducibility crisis. In this work, we

surveyed 296 articles from five leading conferences in parallel and

distributed systems (CCGrid, EuroSys, OSDI, PPoPP, SC) of 2023.

For each article, we collected information on its artifact and the

badges awarded. We conclude that the state of practice does not

address the reproducibility problems in terms of longevity of the

artifacts. Thus, we proposed a new badge to reward artifacts that

will withstand the test of time. We associate with this new badge

a framework for grading and awarding the badge when artifacts

meet certain thresholds.

Perspectives. This work has the potential to trigger a series of lon-
gitudinal artifact reproducibility studies along different dimensions,

such as workflow managers. Collecting data manually is slow and

error-prone. Describing the metadata of the artifacts in a standard-

ized format (similar to the Software Bill of Materials (SBOM) [79,

86]) would greatly improve the provenance of the artifacts. Such

metadata would also allow automatic downloading and processing

of artifacts, enabling artifact reproducibility studies at very large

scales. Currently, each artifact longevity criterion has equal weight

in the overall longevity score. A community discussion is needed

to identify the adequate weight to attribute to each criterion.

ACKNOWLEDGMENTS
This research was funded, in whole or in part, by the European

Union’s Horizon 2020 research and innovation programme under

grant agreement No. 957407 as DAPHNE. The authors have applied

a CC-BY public copyright license to the present document and will

be applied to all subsequent versions up to the Author Accepted

Manuscript arising from this submission, in accordance with the

grant’s open access conditions.

10



Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

REFERENCES
[1] ACM. Artefact review badging. https://www.acm.org/p

ublications / policies / artifact - review - badging. Accessed:

2023-04-04.

[2] P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid,

A. Legrand, and N. Rougier. Attributing and referencing

(research) software: best practices and outlook from inria.

Computing in Science & Engineering, 22(1):39–52, 2019.
[3] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton,

M.Heuer, A. Kartashov, D. Leehr, H.Ménager,M. Nedeljkovich,

et al. Common workflow language, v1. 0, 2016.

[4] M. Baker. 1,500 scientists lift the lid on reproducibility. Na-
ture, 533(7604):452–454, May 2016. issn: 0028-0836, 1476-

4687. doi: 10.1038/533452a. url: http://www.nature.com/doi

finder/10.1038/533452a (visited on 05/03/2019).

[5] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E.

Jeannot, E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L.

Nussbaum, O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L.

Sarzyniec. Adding virtualization capabilities to the Grid’5000

testbed. In I. I. Ivanov, M. van Sinderen, F. Leymann, and

T. Shan, editors, Cloud Computing and Services Science. Vol-
ume 367, Communications in Computer and Information

Science, pages 3–20. Springer International Publishing, 2013.

isbn: 978-3-319-04518-4. doi: 10.1007/978-3-319-04519-1\_1.

[6] L. A. Barba. Terminologies for reproducible research. arXiv
preprint arXiv:1802.03311, 2018.

[7] M. Beller. Why i will never join an artifacts evaluation com-

mittee again. Inventitech. com. https://inventitech. com/blog/why-
i-will-never-review-artifacts-again/(Accessed: Feb. 9, 2022), 2020.

[8] BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML. Interna-

tional vocabulary of metrology – basic and general concepts

and associated terms (vim) 3rd edition. url: %5Curl%7Bhttp

s://www.bipm.org/documents/20126/2071204/JCGM_200

_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1%7D.

[9] blinry. Building 15-year-old software with nix. https://blinr

y.org/nix-time-travel/. Accessed: 2023-04-16.

[10] G. R. Brammer, R.W. Crosby, S. J. Matthews, and T. L.Williams.

Paper mâché: creating dynamic reproducible science. Proce-
dia Computer Science, 4:658–667, 2011.

[11] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B. Jones,

K. Kowalik, S. Kulasekaran, B. Ludäscher, B. D. Mecum, J.

Nabrzyski, et al. Computing environments for reproducibil-

ity: capturing the “whole tale”. Future Generation Computer
Systems, 94:854–867, 2019.

[12] W. z. Castell, D. Dransch, G. Juckeland, M. Meistring, B.

Fritzsch, R. Gey, B. Höpfner,M. Köhler, C.Meeßen, H.Mehrtens,

et al. Towards a quality indicator for research data publica-

tions and research software publications–a vision from the

helmholtz association. arXiv preprint arXiv:2401.08804, 2024.
[13] [Software] cea-hpc, 2024. url: https://github.com/cea-hpc

/modules, swhid: ⟨swh:1:dir:a83ee4b9f7d1a2f6377326dd16a
c839450a6e6fc;origin=https://github.com/cea-hpc/modules

;⟩.
[14] C. Cloud. The cc-snapshot utility. https://chameleoncloud.re

adthedocs.io/en/latest/technical/images.html#the-cc-snaps

hot-utility. Accessed: 2023-04-03.

[15] C. Collberg, T. Proebsting, and A. M. Warren. Repeatability

and Benefaction in Computer Systems Research - A Study

and a Modest Proposal. en:68, 2015.

[16] M. Colom, B. Kerautret, N. Limare, P. Monasse, and J.-M.

Morel. Ipol: a new journal for fully reproducible research;

analysis of four years development. In 2015 7th Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), pages 1–5. IEEE, 2015.

[17] CORE. International core conference rankings: icore. url:

https://www.core.edu.au/icore-portal.

[18] L. Courtès. Connecting reproducible deployment to a long-

term source code archive, march 2019. url: https://guix.gnu

.org/en/blog/2019/connecting-reproducible-deployment-to

-a-long-term-source-code-archive/.

[19] L. Courtès. Functional Package Management with Guix. en.

arXiv:1305.4584 [cs], May 2013. url: http://arxiv.org/abs/130

5.4584 (visited on 06/13/2020).

[20] R. F. da Silva, R. M. Badia, V. Bala, D. Bard, P.-T. Bremer, I.

Buckley, S. Caino-Lores, K. Chard, C. Goble, S. Jha, D. S. Katz,

D. Laney, M. Parashar, F. Suter, N. Tyler, T. Uram, I. Altintas,

S. Andersson, W. Arndt, J. Aznar, J. Bader, B. Balis, C. Blan-

ton, K. R. Braghetto, A. Brodutch, P. Brunk, H. Casanova,

A. C. Lierta, J. Chigu, T. Coleman, N. Collier, I. Colonnelli, F.

Coppens, M. Crusoe, W. Cunningham, B. de Paula Kinoshita,

P. D. Tommaso, C. Doutriaux, M. Downton, W. Elwasif, B.

Enders, C. Erdmann, T. Fahringer, L. Figueiredo, R. Filgueira,

M. Foltin, A. Fouilloux, L. Gadelha, A. Gallo, A. G. Saez, D.

Garijo, R. Gerlach, R. Grant, S. Grayson, P. Grubel, J. Gustafs-

son, V. Hayot-Sasson, O. Hernandez, M. Hilbrich, A. Justine,

I. Laflotte, F. Lehmann, A. Luckow, J. Luettgau, K. Mahesh-

wari, M. Matsuda, D. Medic, P. Mendygral, M. Michalewicz,

J. Nonaka, M. Pawlik, L. Pottier, L. Pouchard, M. Putz, S. K.

Radha, L. Ramakrishnan, S. Ristov, P. Romano, D. Rosendo, M.

Ruefenacht, K. Rycerz, N. Saurabh, V. Savchenko, M. Schulz,

C. Simpson, R. Sirvent, T. Skluzacek, S. Soiland-Reyes, R.

Souza, S. R. Sukumar, Z. Sun, A. Sussman, D. Thain, M. Titov,

B. Tovar, A. Tripathy, M. Turilli, B. Tuznik, H. van Dam, A.

Vivas, L. Ward, P. Widener, S. Wilkinson, J. Zawalska, and M.

Zulfiqar. Workflows Community Summit 2022: A Roadmap

Revolution, Mar. 2023. doi: 10.5281/zenodo.7750670. url:

https://doi.org/10.5281/zenodo.7750670.

[21] Debian. Snapshot. http://snapshot.debian.org/. Accessed:

2024-02-09.

[22] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.

Maechling, R. Mayani, W. Chen, R. F. Da Silva, M. Livny,

et al. Pegasus, a workflow management system for science

automation. Future Generation Computer Systems, 46:17–35,
2015.

[23] H. P. de León. Creating successful artifacts. https://herna

nponcedeleon.github.io/articles/artifacts.html. Accessed:

2024-02-08.

[24] R. Di Cosmo and S. Zacchiroli. Software Heritage: Why and

How to Preserve Software Source Code. In iPRES 2017 - 14th
International Conference on Digital Preservation, pages 1–10,
Kyoto, Japan, Sept. 2017. url: https://hal.archives-ouvertes.f

r/hal-01590958.

11

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1038/533452a
http://www.nature.com/doifinder/10.1038/533452a
http://www.nature.com/doifinder/10.1038/533452a
https://doi.org/10.1007/978-3-319-04519-1\_1
%5Curl%7Bhttps://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1%7D
%5Curl%7Bhttps://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1%7D
%5Curl%7Bhttps://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1%7D
https://blinry.org/nix-time-travel/
https://blinry.org/nix-time-travel/
https://github.com/cea-hpc/modules
https://github.com/cea-hpc/modules
http://archive.softwareheritage.org/swh:1:dir:a83ee4b9f7d1a2f6377326dd16ac839450a6e6fc;origin=https://github.com/cea-hpc/modules;
http://archive.softwareheritage.org/swh:1:dir:a83ee4b9f7d1a2f6377326dd16ac839450a6e6fc;origin=https://github.com/cea-hpc/modules;
http://archive.softwareheritage.org/swh:1:dir:a83ee4b9f7d1a2f6377326dd16ac839450a6e6fc;origin=https://github.com/cea-hpc/modules;
https://chameleoncloud.readthedocs.io/en/latest/technical/images.html#the-cc-snapshot-utility
https://chameleoncloud.readthedocs.io/en/latest/technical/images.html#the-cc-snapshot-utility
https://chameleoncloud.readthedocs.io/en/latest/technical/images.html#the-cc-snapshot-utility
https://www.core.edu.au/icore-portal
https://guix.gnu.org/en/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://guix.gnu.org/en/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://guix.gnu.org/en/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
http://arxiv.org/abs/1305.4584
http://arxiv.org/abs/1305.4584
https://doi.org/10.5281/zenodo.7750670
https://doi.org/10.5281/zenodo.7750670
http://snapshot.debian.org/
https://hernanponcedeleon.github.io/articles/artifacts.html
https://hernanponcedeleon.github.io/articles/artifacts.html
https://hal.archives-ouvertes.fr/hal-01590958
https://hal.archives-ouvertes.fr/hal-01590958


ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

[25] R. Di Cosmo and S. Zacchiroli. Software heritage: why and

how to preserve software source code. In iPRES 2017-14th
International Conference on Digital Preservation, pages 1–10,
2017.

[26] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E.

Palumbo, and C. Notredame. Nextflow enables reproducible

computational workflows. Nature biotechnology, 35(4):316–
319, 2017.

[27] Docker. Optimizing builds with cache management. https:

//docs.docker.com/build/cache/. Accessed: 2023-06-20.

[28] E. Dolstra, M. de Jonge, and E. Visser. Nix: A Safe and Policy-

Free System for Software Deployment. en:14, 2004.

[29] E. Dolstra and A. Löh. Nixos: a purely functional linux distri-

bution. SIGPLAN Not., 43(9):367–378, Sept. 2008. issn: 0362-
1340. doi: 10.1145/1411203.1411255. url: https://doi.org/10.1

145/1411203.1411255.

[30] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K.Webb, A. Akella, K.Wang,

G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S.

Kar, and P. Mishra. The design and operation of CloudLab.

In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1–14, July 2019. url: https://www.flux.utah.ed

u/paper/duplyakin-atc19.

[31] D. G. Feitelson. From Repeatability to Reproducibility and

Corroboration. en. ACM SIGOPS Operating Systems Review,
49(1):3–11, Jan. 2015. issn: 0163-5980. doi: 10.1145/2723872.2

723875. url: https://dl.acm.org/doi/10.1145/2723872.2723875

(visited on 05/21/2020).

[32] figshare. Figshare. https://figshare.com/. Accessed: 2024-01-

23.

[33] E. Frachtenberg. Research artifacts and citations in computer

systems papers. PeerJ Computer Science, 8:e887, 2022.
[34] J. L. Furlani. Modules: providing a flexible user environment.

In Proceedings of the fifth large installation systems adminis-
tration conference (LISA V), pages 141–152, 1991.

[35] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody,

B. R. de Supinski, and S. Futral. The Spack package manager:

bringing order to HPC software chaos. en. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, Austin Texas.

ACM, Nov. 2015. isbn: 978-1-4503-3723-6. doi: 10.1145/2807

591.2807623. url: https://dl.acm.org/doi/10.1145/2807591.28

07623 (visited on 11/22/2021).

[36] Github. Issuing a persistent identifier for your repository

with zenodo. https://docs.github.com/en/repositories/archi

ving-a-github-repository/referencing-and-citing-content.

Accessed: 2024-01-24.

[37] Globus. Globus website. https://globus.org/. Accessed: 2024-

01-28.

[38] Google. Bidding farewell to google code. https://opensour

ce.googleblog.com/2015/03/farewell-to-google-code.html.

Accessed: 2024-02-05.

[39] [Software] Gricad, Nix Ciment Channel 2023. url: https://g

ithub.com/Gricad/nix-ciment-channel, swhid: ⟨swh:1:dir:
dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https:

//github.com/Gricad/nix-ciment-channel⟩.

[40] Grid’5000. Creating an environment images using tgz-g5k.

https://grid5000.fr/w/Environment_creation#Creating_an

_environment_images_using_tgz-g5k. Accessed: 2023-04-03.

[41] Q. Guilloteau, J. Bleuzen, M. Poquet, and O. Richard. Pain-

less transposition of reproducible distributed environments

with nixos compose. In 2022 IEEE International Conference
on Cluster Computing (CLUSTER), pages 1–12. IEEE, 2022.

[42] Q. Guilloteau, F. M. Ciorba, M. Poquet, D. Goepp, and O.

Richard. Dataset for the Paper "Longevity of Artifacts in

Leading Parallel and Distributed Systems Conferences: a

Review of the State of the Practice in 2023". Zenodo, Feb.

2024. doi: 10.5281/zenodo.10650804. url: https://doi.org/10

.5281/zenodo.10650804.

[43] [Software] GuilloteauQ, 2024. url: https://github.com/Guill

oteauQ/artefact-lifetime, swhid: ⟨swh:1:dir:3904795a4932
7b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com

/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9f

efcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d1

9abb5da12fd6df708bc13e444d834c85dfa⟩.
[44] [Software] Guix-HPC, Guix-HPC 2023. url: https://gitlab.i

nria.fr/guix-hpc/guix-hpc, swhid: ⟨swh:1:dir:aabd69b98944
4999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.f

r/guix-hpc/guix-hpc⟩.
[45] S. Heritage. Software heritage. https://www.softwareherita

ge.org/. Accessed: 2023-03-30.

[46] B. Hermann. What has artifact evaluation ever done for us?

IEEE Security & Privacy, 20(5):96–99, 2022.
[47] B. Hermann, S. Winter, and J. Siegmund. Community ex-

pectations for research artifacts and evaluation processes.

In Proceedings of the 28th ACM joint meeting on european
software engineering conference and symposium on the foun-
dations of software engineering, pages 469–480, 2020.

[48] R. Heumüller, S. Nielebock, J. Krüger, and F. Ortmeier. Pub-

lish or perish, but do not forget your software artifacts. Em-
pirical Software Engineering, 25(6):4585–4616, 2020.

[49] https : / / artifact - eval . org. Guidelines for packaging aec

submissions. https : / / artifact - eval . org / guidelines . html.

Accessed: 2024-02-08.

[50] S. Hunold. A survey on reproducibility in parallel computing.

arXiv preprint arXiv:1511.04217, 2015.
[51] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mam-

bretti, A. Barnes, F. Halbach, A. Rocha, and J. Stubbs. Lessons

learned from the chameleon testbed. In Proceedings of the
2020 USENIX Annual Technical Conference (USENIX ATC ’20).
USENIX Association, July 2020.

[52] M. C. Kidwell, L. B. Lazarević, E. Baranski, T. E. Hardwicke,

S. Piechowski, L.-S. Falkenberg, C. Kennett, A. Slowik, C.

Sonnleitner, C. Hess-Holden, et al. Badges to acknowledge

open practices: a simple, low-cost, effective method for in-

creasing transparency. PLoS biology, 14(5):e1002456, 2016.
[53] J. Köster and S. Rahmann. Snakemake—a scalable bioinfor-

matics workflow engine. Bioinformatics, 28(19):2520–2522,
2012.

[54] D. Méndez Fernández, W. Böhm, A. Vogelsang, J. Mund, M.

Broy, M. Kuhrmann, and T. Weyer. Artefacts in software

12

https://docs.docker.com/build/cache/
https://docs.docker.com/build/cache/
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/2723872.2723875
https://doi.org/10.1145/2723872.2723875
https://dl.acm.org/doi/10.1145/2723872.2723875
https://figshare.com/
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://dl.acm.org/doi/10.1145/2807591.2807623
https://dl.acm.org/doi/10.1145/2807591.2807623
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://globus.org/
https://opensource.googleblog.com/2015/03/farewell-to-google-code.html
https://opensource.googleblog.com/2015/03/farewell-to-google-code.html
https://github.com/Gricad/nix-ciment-channel
https://github.com/Gricad/nix-ciment-channel
http://archive.softwareheritage.org/swh:1:dir:dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel
http://archive.softwareheritage.org/swh:1:dir:dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel
http://archive.softwareheritage.org/swh:1:dir:dec8c22b23ba51650f65352fa2fc2640f1532bea;origin=https://github.com/Gricad/nix-ciment-channel
https://grid5000.fr/w/Environment_creation#Creating_an_environment_images_using_tgz-g5k
https://grid5000.fr/w/Environment_creation#Creating_an_environment_images_using_tgz-g5k
https://doi.org/10.5281/zenodo.10650804
https://doi.org/10.5281/zenodo.10650804
https://doi.org/10.5281/zenodo.10650804
https://github.com/GuilloteauQ/artefact-lifetime
https://github.com/GuilloteauQ/artefact-lifetime
http://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
http://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
http://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
http://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
http://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
https://gitlab.inria.fr/guix-hpc/guix-hpc
https://gitlab.inria.fr/guix-hpc/guix-hpc
http://archive.softwareheritage.org/swh:1:dir:aabd69b989444999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc
http://archive.softwareheritage.org/swh:1:dir:aabd69b989444999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc
http://archive.softwareheritage.org/swh:1:dir:aabd69b989444999630729faf0184f4d68ff13fa;origin=https://gitlab.inria.fr/guix-hpc/guix-hpc
https://www.softwareheritage.org/
https://www.softwareheritage.org/
https://artifact-eval.org
https://artifact-eval.org/guidelines.html


Longevity of Artifacts in Leading Parallel and Distributed Systems Conferences: a Review of the State of the Practice in 2023 ACM REP’24, June 18-20, 2024, Rennes, France

engineering: a fundamental positioning. Software & Systems
Modeling, 18:2777–2786, 2019.

[55] M. Mercier, A. Faure, and O. Richard. Considering the devel-

opment workflow to achieve reproducibility with variation.

In SC 2018-Workshop: ResCuE-HPC, pages 1–5, 2018.
[56] T. Moreau, M. Massias, A. Gramfort, P. Ablin, P.-A. Bannier,

B. Charlier, M. Dagréou, T. Dupre la Tour, G. Durif, C. F. Dan-

tas, et al. Benchopt: reproducible, efficient and collaborative

optimization benchmarks. Advances in Neural Information
Processing Systems, 35:25404–25421, 2022.

[57] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.

Producing wrong data without doing anything obviously

wrong! ACM Sigplan Notices, 44(3):265–276, 2009.
[58] I. Newton. Letter from sir isaac newton to robert hooke.

[59] NixOS. Nixpkgs. https : / /github.com/nixos/nixpkgs. Ac-

cessed: 2023-04-04.

[60] L. Nussbaum. Testbeds support for reproducible research.

In Proceedings of the reproducibility workshop, pages 24–26,
2017.

[61] Nvidia. Container support policy. https://archive.softwareh

eritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291

de6c5e0;origin=https://gitlab.com/nvidia/container-image

s/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc

0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899d

f0e0f8ca5a410f0f;path=/doc/support-policy.md. Accessed:

2024-01-24.

[62] [Software] OAR-Team, NUR-Kapack 2023. url: https://gith

ub.com/oar-team/nur-kapack, swhid: ⟨swh:1:dir:1a6970dbc
e78a86062648a7c76978f674f136607;origin=https://github.c

om/oar-team/nur-kapack⟩.
[63] R. Padhye. Artifact evaluation: tips for authors. https://b

log.padhye.org/Artifact- Evaluation-Tips- for-Authors/.

Accessed: 2024-02-08.

[64] C. Pérignon, K. Gadouche, C. Hurlin, R. Silberman, and E.

Debonnel. Certify reproducibility with confidential data. Sci-
ence, 365(6449):127–128, 2019.

[65] H. E. Plesser. Reproducibility vs. replicability: a brief his-

tory of a confused terminology. Frontiers in neuroinformatics,
11:76, 2018.

[66] D. Randall and C. Welser. The Irreproducibility Crisis of Mod-
ern Science. Causes, Consequences, and the Road to Reform.

en. National Association of Scholars, New York, 2018. url:

https://www.nas.org/reports/the-irreproducibility-crisis-o

f-modern-science.

[67] Repology. Repology. https://repology.org/. Accessed: 2024-

02-09.

[68] D. Rosendo, K. Keahey, A. Costan, M. Simonin, P. Valduriez,

and G. Antoniu. Kheops: cost-effective repeatability, repro-

ducibility, and replicability of edge-to-cloud experiments. In

Proceedings of the 2023 ACM Conference on Reproducibility
and Replicability, pages 62–73, 2023.

[69] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Anto-

niu. E2Clab: Exploring the Computing Continuum through

Repeatable, Replicable and Reproducible Edge-to-Cloud Ex-

periments. In Cluster 2020 - IEEE International Conference on
Cluster Computing, pages 1–11, Kobe, Japan, Sept. 2020. doi:

10.1109/CLUSTER49012.2020.00028. url: https://hal.science

/hal-02916032.

[70] N. P. Rougier and K. Hinsen. Rescience c: a journal for re-

producible replications in computational science. In Repro-
ducible Research in Pattern Recognition: Second International
Workshop, RRPR 2018, Beijing, China, August 20, 2018, Revised
Selected Papers 2, pages 150–156. Springer, 2019.

[71] A. Rowhani-Farid, M. Allen, and A. G. Barnett. What incen-

tives increase data sharing in health and medical research? a

systematic review. Research integrity and peer review, 2(1):1–
10, 2017.

[72] C. Ruiz, S. Harrache, M. Mercier, and O. Richard. Recon-

structable Software Appliances with Kameleon. en. ACM
SIGOPS Operating Systems Review, 49(1):80–89, Jan. 2015.
issn: 0163-5980. doi: 10.1145/2723872.2723883. url: http

s://dl.acm.org/doi/10.1145/2723872.2723883 (visited on

06/12/2020).

[73] S. Sharma, A. Hussain, and H. Saran. Towards repeatabil-

ity & verifiability in networking experiments: a stochastic

framework. Journal of Network and Computer Applications,
81:12–23, 2017.

[74] A. Silver. Software simplified. Nature, 546(7656):173–174,
2017.

[75] A. M. Smith, K. E. Niemeyer, D. S. Katz, L. A. Barba, G.

Githinji, M. Gymrek, K. D. Huff, C. R. Madan, A. C. Mayes,

K. M. Moerman, et al. Journal of open source software (joss):

design and first-year review. PeerJ Computer Science, 4:e147,
2018.

[76] V. Stodden and M. S. Krafczyk. Assessing reproducibility:

an astrophysical example of computational uncertainty in

the hpc context. In Proceedings of the 1st Workshop on Repro-
ducible, Customizable and Portable Workflows for HPC at SC,
volume 18, 2018.

[77] F. Strozzi, R. Janssen, R. Wurmus, M. R. Crusoe, G. Githinji, P.

Di Tommaso, D. Belhachemi, S. Möller, G. Smant, J. de Ligt,

et al. Scalable workflows and reproducible data analysis for

genomics. Evolutionary Genomics: Statistical and Computa-
tional Methods:723–745, 2019.

[78] [Software] tdurieux, 2024. url: https://github.com/tdurieux

/anonymous_github, swhid: ⟨swh:1:dir:9239038ce7c56d17b
6b3ee3acd6d5ef86da038c1;origin=https://github.com/tduri

eux/anonymous_github⟩.
[79] N. Telecommunications and I. Administration. Software bill

of materials. https://www.ntia.gov/page/software-bill-mate

rials. Accessed: 2024-02-05.

[80] TPDS. Reproducibility initiative. url: https://www.compute

r.org/csdl/journal/td/write-for-us/104303.

[81] Tweag.io. What problems do flakes solve? https://www.twe

ag.io/blog/2020-05-25-flakes/. Accessed: 2023-04-04.

[82] UNESCO. Understanding open science. doi: 10.54677/UTCD

9302.

[83] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong,

A. Novak, J. Pfeil, J. Narkizian, A. D. Deran, A. Musselman-

Brown, et al. Toil enables reproducible, open source, big

biomedical data analyses. Nature biotechnology, 35(4):314–
316, 2017.

13

https://github.com/nixos/nixpkgs
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://archive.softwareheritage.org/swh:1:cnt:167b243e20f4f7e38efcd1c9d1696f291de6c5e0;origin=https://gitlab.com/nvidia/container-images/cuda;visit=swh:1:snp:62fbbe6c6441981445c19b0632f4bc0c69736d12;anchor=swh:1:rev:e3ff10eab3a1424fe394899df0e0f8ca5a410f0f;path=/doc/support-policy.md
https://github.com/oar-team/nur-kapack
https://github.com/oar-team/nur-kapack
http://archive.softwareheritage.org/swh:1:dir:1a6970dbce78a86062648a7c76978f674f136607;origin=https://github.com/oar-team/nur-kapack
http://archive.softwareheritage.org/swh:1:dir:1a6970dbce78a86062648a7c76978f674f136607;origin=https://github.com/oar-team/nur-kapack
http://archive.softwareheritage.org/swh:1:dir:1a6970dbce78a86062648a7c76978f674f136607;origin=https://github.com/oar-team/nur-kapack
https://blog.padhye.org/Artifact-Evaluation-Tips-for-Authors/
https://blog.padhye.org/Artifact-Evaluation-Tips-for-Authors/
https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://repology.org/
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://hal.science/hal-02916032
https://hal.science/hal-02916032
https://doi.org/10.1145/2723872.2723883
https://dl.acm.org/doi/10.1145/2723872.2723883
https://dl.acm.org/doi/10.1145/2723872.2723883
https://github.com/tdurieux/anonymous_github
https://github.com/tdurieux/anonymous_github
http://archive.softwareheritage.org/swh:1:dir:9239038ce7c56d17b6b3ee3acd6d5ef86da038c1;origin=https://github.com/tdurieux/anonymous_github
http://archive.softwareheritage.org/swh:1:dir:9239038ce7c56d17b6b3ee3acd6d5ef86da038c1;origin=https://github.com/tdurieux/anonymous_github
http://archive.softwareheritage.org/swh:1:dir:9239038ce7c56d17b6b3ee3acd6d5ef86da038c1;origin=https://github.com/tdurieux/anonymous_github
https://www.ntia.gov/page/software-bill-materials
https://www.ntia.gov/page/software-bill-materials
https://www.computer.org/csdl/journal/td/write-for-us/104303
https://www.computer.org/csdl/journal/td/write-for-us/104303
https://www.tweag.io/blog/2020-05-25-flakes/
https://www.tweag.io/blog/2020-05-25-flakes/
https://doi.org/10.54677/UTCD9302
https://doi.org/10.54677/UTCD9302


ACM REP’24, June 18-20, 2024, Rennes, France Quentin Guilloteau, Florina M. Ciorba, Millian Poquet, Dorian Goepp, and Olivier Richard

[84] S. Winter, C. S. Timperley, B. Hermann, J. Cito, J. Bell, M.

Hilton, and D. Beyer. A retrospective study of one decade

of artifact evaluations. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 145–156,
2022.

[85] L. Wratten, A. Wilm, and J. Göke. Reproducible, scalable, and

shareable analysis pipelines with bioinformatics workflow

managers. Nature methods, 18(10):1161–1168, 2021.
[86] B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu. An empirical study

on software bill of materials: where we stand and the road

ahead. arXiv preprint arXiv:2301.05362, 2023.
[87] zenodo. Zenodo. https://zenodo.org/. Accessed: 2023-03-30.

A ARTIFACT DESCRIPTION
We recommend that the reader refers to the README of the reposi-
tory.

A.1 Repository
The snapshot of the repository containing the sources for the anal-

ysis scripts, the forms for each of the papers surveyed, and the

sources for the paper is available on Software-Heritage [43]:

URL: https://archive.softwareheritage.org/swh:1:dir:3904

795a49327b1e9b7ef1a8af f995b1f94ae6fb;origin=https://gith

ub.com/GuilloteauQ/artef act- lifetime;visit=swh:1:snp:9adc

667f9f ef cb6783df076520ef357231030ad4;anchor=swh:1:rev:

ad4d19abb5da12fd6df708bc13e444d834c85dfa

Software-Heritage metadata:

swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;
origin=https://github.com/GuilloteauQ/artefact-lifetime;
visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;
anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa

A.2 Dataset
The data set used in this article is available on Zenodo under DOI

10.5281/zenodo.10650804 [42].

A.3 Software dependencies
This artifact uses Nix to set up the software environment. We make

use of the Flake feature of Nix, which was introduced in Nix 2.4.

A.4 Hardware dependencies
The only hardware requirement is a machine with an Internet

connection and that is able to download Nix (Linux, MacOS). The

reader might need to have root privileges on the machine for the

installation process.

A.5 Estimated time to reproduce
Most of the time will be spent installing the dependencies. We

estimate that the entire workflow will be completed in less than 30

minutes.

Received 12 February 2024; revised 12 March 2009; accepted 5 June 2009

14

https://zenodo.org/
https://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
https://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
https://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
https://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa
https://archive.softwareheritage.org/swh:1:dir:3904795a49327b1e9b7ef1a8aff995b1f94ae6fb;origin=https://github.com/GuilloteauQ/artefact-lifetime;visit=swh:1:snp:9adc667f9fefcb6783df076520ef357231030ad4;anchor=swh:1:rev:ad4d19abb5da12fd6df708bc13e444d834c85dfa

	Abstract
	1 Introduction
	2 Background and related work
	3 Methodology for evaluating artifact sharing
	4 Results
	4.1 Artifact badges and availability
	4.2 Source code availability
	4.3 Experimental platforms
	4.4 Software environment
	4.5 Workflow managers

	5 Artifact longevity badge proposal
	6 Discussion
	7 Summary and perspectives
	A Artifact description
	A.1 Repository
	A.2 Dataset
	A.3 Software dependencies
	A.4 Hardware dependencies
	A.5 Estimated time to reproduce


