
HAL Id: hal-04562617
https://hal.science/hal-04562617

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ISA API: An open platform for interoperable life science
experimental metadata

David Johnson, Dominique Batista, Keeva Cochrane, Robert Davey, Anthony
Etuk, Alejandra Gonzalez-Beltran, Kenneth Haug, Massimiliano Izzo, Martin

Larralde, Thomas Lawson, et al.

To cite this version:
David Johnson, Dominique Batista, Keeva Cochrane, Robert Davey, Anthony Etuk, et al.. ISA API:
An open platform for interoperable life science experimental metadata. GigaScience, 2021, 10 (9),
�10.1093/gigascience/giab060�. �hal-04562617�

https://hal.science/hal-04562617
https://hal.archives-ouvertes.fr


GigaScience, 10, 2021, 1–13

https://doi.org/10.1093/gigascience/giab060
Technical Note

TE CHNICAL NO TE

ISA API: An open platform for interoperable life
science experimental metadata
David Johnson 1,2,†, Dominique Batista 1, Keeva Cochrane 3, Robert
P. Davey 4, Anthony Etuk 4, Alejandra Gonzalez-Beltran 1,5,
Kenneth Haug 3,6, Massimiliano Izzo 1, Martin Larralde 7, Thomas
N. Lawson 8, Alice Minotto 4, Pablo Moreno 3, Venkata
Chandrasekhar Nainala 3, Claire O’Donovan 3, Luca Pireddu 9,
Pierrick Roger 10, Felix Shaw 4, Christoph Steinbeck 11, Ralf J.
M. Weber 8,12, Susanna-Assunta Sansone 1,*,† and
Philippe Rocca-Serra 1,*

1Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford,
OX1 3QG, UK; 2Department of Informatics and Media, Uppsala University, Box 513, 75120 Uppsala, Sweden;
3European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome
Campus, Hinxton, Cambridge, CB10 1SD, UK; 4Earlham Institute, Data infrastructure and algorithms, Norwich
Research Park, Norwich NR4 7UZ, UK; 5Science and Technology Facilities Council, Scientific Computing
Department, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK; 6Genome Research
Limited, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, CB10 1RQ,
UK; 7Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL),
Meyerhofstraße 1, 69117 Heidelberg, Germany; 8School of Biosciences, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK; 9Distributed Computing Group, CRS4: Center for Advanced Studies, Research &
Development in Sardinia, Pula 09050, Italy; 10CEA, LIST, Laboratory for Data Analysis and Systems’
Intelligence, MetaboHUB, Gif-Sur-Yvette F-91191, France; 11Cheminformatics and Computational
Metabolomics, Institute for Analytical Chemistry, Lessingstr. 8, 07743 Jena, Germany and 12Phenome Centre
Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

∗Correspondence address. Susanna-Assunta Sansone, Oxford e-Research Centre, Department of Engineering Science, University of Oxford, 7 Keble Road,
Oxford, OX1 3QG, UK. E-mail: susanna-assunta.sansone@oerc.ox.ac.uk http://orcid.org/0000-0001-5306-5690; Philippe Rocca-Serra, Oxford e-Research
Centre, Department of Engineering Science, University of Oxford, 7 Keble Road, Oxford, OX1 3QG, UK. E-mail:
philippe.rocca-serra@oerc.ox.ac.uk http://orcid.org/0000-0001-9853-5668
†Contributed equally.

Received: 13 November 2020; Revised: 19 March 2021; Accepted: 23 August 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024

http://www.oxfordjournals.org
http://orcid.org/0000-0002-2323-6847
http://orcid.org/0000-0002-9563-4991
http://orcid.org/0000-0001-7961-0474
http://orcid.org/0000-0002-5589-7754
http://orcid.org/0000-0001-8320-660X
http://orcid.org/0000-0003-3499-8262
http://orcid.org/0000-0003-3168-4145
http://orcid.org/0000-0002-8100-6142
http://orcid.org/0000-0002-3947-4444
http://orcid.org/0000-0002-5915-7980
http://orcid.org/0000-0002-1670-1675
http://orcid.org/0000-0002-9856-1679
http://orcid.org/0000-0002-2564-3243
http://orcid.org/0000-0001-8051-7429
http://orcid.org/0000-0002-4663-5613
http://orcid.org/0000-0001-8177-4873
http://orcid.org/[0000-0001-9649-5906
http://orcid.org/0000-0001-6966-0814
http://orcid.org/0000-0002-8796-4771
http://orcid.org/0000-0001-5306-5690
http://orcid.org/0000-0001-9853-5668
mailto:susanna-assunta.sansone@oerc.ox.ac.uk
http://orcid.org/0000-0001-5306-5690
http://orcid.org/0000-0001-5306-5690
mailto:philippe.rocca-serra@oerc.ox.ac.uk
http://orcid.org/0000-0001-9853-5668
http://orcid.org/0000-0001-9853-5668
https://creativecommons.org/licenses/by/4.0/


2 ISA API: An open platform for experimental metadata

Abstract

Background: The Investigation/Study/Assay (ISA) Metadata Framework is an established and widely used set of open source
community specifications and software tools for enabling discovery, exchange, and publication of metadata from
experiments in the life sciences. The original ISA software suite provided a set of user-facing Java tools for creating and
manipulating the information structured in ISA-Tab—a now widely used tabular format. To make the ISA framework more
accessible to machines and enable programmatic manipulation of experiment metadata, the JSON serialization ISA-JSON
was developed. Results: In this work, we present the ISA API, a Python library for the creation, editing, parsing, and
validating of ISA-Tab and ISA-JSON formats by using a common data model engineered as Python object classes. We
describe the ISA API feature set, early adopters, and its growing user community. Conclusions: The ISA API provides users
with rich programmatic metadata-handling functionality to support automation, a common interface, and an interoperable
medium between the 2 ISA formats, as well as with other life science data formats required for depositing data in public
databases.

Keywords: metadata; standards; reproducibility; open-source software; life science; API

Findings
Background

There are many data models and frameworks for describing en-
tities and artefacts of scientific research. The life sciences have
pioneered the development and application of ontologies, data
standards, and minimum annotation checklists for reporting re-
search results. More than ever, the importance of making scien-
tific data FAIR (Findable, Accessible, Interoperable, and Reusable)
is at the forefront of discourse in the research community [1].
The ISA Metadata Framework, or simply ISA—so named after
its constituent key concepts: “Investigation” (the project con-
text), “Study” (a unit of research), and “Assay” (analytical mea-
surement), was born out of initial efforts to create an “exchange
network test bed” for a diverse set of digital resources in ‘omics
studies. These included public and proprietary databases, as
well as free and open source software tools and commercially
developed systems. ISA specifies a data model and standard se-
rialization formats for describing experiments in the life sci-
ences.

At the heart of the ISA is a general-purpose data model; an
extensible, hierarchically structured model that enables the rep-
resentation of studies using 1 or a combination of technologies,
focusing on the description of their experimental metadata (i.e.,
sample characteristics, technology and measurement types, and
sample-to-data relationships).

ISA was originally conceptualized and specified as the ISA-
Tab format [2, 3] for describing life science experiments. Refine-
ments to the underlying data model were later captured in a new
JSON-based serialization format, ISA-JSON [4, 5], that is speci-
fied using JSON schemas [6]. A data model was then abstracted
from both the tabular and JSON formats to formalize the core
concepts and their relationships to one another. The ISA data
model is formed around 3 core concepts: Investigations, Stud-
ies, and Assays (Fig. 1).

Assays refer to specific tests performed on sample material
taken from a subject, or performed on a whole subject, that pro-
duce some kind of qualitative or quantitative measurements,
which correspond to response variables. Assay metadata de-
scribe sample-to-data relationships, grouped by analytical mea-
surement types (e.g., metabolite profiling, DNA profiling) and
technologies (e.g., mass spectrometry or nuclear magnetic reso-
nance if the measurement type is metabolite profiling).

Study objects hold metadata about the subject(s) under
study, including properties about the individual subject(s), any
treatments (biological or statistical) applied, and the provenance

of sample material back to the original source. Experimental fac-
tors relating to the subjects and samples are stored here, allow-
ing the definition of specific study groups in relation to the study
independent variables.

Investigations contain all the information needed to under-
stand the overall goals and means used in an experiment and
are used as high-level objects to group multiple related Study
objects. For each Investigation, there may be 1 or more Studies
associated with it; for each Study there may be 1 or more Assays.

The ISA data model allows us to find scientific experiments
of interest by having high-level metadata about the experiments
such as what the studies are about and more concretely with
descriptors of the Study Design type (a classifier for the study
based on the overall study design, e.g., crossover design or paral-
lel group design) and study factors used, e.g., independent vari-
ables manipulated by the experimentalist in the study. Further-
more, experiments can be searched by Assay types, on the type
of measurements being carried out in the study, and the tech-
nologies used to perform the measurements.

A key feature in the ISA data model is the use of ontology
terms for certain fields in the metadata, supported with the On-
tology Annotation and Ontology Source classes. Where appro-
priate, data model objects can be qualified with ontology terms
(Ontology Annotations) that are linked to a declared descrip-
tion of the source of the terms (Ontology Sources). Supporting
software tools can therefore populate such annotations from es-
tablished terminology services such as the NCBI BioPortal [7, 8]
or the EMBL-EBI Ontology Lookup Service [9, 10]. By providing
support for discretely identified terms, we enable the ability to
search across ISA objects stored in different experiments.

The data model enables experimentalists to describe meta-
data relating to the provenance of samples and data. This prove-
nance is modelled in the form of directed acyclic graphs (i.e., ver-
tices connected together by edges but without any loops/cyclic
dependencies), which describe the workflow undertaken from
subject to sample to the production of data, including associ-
ated data acquisition files, analysis data matrices, and discover-
ies being preserved in reusable form.

Full details about the model, as well as specifications for ISA-
Tab and ISA-JSON, are available from [11].

The supporting open source ISA tools form a software suite
designed to manage the experimental metadata using the afore-
mentioned ISA formats, and more specifically to (i) customize,
describe, and validate, following community reporting stan-
dards (with the ISAconfigurator, ISAcreator, and ISAvalidator
components [12] or OntoMaton [13]); (ii) store and browse, lo-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



Johnson et al. 3

has role
[0..n]

publications
[0..n]

has inputs [0..n]

has
material
[0..n]

parameters
[0..n]

references
ontology [1]

process sequences [0..n]

affiliated with
[0..1]

protocols [0..n]

process sequences [0..n]

has contacts
[0..n]

has role
[0..n]

studies
[1..n]

has outputs [9..n]

has
material
[0..n]

follows protocol [1]

is a

measurement type [1]

has inputs [0..n]

has contacts
[0..n]

design type [0..n]

components
[0..n]

factors [0..n]

is a

assays
[0..n]

has outputs [0..n]

data files
[0..n] technology type [1]

publications
[0..n]

protocol component

role

organizationpublication

study

protocol

process event

measurement

person

sample

assay

data

technology

investigation

material

factor

study design

source

parameter

unit

ontology term

ontology source

Figure 1: An overview of the ISA data model showing its key constituent classes and their relationships with one another. The model is structured around the concepts

of investigation, study, and assay (in red). Other model elements exist to qualify these core elements (in green), e.g., relating investigations and sub-studies with
relevant contact persons or related publications; or information about the study design used and any experimental protocols implemented. Experimental workflows
are modelled as sequences of process events with inputs and outputs that correspond to biological materials and data objects (in blue). Values can be made explicit
by using term annotations or unit declarations that reference published ontologies (in orange).

cally or remotely (BioInvestigation Index [14] and the ISAex-
plorer [15]); (iii) submit to public repositories (ISAconverter [12]);
(iv) analyse with existing tools (Risa) [16]; and (v) publish data
alongside the article. The adoption of these Java-based and web-
based software tools has helped grow the ISA community of
users, characterized by those listed in the ISA Commons [17].

Because the original ISA software suite does not provide a
programmatic interface, we have developed the ISA API to posi-
tion the ISA framework as an interoperable and open platform
[18]. We also recognized a trend of growing enthusiasm by end
users for writing software code. This trend is perhaps most ev-
ident in statistical programming platforms such as R, Python,
and MatLab, and also greatly helped with the uptake of interac-
tive programming environments such as Project Jupyter [19].

The aim of the ISA API is to reproduce much of the user-
facing functionality afforded by the ISA software suite and to ad-
ditionally enable interoperation between software systems that
produce and consume ISA formats and other machine-readable

data formats, as illustrated in Fig. 2. The ISA API is written in
Python, which has a high uptake by non-programmers and a
rich open source community ecosystem of supporting software
packages, including many statistical and bioinformatics ones.
The software code is available on GitHub [20] under the Com-
mon Public Attribution License Version 1.0 (CPAL-1.0) and the
software package is available via the Python Package Index (PyPI)
[21] and Bioconda [22] under the moniker isatools [23, 24].

Related work

Developed in early 2011, the Bio-Parser-ISATab project [25] is,
to our knowledge, the first effort to create an ISA-Tab parser out-
side of the ISA tools ecosystem for programmatic manipulation
of ISA metadata. While Bio-Parser-ISATab is written in the Perl
programming language, the first Python project to implement an
ISA-Tab parser with scripts found in the biopy-isatab project
[26] was developed as part of an early version of bcbio [27] later
in 2011. Both efforts focused only on reading ISA-Tab.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



4 ISA API: An open platform for experimental metadata

Figure 2: ISA API and its interactions with other software ecosystems and data formats. Apart from running in the Python interpreter, the ISA API can also be accessed

through the iPython, Jupyter, and Docker. It also supports interoperation with other systems through standardized machine-readable data formats.

Recent efforts to create ISA programming libraries have fo-
cused on reading and writing of ISA-Tab files: AltamISA [28] was
developed in Python with the aim for strict validation and error
handling when handling ISA-Tab files; and a Java library, isa4j
[29], has been developed for high-performance writing of ISA-
Tab metadata.

ISA API provides a reference implementation of ISA-Tab sup-
port and additionally supports other formats and features as de-
scribed in the following section.

Implementation

The ISA API is written in the Python 3 programming language
and therefore part of the wider Python ecosystem of software
tooling that is very popular in the bioinformatics and data sci-
ence communities [30]. The ISA API can immediately be im-
ported and used alongside other Python packages in custom
Python programs, or it can be used interactively via iPython’s
interactive shell [31] and in Jupyter Notebook web applications.
It can be used in cloud infrastructure that supports Docker
through the container image isatools/isatools published in

DockerHub. The ISA API can be also exposed through RESTful
APIs as demonstrated by the MetaboLights Labs Web service in-
terface and the MetaboLights Online Editor Web service [32].

ISA API features

The ISA API provides a range of features that are summarized in
this section.

Support for all ISA formats

The ISA API provides the solution to simplify access and gen-
eration of ISA metadata now that the ISA framework supports
>1 on-disk data format—i.e., ISA-Tab and ISA-JSON. By using
the ISA API, software can support full read, write, and valida-
tion transparently on all current and future ISA formats without
any additional complexity.

The ISA-Tab and ISA-JSON document validators included in
the ISA API provide reference implementations by which to also
validate documents generated by other systems that claim ISA
compatibility [17].

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



Johnson et al. 5

Support for other bioinformatics formats

The ISA API also supports related domain formats used by
bioinformatics communities and which are usually technology-
centric (e.g., mass spectrometry, sequencing, DNA microarrays).
This feature is a consequence of the ISA framework’s support
for multi-modality datasets (e.g., multi-omics datasets). The ISA
API supports the import and export of MAGE-TAB [33, 34] and
SampleTab [35, 36], import of metadata from mzML [37, 38] and
nmrML [39, 40], and exports to SRA-XML [41, 42] and Work-
flow4metabolomics [43].

Export metadata for submission to public repositories

The ability to export metadata to a range of formats means that
software using the ISA API can prepare metadata submissions
to public data repositories. The ISA API supports export of ISA
metadata to submission-ready formats for public repositories
such as the EMBL-EBI ArrayExpress [44, 45], European Nucleotide
Archive [46, 47], and MetaboLights [48, 49]. Support for submis-
sion to additional databases will be developed in future.

Multiple modes of handling ISA metadata

The ISA API is designed to support multiple modes of reading
and writing ISA. Metadata reading and writing can be done na-
tively with ISA-Tab folders, ISArchive zip files, and ISA-JSON files
or strings. ISA metadata can be manipulated after loading us-
ing an object-oriented Python class model. Direct conversion be-
tween ISA formats is also supported.

Extensible and coherent object-oriented class model

Metadata objects are represented in the ISA API using an object-
oriented class model, providing a format-agnostic in-memory
representation. This in-memory model is based on the ISA Ab-
stract Model, which was extracted from the original ISA-Tab
specification to formalize the concepts used in the ISA frame-
work. It describes the steps in an experimental workflow as a di-
rected acyclic graph (DAG), which in the ISA API is expressed nat-
urally as connected Python class objects. For example, metadata
relating to the assay description is held in an Assay object that
is in turn contained by a Study object and its relevant attributes,
which is finally contained by an Investigation object—thus re-
flecting the hierarchical nature of the ISA framework concepts.
All ISA concepts are modelled as classes at a granular level, giv-
ing software developers full control to extend the API’s capa-
bilities and build new features. Details of the class model used
in the ISA API are published in the ISA Model and Serialization
Specifications 1.0 [4].

This functionally rich object-based representation com-
pletely avoids many of the complexities associated with han-
dling ISA metadata as tables—e.g., joining data from the sample
and assay tables, handling multiple table rows per edge of the
DAG. While in memory, the experimental metadata can be pro-
grammatically processed and manipulated.

Moreover, the ISA API’s object-based representation is a pow-
erful decoupling tool. First, it decouples the client application
from the specific ISA file format being handled. Second, it de-
couples the input and output metadata formats. When meta-
data are read, the format-specific parser creates the standard-
ized in-memory representation, which can be edited and ma-
nipulated; when writing, a format-specific serialization routine
traverses the objects to extract the data structure according to

the target ISA format. Writing the ISA API object model to ISA-
Tab requires converting experimental workflow graphs to tabu-
lar formats. Such work is described in the graph2tab library by
Brandizi et al. [50]. However, in that work, the authors only de-
scribe cases of unidirectional transformations from graphs to ta-
bles; ISA API implements bidirectional transformations between
each of the 2 ISA formats and ISA content expressed as Python
objects that includes a representation of DAGs. ISA content can
also be authored by directly creating Python objects, a brief ex-
ample of which is shown in Figs 3 and 4.

Querying over ISA content

Common use cases for ISA metadata involve gathering sam-
ples and data files produced by assays that satisfy certain se-
lection criteria. The criteria are objects based on sample char-
acteristics, processing parameters, and study factor combina-
tions (treatment groups). When ISA metadata are loaded as in-
memory model objects, this representation can be queried using
native Python code, e.g., by filtering using list comprehensions
with conditional logic. The ISA API also provides helper func-
tions, in the isatools.utils package, to query and fix possible
encoding problems in ISA content. For example, in ISA-Tab files,
a common issue is when ISA content is encoded in such a way
that some branches in experimental graphs converge unexpect-
edly, which represents the intended workflow incorrectly. The
ISA API provides specific functions to detect such anomalies (in
the detect isatab process pooling function) and to fix them
(in the insert distinct parameter function). Details of how to
query over ISA content can be found in the ISA API online docu-
mentation [55].

Semantic markup

An important feature that is embedded into the class model
is the support for ontology annotation objects to better qualify
metadata elements, contributing to making them FAIR [56]. The
ISA API implements the OntologyAnnotation class that is used
extensively throughout. To express quantitative values, units are
implemented with the Unit class, which itself can be qualified
with an OntologyAnnotation object. Populating annotations is
aided by a network package in the ISA API for connecting to and
querying the Ontology Lookup Service (OLS) [9]. JSON-LD con-
text files complementing the ISA-JSON schemas mapping into
schema.org [57] or OBO Foundry–based resources [58] are also
available.

Assisted curation of study metadata

Studies published using ISA formats are increasingly common-
place, many of which are produced in ISA-Tab using the ISAcre-
ator (e.g., NASA GeneLab [59, 60] and MetaboLights [48]), and
many others produced either by hand (using a spreadsheet or
text editor) or output by third-party systems (e.g., COPO [61],
FAIRDOM/SEEK [62, 63], and SCDE [64, 65]). There are some-
times cases of invalid ISA-formatted content appearing in pub-
lic databases or reported via bug reports to the ISA development
team. To help with this, the ISA API includes features to assist
with metadata curation of ISA-formatted studies. Beyond using
the validators contained in the API, additional features include
checking for possible structural problems in the DAGs that de-
scribe the provenance of samples and data files (e.g., where con-
verging edges are detected but are not expected) and correcting
them, re-situating incorrectly placed attributes (e.g., recasting

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



6 ISA API: An open platform for experimental metadata

Figure 3: Example of a Python script using the ISA API’s class model objects to programmatically construct metadata about a study and serialize it to ISA-Tab. This
script first creates the Investigation and Study structures that store general metadata about the experiment being described. Next, a source material object is created,
and 3 sample materials. These are connected as inputs and outputs, respectively, to a sample collection process, forming a workflow from source to samples. This is
then added to the study’s “process sequence”: a container for experimental process event descriptions. Finally, the composition of the model objects is serialized as

ISA-Tab to the standard output. Scripts such as these can form part of a larger Python software program, or be executed directly from the command-line, to automate
the construction of ISA metadata descriptors.

incorrectly labelled Factors as Parameters or Characteristics),
and batch fixing such issues. This work has resulted in the cre-
ation of curation functions, which have been applied to the con-
tent of the MetaboLights database as a means to improve the
quality and consistency of ISA archives. These validators also
form the basis of the current MetaboLights extensive online val-
idations coupled to their submission infrastructure to validate
the metadata for missing values, consistency, and sufficiency.

Assisted creation of study metadata

The ISA API ”create” module contains a set of functions and
methods exploiting study design information to bootstrap the
creation of ISA content [66]. Initially created to support facto-
rial designs, this component is currently being extended to pro-

vide support for longitudinal studies and repeated treatment de-
signs. This work in progress will be refined in future versions of
the ISA API.

Documentation

Extensive documentation is available as a Jupyter Book that in-
cludes examples presenting the various capabilities afforded by
the ISA API [55]. The Jupyter Book includes information about
how to install and use the isatools Python package, details
about the ISA data model, and source code examples of using
ISA API as Python scripts and Jupyter notebooks. For more in-
formation about the features listed here, interested readers are
invited to view the ISA tools API documentation for detailed and
up-to-date information.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



Johnson et al. 7

Figure 4: Example Jupyter Notebook using the ISA API to use ISA class objects to programmatically construct metadata about a study, using similar code to that
shown in Fig. 3. Being Python-based, ISA API can integrate with any notebook environment that supports Python kernels including Jupyter Notebook, JupyterLab,
and JupyterHub, and proprietary notebook environments such as Google Colab [51], Microsoft Azure Notebooks [52], and Amazon’s SageMaker [53]. A set of Jupyter

notebooks detailing how to use ISA-API key functionalities is available on GitHub and the isa-cookbook [54, 55].

Early adopters

The ISA API has a number of early adopters that demonstrate its
value as an open platform to the ISA framework. The following
section details how these groups rely on our Python library in
their data management tasks.

The MetaboLights metabolomics database [48] is using the
ISA API to load, edit, and save ISA-Tab as part of its next-
generation data curation interface. MetaboLights has rede-
veloped its user and data curator interface building on the
latest Web technologies and using the ISA API to convert
from ISA-Tab to ISA-JSON for further processing. The devel-
opers take a service-oriented approach, exposing various fea-
tures for editing and updating ISA content through a RESTful
API [32].

The PhenoMeNal (Phenome and Metabolome aNalysis) e-
infrastructure for molecular phenotype data analysis has devel-
oped a set of containerized microservices (using Docker) that use
ISA API’s converters, validators, and study creation features [67].
The PhenoMenal Virtual Research Environment is based on the
Galaxy workflow platform [45] through its integration with Ku-
bernetes [68]. Through PhenoMeNal, a suite of tools has been de-
veloped to integrate the ISA API with Galaxy [69]. The tools have
been published as a Galaxy workflow since the Dalcotidine re-
lease of PhenoMeNal to demonstrate a study metadata prepara-

tion and pre-submission pipeline to the MetaboLights database
(see Fig. 5).

The Galaxy workflow platform includes native support for
ISA formats by using the ISA API in its datatype implemen-
tations of ISA-Tab and ISA-JSON, paving the way for Galaxy
tools to consume and produce ISA content as first-class Galaxy
datasets.

The Collaborative Open Omics (COPO) platform [70] supports
ISA-JSON as one of its metadata formats and uses ISA API’s SRA
exporter to allow COPO users to publish studies directly to the
European Nucleotide Archive. COPO configures its back end and
front end for brokering various data types, including omics data,
through consuming ISA configurations. The ISA configurations
inform how COPO should present the data preparation wizard to
the user, and how it stores it in its database in a variation of ISA-
JSON. COPO stores study metadata as JSON where it conforms to
the ISA-JSON schemas and adds extra metadata relating to its
operation within the COPO database. By supporting ISA-JSON,
COPO lends itself to easily leveraging the ISA API to export data
to formats supported by the API.

Still within the plant science community, a conversion from
BrAPI [71] to ISA has been developed along with MIAPPE-
compliant ISA configurations [72, 73]. The functionality will be
integrated along with other community conversion components
in future releases of the ISA API.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



8 ISA API: An open platform for experimental metadata

Figure 5: The ISA Create-Validate-Upload workflow, published as part of the PhenoMeNal platform Dalcotidine release. The workflow takes a user-configured study

plan and creates an ISA-Tab template ready for the experimentalist to use in their study. The ISA-Tab then goes through 2 paths of processing: (i) a summary of study
factors according to the study design is extracted and then visualized as a parallel sets plot; and (ii) the ISA-Tab is validated, and if valid a pre-submission request is
made by uploading the ISA-Tab to MetaboLights Labs. A preparatory study accession ID is then issued by MetaboLights if accepted. Parts of the workflow that directly

use the ISA API are highlighted in green along with the packages used.

A stable and growing user community

Since its first release, ISA API has grown its user base steadily
with active contributions from the community as an open
source project as evidenced by bug reports, feature requests,
and code contributions. While it is difficult to measure the up-
take of free software, ISA API has been available since 2016 via
PyPI, which collects download statistics for all packages it hosts
[74]. There are documented drawbacks to using these PyPI down-
load statistics, such as historical data issues and systemic ir-
regularities such as caching of downloads that can cause un-
dercounting, so we view these statistics as indicative of how
the ISA API project has progressed rather than as an accu-
rate measure. These statistics also do not include installations
directly from the source code repository on GitHub or from
Bioconda.

After its initial release year, we observed a maintained and
slight year-on-year growth from 2017 to 2019 of ∼27,000 an-
nual downloads via PyPI (Fig. 6), which we believe demon-
strates that the ISA API has built up a stable and active user
base.

When looking at a more granular picture of the download
statistics for the isatools package, on a month-by-month basis,
we observe spikes in downloads on PyPI after each major release.
We believe that this indicates that the ISA API user community
continues to be active and is using the platform in production
systems by migrating to its newest updates soon after they are
made available.

Conclusions

The development of the ISA API represents a major step for-
ward in making the ISA framework open and interoperable, en-
abling better handling of experimental metadata, and support-
ing a diverse user community. By providing a programming in-
terface, rather than a graphical user interface, the ISA API pro-
vides a platform for simplified and consistent integration of the
ISA framework in new and existing software, promoting the
production of structured metadata by agents and the develop-
ment of data management solutions that can be FAIR by design.
The availability of an ISA implementation that is easily used
by other software also reduces the likelihood of independent
implementations that may not strictly adhere to the ISA for-
mat specifications. The object-oriented class model provides a
format-agnostic interface for client software, allowing software
that uses the ISA API to automatically support all ISA file for-
mats, while also providing a common basis on which to build
data format parsers and serializers more easily. Should exter-
nal implementations of the ISA formats be required, by provid-
ing reference implementations of ISA-Tab and ISA-JSON parsers,
serializers, and validators, software developers have the infras-
tructure in which to extend the API or build interoperation of
ISA with other software systems. As Python code, it can also
easily integrate into existing bioinformatics and data science
platforms such as Galaxy and Jupyter. Importantly, the object-
oriented DAG model presented by the ISA API offers a more in-
tuitive way to reason about and process study metadata than

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



Johnson et al. 9

Figure 6: Download statistics for the isatools Python package from PyPI from 21 February 2016 (first release of ISA API, v0.1) to 24 October 2020 (after release v0.11).
Note that the total number of downloads for 2020 was incomplete at the time the data were collated. A, Bar chart depicting the annual total downloads of isatools. B,
Line chart depicting the monthly total number of downloads of isatools with major releases of the ISA API indicated with vertical dashed lines.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024



10 ISA API: An open platform for experimental metadata

as ISA-Tab tables, simplifying the work of developers and en-
abling the development of richer metadata processing applica-
tions. The ISA API is available as free and open source software,
which will improve the dissemination and application of the ISA
metadata framework.

Methods
Community-led requirements

The ISA metadata framework and its supporting tools were de-
veloped to support requirements of the life science research
community, and its requirements are elicited in collaboration
with a wide range of stakeholders, such as those represented in
the ISA Commons [17]. This approach continues with the devel-
opment of the ISA API, where, through direct research funding,
the project was initially driven by requirements of metabolomics
research (via the H2020 PhenoMeNal project [67]) and the plant
sciences community (via the UK BBSRC COPO project [70]). De-
velopment has also been guided by collaboration workshops
(e.g., [75] and [76]). As an open source project from its outset in
2015, the ISA API openly encourages grassroots contributions via
its GitHub project, where we receive continuous feedback, fea-
ture requests, and source code contributions from third parties.

Model-driven engineering

The ISA API was developed using a model-driven engineering
approach [77] that initially focused heavily on formalizing the
concepts that define the ISA metadata framework. This required
close analysis of the only specification of ISA concepts available
documented in the ISA-Tab 1.0 specification [2] and the de facto
reference implementation of ISA-Tab in the Java source code of
the ISA software suite [12], as well as critical discussions within
the ISA Working Group. One of the early goals of the ISA API
project was to implement support for a JSON serialization for-
mat, ISA-JSON [4]. A model specification was drafted as a set of
JSON schemas, the JSON community’s response to implement-
ing features reminiscent of XML schemas. This was then formal-
ized as the first data-agnostic specification of ISA.

From the ISA-JSON schemas, we then used the warlock

Python package [78] to draft an object-oriented (OO) Python
class model (via Python’s dynamic object creation facility) that
was highly synchronized with the JSON schemas. This OO class
model was then implemented concretely (to provide object re-
flection/introspection that dynamic objects lack) to use as the
primary representation of ISA metadata in Python. Data format
parsers and serializers were then developed to load data into
these Python objects at run-time. The ISA API implements sup-
port interoperation between formats such as ISA-Tab, ISA-JSON,
SampleTab, MAGE-TAB, and SRA-XML by using these ISA Python
objects.

It is important to note that the ISA data model is not a model
of ISA-Tab; rather, ISA-Tab is an implementation of the data
model. The representation of ISA concepts in a tabular form is
specific to the serialization format, where ISA is not about tables,
rows, and headers. ISA metadata are about the encapsulated
semantics about the life science experiments being described.
However, in developing the class model, ISA-Tab parser, and se-
rializer it was realized that some ISA-Tab concepts were required
in the class model to support serialization.

For example, the ISA-Tab table file names are not strictly part
of the ISA data model but we need to be able to specify these to
support writing ISA-Tab files. When writing to ISA-JSON these

file name attributes are ignored as the JSON implementation is
more closely aligned to the model. Therefore, the ISA API’s im-
plementation of the model should be considered as only very
closely aligned with the model specification rather than a per-
fect mapping.

Test-driven development

When developing new features and fixing bugs, the ISA API de-
velopment team predominantly follows a test-driven develop-
ment approach [79]. This means that when new features are re-
quested an automated unit test is implemented first to capture
the feature specification, then work is done to develop the new
feature to satisfy the test. Similarly, when a bug is reported via
the project’s GitHub issue tracker, an automated regression test
is implemented first to capture the problem specification before
developing the bugfix. Automated unit tests are implemented
using the unittest package and run with the nose and tox test-
ing frameworks. Source code contributions to the GitHub project
are automatically tested on multiple Python versions using the
continuous integration service Travis CI.

ISA API’s most recent release at time of writing (v0.12) uses
631 automated unit tests.

Download statistics

The download statistics for the isatools package hosted on
PyPI shown in Fig. 6 are collected by the Linehaul statistics dae-
mon [80] that logs downloads of all Python packages on PyPI
and pushes the data to a public dataset [74] on Google BigQuery
[81]. The all-time statistics about the isatools package were
retrieved from this public dataset on 24 October 2020 at 14:20
UTC+2 with the following SQL query via the BigQuery interface:

SELECT TIMESTAMP TRUNC(timestamp, WEEK) week

, COUNT(∗) downloads

FROM `the-psf.pypi.downloads∗`
WHERE file.project = ‘‘isatools’’

GROUP BY week, file.version

ORDER BY week

The result of this query was downloaded as a CSV file con-
taining a timestamp of the week-ending each weekly period of
downloads, the isatools version number, and the total number
of downloads for each period and version. These data were then
aggregated by month and by year before being visualized using
the Seaborn statistical data visualization package [82].

Data about the version release dates of ISA API were collected
from the ISA API GitHub repository [20].

Data Availability

The all-time weekly download statistics data for the isatools

package on PyPI up to 24 October 2020 14:20 UTC+2 and the code
used to plot the charts used in Fig. 6 in this article are available
in a Code Ocean capsule [83]. The data and code are available
under CC BY 4.0 and MIT License, respectively. Snapshots of the
code are available in the GigaDB repository [84].

Availability of Source Code and Requirements
� Project name: ISA API
� Project home page: http://github.com/ISA-tools/isa-api/
� Operating system: Platform independent
� Programming language: Python
� Other requirements: Python 3.6+

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024

http://github.com/ISA-tools/isa-api/


Johnson et al. 11

� License: CPAL-1.0
� biotools: isa api
� RRID:SCR 020980

Abbreviations

API: Application Programming Interface; BBSRC: Biotechnol-
ogy and Biological Sciences Research Council; BrAPI: Breed-
ing API; COPO: Collaborative Open Plant Omics; DAG: directed
acyclic graph; EMBL: European Molecular Biology Laboratory;
EMBL-EBI: European Bioinformatics Institute; FAIR: Findable,
Accessible, Interoperable, and Reusable; GUI: graphical user
interface; H2020: Horizon 2020; ISA: Investigation, Study, As-
say; ISA-JSON: ISA JavaScript Object Notation format; ISA-Tab:
ISA Tabular format; JSON: JavaScript Object Notation; JSON-
LD: JavaScript Object Notation for Linked Data; MAGE-TAB: Mi-
croArray Gene Expression-Tabular format; MIAPPE: Minimum
Information About a Plant Phenotyping Experiment; mzML:
mass spectrometry Markup Language; NASA: National Aeronau-
tics and Space Administration; NERC: Natural Environment Re-
search Council; NCBI: National Center for Biotechnology Infor-
mation; nmrML: nuclear magnetic resonance Markup Language;
OO: Object-oriented; PhenoMeNal: Phenome and Metabolome
aNalysis; PyPI: Python Package Index; REST: representational
state transfer; SCDE: Stem Cell Discovery Engine; SQL: Struc-
tured Query Language; SRA-XML: Sequence Read Archive-
eXtensible Markup Language.

Competing Interests

All authors declare that they have no competing interests.

Funding

This work has been supported in part by European Commission
Horizon 2020 programme PhenoMeNal project (grant agreement
No. EC654241); UK BBSRC COPO project (Bioinformatics and Bio-
logical Resources Fund [BBR] grant: BB/L021390/1 [BB/L024055/1,
BB/L024071/1, BB/L024101/1]); UK BBSRC Establishing common
standards and curation practices: towards real world bioshar-
ing grant (BB/J020265/1); Wellcome Trust ISA-InterMine grants
208381/A/17/ZUK, BBSRC Sharing of metabolomics data and
their analyses as Galaxy workflows through a UK-China collab-
oration grant (BB/M027635/1); and a UK NERC CASE Ph.D. stu-
dentship in collaboration with GigaScience: (NE/L002493/1).

A.G.-B., K.H., M.I., D.J., M.L., T.N.L., P.M., L.P., P.R.-S., P.R., S.-
A.S., C.S., and R.J.M.W. received funding from the EC H2020 Phe-
noMeNal project grant. A.E., R.P.D., A.G.-B., D.J., P.R.-S., S.-A.S.,
and F.S. received funding from the UK BBSRC COPO project grant.
T.N.L. received funding from the NERC CASE Ph.D. studentship.
D.B., M.I., P.R.-S., S.-A.S. received funding from the Wellcome
Trust ISA-InterMine grants.

Authors’ Contributions

Conceptualization: P.R.-S., S.-A.S.; software—lead: D.J.;
software—supporting: D.B., M.I., P.R.-S., A.G.-B., K.C., A.E.,
K.H., M.L., T.N.L., A.M., P.M., V.C.N., L.P., P.R., F.S., R.J.M.W.;
investigation—usage: D.J.; visualization—usage: D.J.; writing—
original draft: D.J.; writing—review and editing: D.J., P.R.-S., D.B.,
K.C., R.P.D., A.E., A.G.-B., K.H., M.I., M.L., T.N.L., P.M., V.C.N., C.O.,
L.P., P.R., F.S., C.S., R.J.M.W., S.-A.S.; funding acquisition: R.P.D.,
C.O., S.-A.S., C.S.

Acknowledgements

We thank members of the ISA Working Group, ISA Commons,
H2020 PhenoMeNal project, UK BBSRC COPO project, attendees
of the 2016 “Hack-the-Spec—ISA as a FAIR research object” work-
shop hosted by the Oxford e-Research Centre, UK, attendees of
the 2016 “China-UK Data Dissemination in Metabolomics (CUD-
DEL)” workshop hosted by GigaScience, Hong Kong, and the
EMBL-EBI MetaboLights team for guidance and feedback on the
development of the ISA API.

References

1. McQuilton P, Batista D, Beyan O, et al. Helping the consumers
and producers of standards, repositories and policies to en-
able FAIR Data. Data Intell 2020;2(1-2):151–7.

2. Rocca-Serra P, Sansone S-A, Brandizi M. Specifi-
cation documentation: ISA-TAB 1.0. Zenodo 2009;
doi:10.5281/zenodo.161355.

3. FAIRsharing.org. ISA-Tab; Investigation Study Assay Tabular.
doi:10.25504/FAIRsharing.53gp75.

4. Sansone S-A, Rocca-Serra P, Gonzalez-Beltran AISA Commu-
nity et al., ISA Community. ISA model and serialization spec-
ifications 1.0. Zenodo 2016; doi:10.5281/zenodo.163640.

5. FAIRsharing.org. ISA-JSON; Investigation Study Assay JSON.
doi:10.25504/FAIRsharing.yhLgTV.

6. Pezoa F, Reutter JL, Suarez F, et al. Foundations of JSON
Schema. In: Proceedings of the 25th International Confer-
ence on World Wide Web (WWW ‘16), Montréal, QC, Canada.
New York: ACM; 2016:263–73.

7. Whetzel PL, Noy NF, Shah NH, et al. BioPortal: enhanced
functionality via new Web services from the National Cen-
ter for Biomedical Ontology to access and use ontologies
in software applications. Nucleic Acids Res 2011;39(suppl):
W541–5.

8. FAIRsharing.org. BioPortal. doi:10.25504/FAIRsharing.4m97ah.
9. Jupp S, Burdett T, Leroy C, et al. A new ontology lookup

service at EMBL-EBI. In: Malone J, Stevens R, Forsberg K,
et al., eds. Proceedings of the 8th International Confer-
ence on Semantic Web Applications and Tools for Life Sci-
ences (SWAT4LS 2015), Cambridge. Aachen: CEUR-WS.org;
2015:118–9.

10. FAIRsharing.org. OLS; Ontology Lookup Service.
doi:10.25504/FAIRsharing.Mkl9RR.

11. ISA Model and Serialization Specifications. https://isa-specs.
readthedocs.io/en/latest/isamodel.html. Accessed 9 October
2020.

12. Rocca-Serra P, Brandizi M, Maguire E, et al. ISA software
suite: supporting standards-compliant experimental anno-
tation and enabling curation at the community level. Bioin-
formatics 2010;26(18):2354–6.

13. Maguire E, Gonzalez-Beltran A, Whetzel PL, et al. OntoMa-
ton: a BioPortal powered ontology widget for Google Spread-
sheets. Bioinformatics 2013;29(4):525–7.

14. BioInvestigation Index. https://github.com/ISA-tools/BioInvI
ndex. Accessed 2 March 2021.

15. Gonzalez-Beltran A. ISA-explorer: A demo tool for discover-
ing and exploring Scientific Data’s ISA-tab metadata. Accessed
11 November 2020.

16. Gonzalez-Beltran A, Neumann S, Maguire E, et al. The Risa
R/Bioconductor package: integrative data analysis from ex-
perimental metadata and back again. BMC Bioinformatics
2014;15(S1);doi:10.1186/1471-2105-15-S1-S11.

17. ISA commons. 2018. Accessed 9 October 2020.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024

https://scicrunch.org/resolver/RRID:
https://isa-specs.readthedocs.io/en/latest/isamodel.html
https://github.com/ISA-tools/BioInvIndex


12 ISA API: An open platform for experimental metadata

18. Eisenmann TR, Parker G, Van Alstyne M, et al. Opening Plat-
forms: How, when and why?In: Gawer A , ed. Platforms, mar-
kets and innovation. Cheltenham: Edward Elgar; 2009:131–
62.

19. Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Note-
books - a publishing format for reproducible computational
workflows. In: Proceedings of the 20th International Confer-
ence on Electronic Publishing (ELPUB 2016). Amsterdam: IOS;
2016:87–90.

20. ISA-tools/isa-api. https://github.com/ISA-tools/isa-api/. Ac-
cessed 9 October 2020.

21. The Python Package Index. https://pypi.org/. Accessed 29 Oc-
tober 2020.

22. Grüning B, Dale R, Sjödin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15(7):475–6.

23. ISA API (isatools) on PyPI. https://pypi.org/project/isatools/.
Accessed 9 October 2020.

24. ISA API (isatools) on Bioconda. https://anaconda.org/biocond
a/isatools/. Accessed 9 October 2020.

25. bobular/Bio-Parser-ISATab on GitHub. https://github.com/b
obular/Bio-Parser-ISATab. Accessed 2 March 2021.

26. ISA-tools/biopy-isatab on GitHub. https://github.com/ISA-t
ools/biopy-isatab. Accessed 2 March 2021.

27. Chapman B, Kirchner R, Pantano L et al.,
bcbio/bcbio-nextgen: v1.2.7 (v1.2.7). Zenodo 2021;
doi:10.5281/zenodo.4556385.

28. Kuhring M, Nieminen M, Kirwan J, et al. AltamISA: a Python
API for ISA-Tab files. J Open Source Softw 2019;4(40):1610.

29. Psaroudakis D, Liu F, König P, et al. isa4j: a scalable Java li-
brary for creating ISA-Tab metadata. F1000Res 2020;9:1388.

30. Russell PH, Johnson RL, Ananthan S, et al. A large-scale
analysis of bioinformatics code on GitHub. PLoS One
2018;13(10):e0205898.

31. Pérez F, Granger BE. IPython: a system for interactive scien-
tific computing. Comput Sci Eng 2007:9(3):21–29.

32. MetaboLights RESTful WebService API specification. https:
//www.ebi.ac.uk/metabolights/ws/api/spec.html. Accessed 9
October 2020.

33. Rayner TF, Rocca-Serra P, Spellman PT, et al. A simple
spreadsheet-based, MIAME-supportive format for microar-
ray data: MAGE-TAB. BMC Bioinformatics 2006;7(1):489.

34. FAIRsharing.org. MAGE-TAB; MicroArray Gene Expression
Tabular Format. doi:10.25504/FAIRsharing.ak8p5g.

35. Courtot M, Cherubin L, Faulconbridge A, et al. BioSamples
database: an updated sample metadata hub. Nucleic Acids
Res 2019;47(D1):D1172–8.

36. FAIRsharing.org. SampleTab; Sample Tabular Format.
doi:10.25504/FAIRsharing.hgnk8v.

37. Martens L, Chambers M, Sturm M, et al. mzML-a community
standard for mass spectrometry data. Mol Cell Proteomics
2011;10;doi:10.1074/mcp.R110.000133.

38. FAIRsharing.org. mzML; mz Markup Language.
doi:10.25504/FAIRsharing.26dmba.

39. Schober D, Jacob D, Wilson M, et al. nmrML: a commu-
nity supported open data standard for the description, stor-
age, and exchange of NMR data. Anal Chem 2018;90(1):
649–56.

40. FAIRsharing.org. NMR-ML; Nuclear Magnetic Resonance
Markup Language. doi:10.25504/FAIRsharing.es03fk.

41. Kodama Y, Shumway M, Leinonen R. The Sequence Read
Archive: explosive growth of sequencing data. Nucleic Acids
Res 2012;40(D1):D54–6.

42. FAIRsharing.org. SRA-XML; Short Read Archive eXtensible
Markup Language. doi:10.25504/FAIRsharing.q72e3w.

43. Giacomoni F, Le Corguillé G, Monsoor M, et al. Work-
flow4Metabolomics: a collaborative research infrastruc-
ture for computational metabolomics. Bioinformatics
2015;31(9):1493–5.

44. Athar A, Füllgrabe A, George N, et al. ArrayExpress update–
from bulk to single-cell expression data. Nucleic Acids Res
2019;47(D1):D711–5.

45. FAIRsharing.org. ArrayExpress; ArrayExpress. doi:10.25504/
FAIRsharing.6k0kwd.

46. Amid C, Alako BT, Balavenkataraman Kadhirvelu V, et al.
The European Nucleotide Archive in 2019. Nucleic Acids Res
2020;48:D70–6.

47. FAIRsharing.org. ENA; European Nucleotide Archive.
doi:10.25504/FAIRsharing.dj8nt8.

48. Haug K, Cochrane K, Nainala VC, et al. MetaboLights: a re-
source evolving in response to the needs of its scientific com-
munity. Nucleic Acids Res 2020;48:D440–4.

49. FAIRsharing.org. MTBLS; MetaboLights. doi:10.25504/
FAIRsharing.kkdpxe.

50. Brandizi M, Kurbatova N, Sarkans U, et al. graph2tab, a li-
brary to convert experimental workflow graphs into tabular
formats. Bioinformatics 2012;28(12):1665–7.

51. Google Colaboratory. https://colab.research.google.com/. Ac-
cessed 22 October 2020.

52. Microsoft Azure Notebooks. https://notebooks.azure.com/.
Accessed 22 October 2020.

53. Amazon SageMaker. https://aws.amazon.com/sagemaker/.
Accessed 22 October 2020.

54. Example Jupyter notebooks using the ISA-API. https://gith
ub.com/ISA-tools/isatools-notebooks/. Accessed 28 October
2020.

55. The ISA cookbook. https://isa-tools.org/isa-api/content/inde
x.html. Accessed 2 March 2021.

56. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR
Guiding Principles for scientific data management and stew-
ardship. Sci Data 2016;3:160018.

57. Guha RV, Brickley D, MacBeth S. Schema.org: Evolution
of structured data on the Web: Big data makes common
schemas even more necessary. Queue 2015;13(9):10–37.

58. Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: co-
ordinated evolution of ontologies to support biomedical data
integration. Nat Biotechnol 2007;25(11):1251–5.

59. Ray S, Gebre S, Fogle H, et al. GeneLab: Omics database for
spaceflight experiments. Bioinformatics 2019;35(10):1753–9.

60. FAIRsharing.org. genelab; NASA GeneLab. doi:10.25504/
FAIRsharing.64mr5a.

61. Shaw F, Etuk A, Gonzalez-Beltran A, et al. COPO - Linked
open infrastructure for plant data. In: Malone J, Stevens R,
Forsberg K , et al., eds. Proceedings of the 8th International
Conference on Semantic Web Applications and Tools for Life
Sciences (SWAT4LS 2015). Aachen: CEUR-WS.org; 2015:181–2.

62. Wolstencroft K, Owen S, Krebs O, et al. SEEK: a systems bi-
ology data and model management platform. BMC Syst Biol
2015;9:33.

63. FAIRsharing.org. FAIRDOMHub. doi:10.25504/FAIRsharing.nnvcr9.
64. Ho Sui SJ, Begley K, Reilly D, et al. The Stem Cell Discovery En-

gine: an integrated repository and analysis system for cancer
stem cell comparisons. Nucleic Acids Res 2012;40(D1):D984–
91.

65. FAIRsharing.org. SCDE; Stem Cell Discovery Engine.
doi:10.25504/FAIRsharing.490xfb.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024

https://github.com/ISA-tools/isa-api/
https://pypi.org/
https://pypi.org/project/isatools/
https://anaconda.org/bioconda/isatools/
https://github.com/bobular/Bio-Parser-ISATab
https://github.com/ISA-tools/biopy-isatab
https://www.ebi.ac.uk/metabolights/ws/api/spec.html
https://colab.research.google.com/
https://notebooks.azure.com/
https://aws.amazon.com/sagemaker/
https://github.com/ISA-tools/isatools-notebooks/
https://isa-tools.org/isa-api/content/index.html


Johnson et al. 13

66. Rocca-Serra P, Johnson D, Weber RJM, et al. ISAcreate Galaxy
tool for prospective data management with ISA format
support - application to metabolomics datasets (poster).
F1000Res 2018; doi:10.7490/f1000research.1115757.1.

67. Peters K, Bradbury J, Bergmann S, et al. PhenoMeNal: pro-
cessing and analysis of metabolomics data in the cloud. Gi-
gascience 2019;8(2):giy149.

68. Moreno P, Pireddu L, Roger P, et al. Galaxy-Kubernetes in-
tegration: scaling bioinformatics workflows in the cloud.
bioRxiv 2018; doi:10.1101/488643.

69. ISA Galaxy tools, tours, and other enhancements. https://
github.com/ISA-tools/isatools-galaxy/. Accessed 9 October
2020.

70. Shaw F, Etuk A, Minotto A, et al. COPO: a metadata plat-
form for brokering FAIR data in the life sciences. F1000Res
2020;9:495.

71. Selby P, Abbeloos R, Backlund JE, et al. BrAPI—an applica-
tion programming interface for plant breeding applications.
Bioinformatics 2019;35(20):4147–55.

72. Ćwiek-Kupczyńska H, Altmann T, Arend D, et al. Measures
for interoperability of phenotypic data: minimum infor-
mation requirements and formatting. Plant Methods 2016;
12:44.

73. FAIRsharing.org. MIAPPE; Minimum Information about Plant
Phenotyping Experiment. doi:10.25504/FAIRsharing.nd9ce9.

74. Analyzing PyPI package downloads - Python Packaging User
Guide. https://packaging.python.org/guides/analyzing-pypi
-package-downloads/. Accessed 28 October 2020.

75. ELIXIR-NL represented at ELIXIR UK’s “ISA as a FAIR research
object” event. https://www.dtls.nl/2015/09/16/defining-stan
dards-to-describe-experiments-as-part-of-good-research
-practices-the-isa-standard/. Accessed 2 March 2021.

76. CUDDELing up to metabolomics in Hong Kong.
http://gigasciencejournal.com/blog/cuddeling-up-to-me
tabolomics-in-hong-kong/. Accessed 2 March 2021.

77. Schmidt DC. Model-driven engineering. Computer
2006;39(2):25–31.

78. bcwaldon/warlock. https://github.com/bcwaldon/warlock.
Accessed 2 March 2021.

79. Williams L, Maximilien EM, Vouk M. Test-driven develop-
ment as a defect-reduction practice. In: 14th International
Symposium on Software Reliability Engineering; 2003:34–45.

80. The Linehaul Statistics Daemon. https://github.com/pypa/li
nehaul/. Accessed 28 October 2020.

81. BigQuery: Cloud Data Warehouse. https://cloud.google.com
/bigquery/. Accessed 28 October 2020.

82. Waskom M, Botvinnik O, Gelbart M et al., mwaskom/seaborn:
v0.11.0. Zenodo 2020; doi:10.5281/zenodo.4019146.

83. Johnson D. Code for the ISA API download statistics visual-
izations in “ISA API: An open platform for interoperable life
science experimental metadata” [Source Code]. Code Ocean.
2020; https://doi.org/10.24433/CO.8813991.v1.

84. Johnson D, Batista D, Cochrane K, et al. Supporting data
for “ISA API: An open platform for interoperable life sci-
ence experimental metadata.” GigaScience Database 2021.
http://dx.doi.org/10.5524/100907.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/9/giab060/6371038 by C

EA user on 28 April 2024

https://github.com/ISA-tools/isatools-galaxy/
https://packaging.python.org/guides/analyzing-pypi-package-downloads/
https://www.dtls.nl/2015/09/16/defining-standards-to-describe-experiments-as-part-of-good-research-practices-the-isa-standard/
http://gigasciencejournal.com/blog/cuddeling-up-to-metabolomics-in-hong-kong/
https://github.com/bcwaldon/warlock
https://github.com/pypa/linehaul/
https://cloud.google.com/bigquery/
https://doi.org/10.24433/CO.8813991.v1
http://dx.doi.org/10.5524/100907

