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Demography of endangered juvenile green turtles in face of environmental 1 

changes: 10 years of capture-mark-recapture efforts in Martinique 2 

 3 

Abstract 4 

Estimating demographic parameters is key for unraveling the mechanisms governing the 5 

population dynamics of species of conservation concern. Endangered green sea turtles navigate 6 

vast geographical ranges during their life cycle and face various pressures in coastal areas, 7 

especially during their juvenile life-stage. Here, we investigated survival, abundance, 8 

recruitment and emigration of juvenile green turtles on two developmental grounds in 9 

Martinique, French West Indies, using a capture-mark-recapture dataset of 658 captures over 10 

10 years. We detected increasing abundances of green turtles, likely attributed to the continuous 11 

recruitment of new individuals, low mortality and low rate of emigration from these two 12 

developmental sites. Local recruitment slightly decreased with small turtles densities while 13 

emigration strongly increased with large turtles densities. These results associated with known 14 

food availability and size-dependent diet preference of local green turtles suggest that the 15 

expansion of invasive seagrass H. stipulacea may facilitate the settlement of small juveniles, 16 

however it also limits the capacity of seagrass beds to sustain large juveniles. Boat anchorage, 17 

pollution and H. stipulacea invasion reduced the availability of native seagrass species. This 18 

could intensify competition between large turtles, trigger earlier emigration, therefore 19 

modifying the structure of the green turtle populations in Martinique. Measures to protect native 20 

seagrass beds are essential to maintain their capacity to sustain the entire green turtle 21 

developmental stage. This study will help to connect sea turtle life-stages and to set up efficient 22 

regional conservation measures. Moreover, results shown here provided clues to understand 23 

demography of endangered megaherbivores in context of pasture degradation. 24 
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1. Introduction 25 

Recruitment (through birth or immigration), emigration and mortality are demographic 26 

parameters that drive population size (Williams et al., 2002). Capture-Mark-Recapture (CMR) 27 

models are useful to estimate these demographic parameters and explain their variations in 28 

response to environmental factors or individual traits (Amstrup et al., 2005). Through the 29 

estimation of survival rates, emigration, recruitment or abundance, CMR models allow to detect 30 

or predict trends in populations of species of conservation concern, as well as to determine risk 31 

factors (Williams et al., 2002; e.g. Chevallier et al., 2020; Fujiwara and Caswell, 2001; 32 

Chaloupka and Limpus, 2001; Monadjem et al., 2014) and can thus guide relevant management 33 

actions to be implemented (e.g. Warret Rodrigues et al., 2021). This method is therefore crucial 34 

to define efficient conservation measures for species whose recovery rates is slow, such as 35 

marine megafauna, a third of which are threatened with extinction (Pimiento et al., 2020). 36 

Sea turtles are members of the marine megafauna threatened by human activities (Wallace et 37 

al., 2011). Population viability of all the seven extant sea turtle species is usually estimated 38 

from samples of nesting female (Wildermann et al., 2018). Nonetheless, studies tend to 39 

demonstrate that the juvenile life-stage is also an important determinant of population viability 40 

in several long-lived marine species (Heppell et al., 1999), as it could be for marine turtles 41 

(Crowder et al., 1994; Wildermann et al., 2018). All species of sea turtles, at the exception of 42 

the leatherback turtle (Dermochelys coriacea), may use neritic habitat during their juvenile life-43 

stage (Lutz et al., 2003), where they are exposed to several risks induced by human activities 44 

and degraded coastal environments (Domiciano et al., 2017; Lotze et al., 2006). Investigating 45 

vital rates of juvenile sea turtles is therefore critical. 46 

The green turtle (Chelonia mydas), classified as “Endangered” by the IUCN Red List 47 

(Seminoff, 2004; https://www.iucnredlist.org/species/4615/247654386; accessed 27/12/2023),  48 
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recruits in shallow coastal waters at around 30 cm carapace length after a post-hatchling pelagic 49 

phase called the “lost years” (Lutz et al., 2003). Several studies have focused on immature green 50 

turtle demography, mostly on survival rates and abundance (Chaloupka and Limpus, 2005; 51 

Colman et al., 2015; Kameda et al., 2023; Mollenhauer et al., 2022; Patrício et al., 2011). 52 

Nonetheless, few studies investigated the emigration rates of juvenile green turtles from their 53 

development grounds (Bjorndal et al., 2003; Seminoff et al., 2003) and, to the best of our 54 

knowledge, none described recruitment rates. Consequently, factors that could drive the global 55 

population dynamics of green turtles remain unclear. 56 

Juvenile green turtles recruiting in coastal waters of Martinique, French West Indies, originate 57 

from various Caribbean and Atlantic nesting sites (Chambault et al., 2018). There they spend 58 

several years, feeding on seagrass beds located in shallow sheltered bays. Once they reach a 59 

size around 80 cm curved carapace length (CCL), they embark on a major post-developmental 60 

migration, and they join Caribbean and Atlantic breeding populations (Chambault et al., 2018). 61 

During their developmental phase in Martinique, juvenile green turtles show high fidelity to 62 

highly touristic areas (Siegwalt et al., 2020) making them vulnerable to local anthropic 63 

pressures such as bycatch and boat collision (Louis-Jean et al., 2008; Siegwalt et al., 2020). 64 

Moreover, coastal pollution might also enhance disease risk in green turtles, especially the 65 

development of fibropapillomatosis (Jones et al., 2016), a deadly neoplastic disease that has 66 

been observed in the green turtle population on the coast of Martinique (Bonola et al., 2019; 67 

Roost et al., 2022). Green turtles primarily graze on seagrass beds composed of varying 68 

proportions of three marine phanerogams species: the turtle grass Thalassia testudinum, the 69 

manatee grass Syringodium filiforme, and the exotic Halophila seagrass originating from the 70 

Red Sea, Halophila stipulacea. This last seagrass species was first documented in coastal waters 71 

of Martinique in 2006 (Maréchal et al., 2013) and is currently the most widespread of the three 72 

phanerogams consumed by turtles in Martinique, but it has the lowest nutritional value 73 
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(Siegwalt et al., 2022). H. stipulacea invasion and native seagrass meadows loss by boat 74 

anchoring could both have an impact on the fitness of juvenile green turtles (Siegwalt et al., 75 

2022) and are therefore likely to affect their demography. All these factors present in the coastal 76 

area of Martinique, mainly due to human activity, can have an impact on the development of 77 

green turtles. Considering the important contribution of Martinique juvenile green turtle 78 

population to the Atlantic breeder population (Chambault et al., 2018), it is necessary to assess 79 

their demographic parameters to ensure their conservation. 80 

Here we estimated apparent survival, abundance and recruitment of green turtles using a Multi-81 

State Jolly-Seber (MSJS) model structure. This analysis was based on a decade-years dataset 82 

of CMR collected from two sites in the Lesser Antilles renowned for their high concentration 83 

of juvenile green turtles. Our study had two main objectives: 1) to identify internal and external 84 

drivers of juvenile demography at their foraging grounds, and 2) to establish conservation 85 

guidelines aimed at mitigating the primary threats to juvenile demography. 86 

2. Material and Methods 87 

2.1.  Study location and Capture-Mark-Recapture data collection 88 

The present study takes place in three bays of Les Anses d’Arlet (Martinique, French West 89 

Indies (14°30ʹ9.64ʺN, 61°5ʹ11.85ʺW, Fig. A1): Grande Anse d’Arlet (GA), Anse du Bourg 90 

d’Arlet and Anse Chaudière. During the analyses, the latter two sites were combined and 91 

denominated as Anse du Bourg d’Arlet/Chaudière (ABAC), since there is no geographical 92 

barrier between these. Importantly, in these two sites, no poaching is known and natural 93 

predators (i.e. sharks) are absent (Chevallier & Lelong, pers. obs.). 94 

Between 2013 and 2023, at the exception of 2014 and 2021, primary capture sessions have 95 

taken place yearly for one-week periods (Fig. A2). They occurred typically in the month of 96 

October excepted for 2013 (September), 2015 (additional session in June), 2022 and 2023 97 
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(February). These yearly sessions were complemented by multiple irregular capture sessions of 98 

less than one day occurring throughout the year, with the exception of 2014, when no such short 99 

capture sessions took place (Fig. A2). During these capture sessions, immature green turtles 100 

were captured by free-divers at maximum depths of 25 m and lifted on a boat to carry out all 101 

the following protocols. Animals were identified by a Passive Integrated Transponder (ID-100, 102 

TROVAN). Capture and tagging procedures are described in Bonola et al. (2019). Carapace 103 

dimensions, including central curved carapace length (CCL), were measured using a flexible 104 

fiber glass tape at 0.1 cm precision (see Bonola et al., 2019 for details). Fibropapillomatosis 105 

tumors (if present) on the body of turtles were photographed next to a metal ruler. These 106 

photographs were later used to count and measure the tumors during animal data post-107 

processing. Body condition of the animals was estimated visually with carapace and plastron 108 

concavity and carapace shape (Bonola et al., 2019). Flipper tissue, scale, claw and blood 109 

samplings were performed when animal (stress, health) and environmental (waves) conditions 110 

allowed them. 111 

All fieldwork, captures and samplings were performed in accordance with the French legal and 112 

ethical requirements. The protocol was approved by the Conseil National de la Protection de la 113 

Nature and the French Ministry for Ecology (permit numbers: 2013154-0037, 201710-0005 and 114 

R02-2020-08-10-006) and followed the recommendations of the Police Prefecture of 115 

Martinique. Fieldwork was carried out under the certification of Damien Chevallier (prefectural 116 

authorizations’ owner) under strict compliance of the Police of Martinique’s recommendations 117 

to minimize animal disturbance. 118 

2.2. Data analysis 119 

We considered a total of 412 marked individual green turtles captured between September 2013 120 

to February 2023 (Fig. A2). The green turtle is a long-lived species with an expected high 121 

survival rate and they experience little environmental seasonality in Martinique. Consequently, 122 
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the data from primary and punctual capture sessions between June of year i and February of 123 

year i+1 were grouped on October of year i. For instance, February 2023 is grouped with 124 

October 2022 and analysis were then performed between 2013 and 2022. If an individual was 125 

captured multiple time among grouped capture sessions, only the first capture was retained for 126 

the analysis. 127 

We analyzed this CMR dataset using Multi-State Jolly-Seber models (MSJS; Dupuis and 128 

Schwarz 2007) fitted in MARK software v6.2 (White and Burnham, 1999). We defined six 129 

states which combine the information of capture locations (two sites: GA and ABAC) and size 130 

classes (SC; three size classes: SC1: 25 cm ≤ CCL < 59 cm, SC2: 59 cm ≤ CCL < 73 cm; SC3: 131 

73 cm ≤ CCL). We thus obtained estimations of: ϕ the apparent survival, p the capture 132 

probability considering the animal is available in the study area, Ψ the transition probability 133 

between states, pent the probability of the year when an individual enters the study area 134 

considering his initial state, and π the probability of recruitment in a given initial state. 135 

During the analyses, we controlled for the effect of capture effort on capture probabilities by 136 

including the log-transformed half-days of prospection (logCE) in the models, with one half-137 

day equivalent to 4 hours. In addition, we controlled for the effect of water turbidity on capture 138 

probabilities with a binary variable (1: turbid, 0: not turbid) since high rainfall in 2018 and 2020 139 

clouded water and increased difficulty to catch turtles. Capture probability p was fixed to 0 for 140 

2014 to account for the absence of capture session this year. To note, this missing year had 141 

implications for the estimation of Φ and pent when modeled as time-dependent. In that case, 142 

specific estimates for these parameters in 2013 and 2014 were not separately obtainable; 143 

instead, the estimates pertain to the combined duration spanning these two years i.e., the 144 

probability of staying available in the study area for the years 2013 and 2014 (Φ2013 * Φ2014) 145 

and the probability of entering the study area in 2013 or 2014 (pent2013 + pent2014). 146 
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In order to detect any potential capture heterogeneity or transient behavior, a general goodness-147 

of-fit (GoF) test for multi-state models (Pradel et al., 2003) was performed on the global time-148 

dependent model using UCARE v3.3 (Choquet et al., 2009). 149 

The most general model included state-specific and time-dependent survival probability Φ; site-150 

specific, log(CE) and turbidity effects on capture probability p, size-class-specific and time-151 

dependent entrance probabilities pent and state-specific π. To avoid over-parametrization, Ψ 152 

was classified according to transition possibilities: SSI/SSC = same site/same size class, 153 

SSI/CSC = same site/change size class, CSI/SSC = change site/same size class, CSI/CSC = 154 

change site/change size class, CSI/C2SC = change site/skip one size class, SSI/C2SC = same 155 

site/skip one size class (Fig. B1). Transition to a smaller size-class were set to 0. Models were 156 

then simplified by step, starting by p and following, in this order, by Φ, Ψ, pent and then π. 157 

Time-dependent effect, when present, was removed first. Then, state-specific effect was 158 

reduced to size-class-specific effect, then site effect and finally to constant estimates. Ψ was 159 

only simplified to constant. Selected model for a given step was used as general one for the 160 

next step. Model selection was based on the comparison of AICc. When ΔAICc > 2, model with 161 

the lowest AICc is kept. Otherwise, a Likelihood Ratio Test (LRT) was used to determine which 162 

model to keep. 163 

2.3. Structural parameter estimates 164 

The best model selected was re-run using Monte-Carlo Markov Chain (MCMC) procedure 165 

implemented in MARK software with 50000 iterations, 4000 tuning samples and 1000 burn-in 166 

samples, with uninformative prior on each parameter (Normal(0,1.75)). The output was 167 

processed in R v4.2.2 (R Core Team, 2022) using the ‘coda’ package (Plummer et al., 2006) to 168 

calculate the estimate and precision of each parameter with the median, the variance and the 169 

95% highest posterior density intervals (HPDI95% ) of the posterior distribution. 170 

2.4.  Abundance, density, recruitment and trends 171 
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Derived parameters provided by the MSJS were the super-population size N* corresponding to 172 

the overall number of individuals that used the sampled area during the study, the annual 173 

abundance per state s Ni,s and the global annual abundance Ni. 174 

Annual abundance per site Ni,site was estimated using an Horwitz-Thompson (HT) type 175 

estimator (Seber, 1982). Ni,site was then converted in density, i.e,. the number of turtles per 176 

hectare Di,site using the area of each site (Seber, 1982). 177 

For the present study, annual recruitment in each size class Ei,sc was defined as the number of 178 

immigrant individuals which settled on one of the two sites between ith and i+1th year in a 179 

given size class sc. Formula described in Dupuis and Schwarz (2007) was adapted as follows: 180 

Ei,sc= πsc ∙ penti,sc ∙ N* 181 

 182 

Abundance and recruitment estimates, along with their associated precision, were calculated 183 

with the median, the variance and 95% credible intervals. Variance-weighted trend analyses 184 

were performed on site and size-class specific abundance and on total number of new entrants 185 

using generalized least squared (GLS) method with the package ‘nmle’ (Pinheiro et al., 2022) 186 

and following the method described in Chaloupka and Limpus (2001). 187 

2.5. Relationship between apparent survival, recruitment and density of turtles 188 

Relationship between recruitment E, apparent survival ɸ and density of turtles D was studied 189 

using Pearson correlation tests on MCMC output. Correlation tests were performed: 1) between 190 

Di and ɸi and between Di and Ei in order to test density-dependence of recruitment and 191 

emigration, 2) between Di+1 and ɸi and between Di+1 and Ei to test the effect of emigration and 192 

recruitment on density. For each test, significance was assessed by whether its HPDI95% 193 

involved the value “0”. 194 
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Diet and habitat usage of green turtles vary depending of their size (Bjorndal, 1980; Madeira et 195 

al., 2022) and stable isotopes analysis confirm diet differences in Martinique (Siegwalt, 2021). 196 

Competition would therefore be more likely size-specific and correlation tests were then 197 

performed using state-specific density and size-class specific apparent survival and recruitment. 198 

3. Results 199 

3.1. Site prospection and captured turtles 200 

Sampling effort was variable across years and the success of turtle capture by the free-divers 201 

depended on water turbidity. Sampling effort was summarized in Table A1. 202 

A total of 413 captures were performed in GA (Table A1) corresponding to 237 different 203 

immature green turtles (Fig. A2). Individuals were captured one to five times during the study 204 

(Fig. A3). CCL ranged 29.5 – 100.7 cm (mean CCL±SD: 64.9±15.5 cm; Fig. A4). In ABAC, 205 

245 captures were performed (Table A1) from a total of 181 different immature green turtles 206 

(Fig. A2). Individuals were captured one to three times during the study (Fig. A3). In this site, 207 

CCL ranged 26 – 94.6 cm (mean CCL±SD: 66.0±13.7 cm; Fig. A4). Turtle size distribution did 208 

not differ between sites (Student t-test; p > 0.05). 209 

3.2. Goodness of Fit results and model selection 210 

The Goodness of Fit procedure for Jolly Movement (JMV) model was not significant 211 

(χ² = 49.669, df = 93, p = 1) indicating no capture heterogeneity and no transience in our 212 

dataset. According to AICc selection (Table B1), ϕ was size-class- and time-dependent. p varied 213 

between site and depended of log(CE) and turbidity. Ψ varied among defined categories. Pent 214 

was size-class- and time-dependent and π varied among size-classes. 215 

3.3. Structural parameter estimates 216 
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Apparent survival probabilities ϕ had a mean estimate of 0.95 (HPDI95%: 0.90 – 0.99) for SC1 217 

and 0.84 (HPDI95%: 0.76 – 0.91) for SC2, noticeably higher than those of SC3 0.64 (HPDI95%: 218 

0.57 – 0.70). 219 

The modeled recapture probabilities p accounting for turbidity and sampling effort varied 220 

among years and sites. Specifically, p ranged from 0.32 (HPDI95%: 0.24 – 0.39) to 0.56 221 

(HPDI95%: 0.50 – 0.64), for GA; and from 0.04 (HPDI95%: 0.02 – 0.07) to 0.42 (HPDI95%: 0.34 222 

– 0.51) for ABAC. 223 

3.4. Derived parameter estimates 224 

In SC1, there were between 6.9 (HPDI95%: 0.1 – 17.7) and 44.2 (HPDI95%: 26.6 – 62.5) 225 

individuals that settled yearly in each bay. For SC2 and SC3, yearly number of new entrants 226 

ranged from 0.3 (HPDI95%: 0 – 1.9) to 2.6 (HPDI95%: 0 – 7.3) and from 0.7 (HPDI95%: 0 – 2.3) 227 

to 4.8 (HPDI95%: 1.5 – 8.9) respectively (Fig.1, details in Table C1). 228 

Relatively similar abundances were observed between the two sites. Annual abundance of 229 

turtles varied between 64.7 (HPDI95%: 55.2 – 74.4) and 141.8 (HPDI95%: 110.8 – 178.9) 230 

individuals in GA and between 73.4 (HPDI95%: 59.6 – 90.0) and 138.5 (HPDI95%: 112.6 – 169.0) 231 

individuals in ABAC throughout the study (resulting density per size-classes in Fig.1, details 232 

in Table C2). 233 

3.5. Trends in annual abundance and annual recruitment 234 

Trend analysis revealed that the green turtle population increased in GA at a rate of 9.99% per 235 

year (p = 0.018), largely driven by SC1 abundance growth (22.96% per year, p = 0.01, Table 236 

C3). At ABAC, the green turtle abundance remained stable throughout the study (p = 0.092) 237 

despite an increase of SC1 turtle abundance of 14.08% per year (p = 0.004, Table C3). No 238 

significant trend was detected for SC2 and SC3 abundance, nor for the yearly number of new 239 

entrants (p > 0.05, Table C3). 240 
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3.6. Relationship between apparent survival, recruitment and density of turtles 241 

We used ɸ2013/2014 in correlation tests since ɸ2013/2014 was high across all size-classes (mean = 242 

0.94, HPDI95%: 0.88 – 1), which indicated a high survival rate in 2013 and 2014. For E, we 243 

excluded E2013/2014 since the mean yearly number of new entrants for the two years combined 244 

(2013 and 2014, E2013/2014 / 2) could be different from the real yearly number of new entrants. 245 

Most of the recruitment occurred in SC1 (Fig.1) while most of the emigration occurred in SC3. 246 

Thus, state-specific correlation tests were only performed on SC1 for recruitment Ei and on SC3 247 

for apparent survival ϕi (Fig.2). Relationship between ϕi and Di was stronger in ABAC (-0.84, 248 

HPDI95%: -0.97 – -0.61, Fig. D1) than GA (-0.49, HPDI95%: -0.78 – -0.02, Fig. D1). The 249 

relationship between Ei and Di was only significant in GA (-0.39, HPDI95%: -0.66 – -0.04, Fig. 250 

D1). ϕi was not related to Di+1 while Ei was positively related to Di+1 both in GA (0.81, HPDI95%: 251 

0.57 – 0.96, Fig. D1) and ABAC (0.61, HPDI95%: 0.24 – 0.88, Fig. D1). 252 

 253 

4. Discussion 254 

Using wild-derived CMR data, this study provides key demographic results for a long-term 255 

investigation focusing on immature green turtle population dynamics in the Lesser Antilles. 256 

Importantly, we provide data on recruitment rates of juveniles at their foraging grounds, a key 257 

component of the population dynamics of this endangered reptile. Altogether, results presented 258 

can serve as basis for future investigations and enables us to formulate specific hypotheses 259 

about the internal and external factors that could influence the recruitment and emigration from 260 

the juvenile aggregations on the Martinique coasts, therefore providing a solid basis to support 261 

their conservation. 262 

4.1. Dynamics of juvenile green turtle aggregations in Martinique 263 
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Apparent survival did not differ between Anse du Bourg d’Arlet/Chaudière (ABAC) and 264 

Grande Anse d’Arlet (GA) despite a higher prevalence of fibropapillomatosis in ABAC (Roost 265 

et al., 2022), suggesting that there is no effect of the disease on survival as observed in Patrício 266 

et al. (2011). Nonetheless, further studies should consider fibropapillomatosis severity in order 267 

to assess its impacts on green turtles. High ϕ estimates for SC1 (0.95, HPDI95%: 0.90 – 0.99, 268 

25 cm ≤ CCL < 59 cm) and SC2 (0.84, HPDI95%: 0.76 – 0.91, 59cm < CCL < 73cm ) are similar 269 

to apparent survival estimated on turtle of same size in Puerto Rico (0.83, CI95% : 0.79 − 0.87; 270 

Patrício et al., 2011) and South Great Barrier Reef (0.88, CI95% : 0.84 − 0.93; Chaloupka and 271 

Limpus, 2005) and to the true survival of the first 3 cohort classes in Bahamas (0.89; Bjorndal 272 

et al., 2003). This suggests low mortality and limited emigration of small turtles probably due 273 

to favorable developmental conditions in areas where poaching and natural predators (i.e. 274 

sharks) are absent, unlike foraging grounds in Baja California (true survival  = 0.58, CI95% : 275 

0.36 − 0.78; Seminoff et al., 2003). Considering that true survival increases with sea turtle age 276 

(Chaloupka and Limpus, 2005), difference in apparent survival observed between SC1/SC2 and 277 

SC3 could then be attributed to definitive emigration expected at large sizes. Indeed, the 278 

developmental migration of individuals over 78.5 cm CCL in the juvenile foraging ground of 279 

Martinique (Chambault et al., 2018) is thought to be the responsible for a lower apparent 280 

survival, as suggested by other CMR studies on immature green turtles (Bjorndal et al., 2003; 281 

Colman et al., 2015; Kameda et al., 2023; Patrício et al., 2011). Considering the structure of the 282 

model used in this study, apparent survival variations presented here seem therefore to be a 283 

proxy of emigration variations. 284 

Settlement of new individuals predominantly tooks place in SC1. However, there were 285 

occasional instances of settlement of turtles belonging to SC3. These arrivals could originate 286 

from sites in Martinique not covered by this study or from feeding grounds on other islands. 287 

Earlier emigration of juvenile turtles at smaller sizes than expected has been observed under 288 
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unfavorable environmental conditions, as reported in green turtles by Meylan et al. (2022) and 289 

Pillans et al. (2021). This behavior has been linked to turtles that exhibit slower growth rates in 290 

the Bahamas, potentially indicating an adaptive strategy to optimize their development by 291 

relocating to other feeding grounds offering more abundant or higher-quality resources 292 

(Bjorndal et al., 2019). Settlement of new large individuals, as well as the presence of resident 293 

turtles from 27 cm up to 100 cm CCL (Fig. A4), demonstrate that the two sites studied are 294 

currently able to support the entire developmental stage of juvenile green turtles in the area. 295 

Our study highlights increasing abundances of juvenile green turtles during the study period. 296 

The link between increasing abundances of juveniles and nesting trends has been mentioned by 297 

Bjorndal et al. (2005) and Kameda et al. (2023). Nonetheless, constant recruitment trends 298 

prevent us from hypothesizing that positive abundance trends observed in Martinique are linked 299 

to increasing nesting trends in the contributing Caribbean rookeries (Mazaris et al., 2017). The 300 

constant recruitment trends could then be explained by low hatchling success as observed in 301 

the Gulf of Mexico (Lasala et al., 2023). Indeed, low hatchling success effects on population 302 

growth could take a long time to be detected in nesting trends (Mazaris et al., 2017), however 303 

it is therefore likely to affect within a few years recruitment in juvenile foraging grounds, 304 

considering the ‘lost years’ phase duration (Lutz et al., 2003). This hypothesis needs to be taken 305 

carefully since no data on nesting rookeries has been included in this study. 306 

4.2. Effect of density on juvenile green turtle population dynamics 307 

Drivers of variations of demographic parameters could be multiple, especially those affecting 308 

emigration, as this parameter is highly sensible to local environmental factors (Mollenhauer et 309 

al., 2022; Pillans et al., 2021). Our analysis demonstrated that the local density significantly 310 

and negatively influenced apparent survival in large turtles (SC3, Fig.2). The most likely 311 

explanation is an effect on the probability of emigration, as discussed earlier, with a more 312 

pronounced effect observed in ABAC (Fig.2). Consequently, our results suggest that dispersal 313 
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in older juveniles could be triggered by high densities, a phenomena commonly observed in 314 

population dynamics (Harman et al., 2020). In parallel, yearly recruited number of small turtles 315 

seems to have low density-dependence. This difference of sensitivity to density between small 316 

and large turtles suggests that the carrying capacity of the environment could be size-dependent. 317 

Indeed, green turtles exhibit size-specific diet and habitat use in juvenile foraging grounds 318 

(Bjorndal, 1980; Madeira et al., 2022). In Martinique, large turtles consume T. testudinum and 319 

S. filiforme (Siegwalt, 2021) which are less digestible resources (Siegwalt et al., 2022) while 320 

new recruits mainly consume highly digestible resources such as H. stipulacea and macroalgae 321 

(Siegwalt et al., 2021, 2022). 322 

The high availability of H. stipulacea and macroalgae at the studied sites in Martinique 323 

(Siegwalt et al., 2022) may mitigate density-dependence in the recruitment of juveniles and 324 

contribute to low emigration rates. This hypothesis is also consistent with the observed effect 325 

of recruitment variations on density and lack of effect of apparent survival on density, which 326 

seems to indicate that there is a higher number of turtles entering the study sites than leaving 327 

them. 328 

In contrast, it appears that the density of large turtles is approaching the maximum number that 329 

the environment can support. This maximum capacity is strongly linked to the health of the 330 

seagrass beds (Williams, 1988). In Martinique, native seagrass meadows face pressures from 331 

recreational boat anchoring and from eutrophication (Roost et al., 2022; Siegwalt et al., 2022). 332 

The rapid growth of H. stipulacea enables this species to colonize disturbed patches of sand 333 

(e.g. those cleared by anchors), and to outcompete native species such as S. filiforme and T. 334 

testudinum (Smulders et al., 2017). Moreover, under eutrophic conditions, H. stipulacea  tends 335 

to form dense meadows, thus preventing the development of native seagrass species (Van 336 

Tussenbroek et al., 2016). The scarcity of native seagrass meadows, which are preferred by 337 

large turtles, results in an increased density of turtles on these native patches (Siegwalt et al., 338 
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2022). Native seagrasses are consequently more likely to suffer from overgrazing, exacerbating 339 

the decline of their available biomass (Gangal et al., 2021) and associated density-dependent 340 

mechanisms. This reduction in the surface area and the scarcity of remaining native patches 341 

could lead to several interconnected consequences such as the need to expend more energy to 342 

locate suitable food sources (Meylan et al., 2022) and exposure to increased competition for 343 

food. This context could thus explain these density-dependent emigration peaks, observed in 344 

our study. 345 

Ultimately, the reduced quality of their diet, also by including the less energetic H. stipulacea 346 

(Siegwalt et al., 2022), could trigger earlier definitive emigration (i.e. below ~60cm straight or 347 

curved carapace length; Bjorndal et al., 2019; Pillans et al., 2021). In this context, multiple 348 

consequences are expected: slower growth rate, delayed maturation (Girondot et al., 2021), 349 

negative abundance trends (Gangal et al., 2021), or modified juvenile population structure 350 

(Meylan et al., 2022) with negative effect on Atlantic green turtle population recovery 351 

(Chambault et al., 2018). In Martinique, similar high apparent survival rates between SC2 and 352 

SC1 suggests that there is no significant earlier emigration yet. Nonetheless, without 353 

conservation measures on green turtle foraging habitat, such consequences are expected. 354 

Complementary approach will be required to study turtles diet (stable isotope analysis), spatial 355 

use of the habitat and interaction between turtles (biologgers; Jeantet et al., 2020) according to 356 

their size and will expand knowledge on density-dependent mechanisms demonstrated here. 357 

4.3. Conservation implications 358 

Here, we discuss potential threats faced by large juvenile green turtles on their foraging grounds 359 

in Martinique. High pressures observed on seagrass meadows may lead to anticipate negative 360 

impact on the structure of juvenile green turtle populations. 361 
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Given the significant role played by the juvenile green turtle population of Martinique in 362 

supporting the Atlantic breeder population (Chambault et al., 2018), it is imperative to preserve 363 

favorable environmental conditions to ensure the viability of the entire Atlantic green turtle 364 

regional population. Conservation measures may need to focus on preventing native seagrass 365 

depletion and invasive seagrass expansion and on factors associated with these biotic changes. 366 

For instance, damages promoted by boat anchors and classic mooring could be avoided by the 367 

installation of sustainable mooring in foraging areas of green turtles (Luff et al., 2019). 368 

Moreover, sources of pollution should be identified and measures limiting pollutants emission 369 

in coastal waters should be implemented. The protection of the last areas of native seagrass is 370 

therefore a priority that must be implemented as quickly as possible, even if it is not enough to 371 

stop their disappearance (Siegwalt et al., 2022). Seagrass restoration is perhaps a 372 

complementary solution to consider on long-term, as it has been shown worldwide, specifically 373 

in the Caribbean (Thorhaug et al. 2020). Foraging habitat conservation has been similarly 374 

proposed for terrestrial herbivores, since their demography is affected by grassland and 375 

savannah degradation (Lima et al., 2018). Complementary monitoring studies will be essential 376 

to understand seagrass bed dynamics under anthropic pressures and to assess the effectiveness 377 

of restoration measures in improving the demography of green turtles and the overall health of 378 

these critical ecosystems. 379 

5. Conclusion and perspectives 380 

Here we provided results supporting the hypothesis that native seagrass beds depletion could 381 

1) lead to a restructuration of juvenile green turtle aggregations and 2) impede the capacity of 382 

Martinique foraging grounds to support the entire juvenile life-stage. Considering the 383 

worldwide decline of seagrass beds, results and conservation measures outlined in this study 384 

could prove highly valuable in the management of other juvenile green turtle foraging areas. 385 
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Moreover, these measures could benefit other species, also threatened by seagrass bed depletion 386 

such as manatees, fishes and birds species (Thorhaug et al., 2020). 387 

Estimating both recruitment, survival and emigration of juvenile sea turtle aggregations 388 

represents a critical step to fill the knowledge gaps regarding this crucial life-stage (Wildermann 389 

et al., 2018). This is paramount given the vast geographical range of sea turtle life cycles and 390 

their vulnerability to anthropogenic threats in each of their life-stages, underscoring the 391 

necessity for conservation measures that transcend regions and life-stages. To further advance 392 

our knowledge and conservation efforts, future studies should consider the following 393 

objectives: (1) Quantify the presence of pollutants in the coastal environment and their effect 394 

on seagrass bed depletion. (2) Extend the knowledge about juvenile demography by exploring 395 

somatic growth rate in function of habitat/food quality and turtles diet; this could be useful to 396 

determine time of residency of turtles in the foraging grounds and to investigate potential 397 

density-dependent effects on growth rates. (3) Pursue the juvenile green turtle demography 398 

monitoring with yearly CMR sessions in Martinique, mainly focused on Grande Anse and Anse 399 

du Bourg/Chaudière, to enable the detection of decline in abundance or survival rates, and 400 

facilitate the assessment of the effectiveness of local conservation measures. (4) Extend the 401 

investigations to related nesting rookeries, such as French Guiana, to establish connections 402 

between the demography of the different life-stages and develop efficient regional conservation 403 

measures that encompass the entire range of sea turtle habitats. These future studies will be 404 

crucial for the ongoing conservation and protection of sea turtles throughout their entire life 405 

cycle. 406 
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Fig.1: Annual green turtle density in GA (blue dots) and ABAC (red dots) for (A) size-class 1, 640 

(B) size-class 2 and (C) size-class 3 and (D) size-class-specific number of new entrants with 641 

HPDI95% from the best model.  642 

 643 

Fig.2: (A, C) Yearly recruitment in SC1 as function of density of SC1 turtles (dots) and (B, D) 644 

apparent survival of SC3 as function of density of SC3 turtles (triangles) for (A, B) Grande 645 

Anse d’Arlet (blue) and (C, D) Anse du Bourg d’Arlet/Chaudière (red). Estimates of 646 

recruitment, apparent survival and density with HPDI95% were obtained from the best model. 647 

 648 

 649 

 650 

Fig 1 : One column width 651 

Fig 2 : One column width 652 
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Supplementary materials 

 

Appendix A: Study sites and dataset characteristics 

 

Figure A1: Location of Martinique Island in the world map (red dot) and location of the two 

sampled sites in Martinique (black dots). 
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Figure A2: Calendar of capture occasions in (A) Grande Anse d’Arlet and (B) Anse du Bourg 

d’Arlet/Chaudière between 2013 and 2023. Number of capture per session are indicated above 

each dot. Primary and irregular sessions are symbolized by red and blue dots respectively.  

 

Table A1: Sampling effort (half-day) and number of individuals captured by year and by 

sampled site from 2013 to 2022. ABAC = Anse du Bourg/Chaudière and GA = Grande Anse 

d’Arlet.  

 
 Capture effort   Number of captures 

Year  ABAC GA   ABAC GA 

2013  2.11 3.49   19 28 

2015  4.58 6.18   55 66 

2016  2.53 3.16   27 41 

2017  3.4 3.49   31 36 

2018  0.4 8.55   3 38 

2019  2.33 2.83   31 36 

2020  0.97 3.96   7 45 

2021  2.43 3.89   35 58 

2022  2.19 4.25   37 65 

Total  20.94 39.8   245 413 
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Figure A3: Frequency of individual-specific number of captures on Anse du Bourg/Chaudière 

(light grey) and Grande Anse d’Arlet (dark grey). Mean numbers of captures per turtle were 

represented for Grande Anse d’Arlet (dashed vertical line, 1.74±1.11 captures) and Anse du 

Bourg/Chaudière (dotted vertical line, 1.35±0.59 captures). 
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Figure A4: Central curved carapace length (CCCL, cm) distribution in Grande Anse d’Arlet 

(A, dark grey, n=413) and Anse du Bourg/Chaudière (B, light grey, n=245) of captures used by 

the MSJS model with mean CCL represented by dashed line for each site.
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Appendix B : Model structure and selection 

 

 

 

Figure B1: Transitions between three size classes (from the smaller to the larger : SC1, SC2 

and SC3) on two sites (Site A and Site B) and associate probabilities Ψ. SSI/SSC = Same 

site/same size class (black), SSI/CSC = same site/change size class (blue), CSI/SSC = change 

site/same size class (green), CSI/CSC = change site/change size class (orange), CSI/C2SC = 

Change site/skip one size class (purple), SSI/C2SC = Same site/skip one size class (red). 
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Table B1: Selection of models built using green turtle CMR dataset collected in Martinique 

with estimation of apparent survival probability (ɸ), recapture probability (p), transition 

probability (Ψ), probability of entry between 2 occasions (pent) and initial probability of 

recruitment (π). Selected model for each step is in bold, and best model is in bold and red. LR 

Test Mod 10 vs Mod 3 : χ² = 5.424, df =3, p = 0.1432  | LR test Mod10 vs Mod16 : χ² = 16.088, 

df =7, p = 0.0243 | LR test Mod17 vs Mod18 : χ² = 15.965, df = 7, p = 0.0254 | LR test Mod20 

vs Mod17 : χ² = 3.722, df = 2, p = 0.1555. No.= model number, AICc = corrected Akaïke 

Information Criterion, Dev = Deviance, Npar = number of estimable parameters. 

Step No. Model AICc 
Delta 
AICc 

Num. 
Par 

Deviance 

p 

1 Φ(St+t) p(St+t+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4633.0198 47.5585 53 697.88 

2 Φ(St+t) p(St+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4625.8660 40.4047 45 709.44 

3 Φ(St+t) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4593.6900 8.2287 41 686.44 

4 Φ(St+t) p(CT+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4640.4592 54.9979 38 740.01 

5 Φ(St+t) p(Site+Turb) Ψ(T_type) pent(St+t) π(St) 4628.1546 42.6933 40 723.18 

6 Φ(St+t) p(Site+logEC) Ψ(T_type) pent(St+t) π(St) 4600.5669 15.1056 40 695.59 

7 Φ(St+t) p(Site) Ψ(T_type) pent(St+t) π(St) 4645.7901 60.3288 39 743.08 

8 Φ(St+t) p(.) Ψ(T_type) pent(St+t) π(St) 4655.7060 70.2447 38 755.26 

Φ 

9 Φ(St) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4614.0845 28.6232 34 722.60 

10 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4592.3118 6.8505 38 691.86 

11 Φ(SC1./SC2./SC3+t) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4599.2155 13.7542 38 698.77 

12 Φ(CT) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4614.5751 29.1138 31 729.75 

13 Φ(Site) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4657.9420 72.4807 31 773.11 

14 Φ(.) p(Site+logEC+Turb) Ψ(T_type) pent(St+t) π(St) 4653.8433 68.382 29 773.41 

Ψ 15 Φ(CT+t) p(Site+logEC+Turb) Ψ(.) pent(St+t) π(St) 4829.7719 244.3106 33 940.52 

pent 

16 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(St) π(St) 4592.7805 7.3192 31 707.95 

17 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(CT+t) π(St) 4586.1946 0.7333 35 692.48 

18 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(CT) π(St) 4586.6900 1.2287 28 708.45 

19 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(.) π(St) 4638.3805 52.9192 26 764.50 

π 
20 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(CT+t) π(CT) 4585.4613 0 33 696.21 

21 Φ(CT+t) p(Site+logEC+Turb) Ψ(T_type) pent(CT+t) π(.) 4657.3236 71.8623 31 772.49 

 
Abbreviations: SC = Size-class-dependent, t = Time-dependent,  Site = Site-dependent, logCE 

= log(Capture effort), Turb = Turbidity, Cat = Transition type, St = State-dependent., . = 

constant 
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Appendix C: Abundance, recruitment and trends in abundance 

 

Table C1: Median (E), associated variance (Var) and credible interval (HPDI95%) from the high 

posterior distribution of recruitment estimates. 

Sizeclass Year E Var HPDI95% 

SC1 

2013 23.9 16.3 16.3 32.1 
2014 23.9 16.3 16.3 32.1 
2015 20.5 36.3 9.2 32.7 
2016 11.6 28.3 1.9 22.2 
2017 16.0 35.4 5.3 28.3 
2018 21.6 45.6 9.2 35.5 
2019 44.2 83.1 26.7 62.5 
2020 6.9 27.4 0.1 17.7 
2021 29.9 44.7 17.5 43.3 

      

SC2 

2013 1.4 1.5 0.0 4.0 
2014 1.4 1.5 0.0 4.0 
2015 1.2 1.6 0.0 4.0 
2016 0.6 0.5 0.0 2.2 
2017 0.9 1.0 0.0 3.1 
2018 1.2 1.7 0.0 4.1 
2019 2.6 5.0 0.0 7.3 
2020 0.3 0.5 0.0 1.9 
2021 1.8 2.9 0.0 5.4 

      

SC3 

2013 2.6 1.2 0.9 5.0 
2014 2.6 1.2 0.9 5.0 
2015 2.2 1.1 0.5 4.5 
2016 1.2 0.6 0.1 2.8 
2017 1.7 1.0 0.3 3.8 
2018 2.3 1.6 0.5 5.0 
2019 4.8 3.8 1.5 8.9 
2020 0.7 0.5 0.0 2.3 
2021 3.3 2.2 0.9 6.4 
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Table C2: Median (N), variance (Var) and credible interval (HPDI95%) from the high posterior 

distribution of size-class- and site-specific annual abundance of turtles. Abundances were not 

estimated for 2014 because capture were not performed this year, and no estimation was 

provided for SC1 in ABAC for 2018 since no turtles belonging to SC1 were captured. 

  Grande Anse  Anse du Bourg/Anse Chaudière 
Sizeclass Year  N Var HPDI95%  N Var HPDI95% 

SC1 

2013  9.2 0.5 7.9 10.6  15.5 2.7 12.5 19.0 
2015  35.2 5.2 31.0 39.9  21.3 5.0 17.3 26.0 
2016  38.9 10.0 32.8 45.2  34.1 11.8 27.9 41.2 
2017  23.1 3.1 19.7 26.6  33.8 11.4 27.5 40.5 
2018  28.7 11.2 22.9 35.8  0.0 0.0 0.0 0.0 
2019  33.7 9.0 28.3 40.1  39.3 16.1 32.0 47.6 
2020  72.5 81.2 56.6 91.4  60.0 210.3 36.8 90.9 
2021  39.1 7.8 33.9 44.8  34.6 12.2 28.2 41.8 
2022  54.0 13.7 47.2 61.7  56.1 34.3 45.6 68.5 

            

SC2 

2013  20.8 2.5 17.7 23.9  34.8 13.6 28.2 42.6 
2015  45.7 8.7 40.3 51.8  37.9 15.9 30.8 46.2 
2016  29.2 5.6 24.6 33.9  40.9 16.9 33.5 49.5 
2017  23.1 3.1 19.7 26.6  22.5 5.1 18.3 27.0 
2018  20.5 5.7 16.4 25.6  53.5 424.4 25.0 97.9 
2019  23.3 4.3 19.6 27.8  32.1 10.8 26.2 38.9 
2020  37.8 22.1 29.5 47.7  12.0 8.4 7.4 18.2 
2021  50.0 12.7 43.4 57.3  51.9 27.5 42.4 62.7 
2022  29.1 4.0 25.4 33.2  26.2 7.5 21.3 32.0 

            

SC3 

2013  34.6 7.0 29.6 39.9  23.2 6.1 18.8 28.4 
2015  35.2 5.2 31.0 39.9  71.0 55.8 57.8 86.6 
2016  31.6 6.6 26.7 36.7  17.0 2.9 14.0 20.6 
2017  37.0 7.9 31.5 42.5  30.9 9.6 25.2 37.2 
2018  28.7 11.2 22.9 35.8  26.8 106.1 12.5 49.0 
2019  36.3 10.5 30.5 43.2  39.3 16.1 32.0 47.6 
2020  31.5 15.4 24.6 39.8  12.0 8.4 7.4 18.2 
2021  37.0 6.9 32.1 42.4  34.6 12.2 28.2 41.8 
2022  51.9 12.6 45.4 59.3  56.1 34.3 45.6 68.5 

            

All 

2013  64.7 24.2 55.2 74.4  73.4 60.8 59.6 90.0 
2015  116.1 56.3 102.2 131.6  130.2 187.6 106.0 158.7 
2016  99.6 65.4 84.1 115.8  92.0 85.7 75.4 111.3 
2017  83.1 40.1 70.9 95.7  87.2 76.2 70.9 104.7 
2018  77.8 82.8 62.2 97.3  80.3 954.8 37.5 146.9 
2019  101.2 81.2 85.0 120.3  110.7 127.8 90.1 134.1 
2020  141.8 311.0 110.8 178.9  84.0 412.1 51.5 127.3 
2021  137.0 95.3 118.8 157.0  121.1 149.8 98.9 146.4 
2022  135.0 85.5 118.0 154.2  138.5 208.8 112.6 169.0 
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Table C3: GLS model outputs for Grande Anse d’Arlet (GA) all size classes confounded, Anse 

du Bourg /Chaudière (ABAC) all size classes confounded, and for size class 1 (SC1), size class 

2 (SC2) and size class 3 (SC3) on each site.  

   Model Summary Population Growth (%) 

Model  Slope SE t p RSE  Df Mean LCI UCI 

GA  0.10 0.03 3.09 0.0175 0.11  9 9.99 3.55 16.84 

ABAC  0.04 0.02 1.77 0.1202 0.09  9 - - - 

GA(SC1)  0.21 0.06 3.52 0.0097 0.36  9 22.96 9.60 37.96 

GA(SC2)  0.05 0.04 1.30 0.2336 0.27  9 - - - 

GA(SC3)  0.02 0.02 1.24 0.2557 0.10  9 - - - 

ABAC(SC1)  0.13 0.03 4.54 0.0039 0.15  8 14.08 7.77 20.76 

ABAC(SC2)  -0.04 0.04 -1.04 0.3348 0.28  9 - - - 

ABAC(SC3)  0.00 0.03 0.04 0.9696 0.33  9 - - - 

 

Population growth was estimated when the slope was significant using the formula (eslope-1) × 

100 with associated  95% confidence intervals using (eslope±1.96SE-1)×100 (Bjorndal et al., 2005). 

Significant models and associated p-values are in bold. 
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Appendix D: Correlation tests 

 

 

  

Figure D.1: Posterior distribution with median (dashed red line) and 95% highest posterior 

distribution interval (dashed blue lines) of Pearson correlation coefficients between : number 

of new recruit between year i and i+1 and density at year i (NEi Di); number of new recruit 

between year i and i+1 and density at year i+1 (NEi Di+1); apparent survival between year i and 

i+1 and density of turtles at year i  (ϕi Di) and apparent survival between year i and i+1 and 

density of turtles at year i +1 (ϕi Di+1). Results for Grande Anse d’Arlet are on the left column 

(A, C, E, G) and for Anse du Bourg/Chaudière on the right column (B, D, F, H).  
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