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Abstract The introduction of freshwater fish spe-
cies is a leading cause of aquatic biodiversity ero-
sion and can spread parasites to native populations. 
Hidden diversity evidenced by recent taxonomic 
revisions can add further complexity to the issue by 
rendering biological assessment data incomplete. 
The Eurasian minnows Phoxinus are one such exam-
ple of cryptic diversity, with several described spe-
cies being invasive. Current non-native fish popula-
tions in the small Mediterranean island of Corsica 
(France) are the result of successive waves of intro-
ductions, including several Phoxinus species. This 
study aims at determining which Phoxinus species 

were introduced to Corsica using the cytochrome oxi-
dase subunit I barcoding marker, reconstructing their 
introduction routes and examining their parasite com-
munities. The study found four species in Corsica: 
Phoxinus phoxinus and Phoxinus csikii mainly in the 
northernmost studied drainage basin and Phoxinus 
dragarum and Phoxinus septimaniae in the Tavig-
nano drainage basin. P. phoxinus and P. csikii were 
most likely introduced through a live bait wholesaler 
while P. dragarum and P. septimaniae were probably 
introduced by recreational anglers bringing their bait 
from continental France. The molecular study of their 
Gyrodactylus (Platyhelminthes: Monogenea) para-
sites with the ITS marker allowed us to hypothesize 
inter-drainage basin secondary introduction routes 
for P. phoxinus and P. dragarum. In several sam-
pling sites, Phoxinus minnows had black spot disease 
caused by encysted metacercariae of Digenea, likely 
Posthodiplostomum cuticola. These parasites were 
also found on the brown trout Salmo trutta in a local-
ity where this patrimonial species co-occurs with 
Phoxinus minnows. Barcoding should be used in fish 
communities monitoring to help to accurately identify 
cryptic species.

Keywords Phoxinus complex · Molecular 
delineation · Mediterranean island · Gyrodactylus · 
Black spot disease
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Introduction

The introduction of non-native species, especially 
fish, is one of the leading causes of the decline of 
fauna in freshwater ecosystems at global scale, 
impacting both the abundance and distribution of 
native species (Cambray 2003; Clavero and Garcia-
Berthou 2005; Milardi et al. 2018). Fish introductions 
have diverse impacts on both invaded ecosystems 
and native species, ranging from alteration of inter-
actions between fish (e.g. increased predation pres-
sure), increase in prey availability for native preda-
tors or competition for trophic resources, alteration 
of trophic web structure possibly leading to habitat 
alteration (e.g. eutrophication), and genetic impacts 
through hybridization and introgression (Ribeiro 
and Leunda 2012; Witkowski and Grabowska 2012; 
Ellender and Weyl 2014; Tadese and Wubie 2021). 
An additional, particularly noteworthy consequence 
of species introduction is the co-introduction of 
associated parasites and/or pathogens (Taraschewski 
2006; Ribeiro and Leunda 2012; Ellender and Weyl 
2014; Goedknegt et  al. 2016; Tadese and Wubie 
2021). Such organisms are frequently introduced 
along with their hosts in a new area (Lambert 1997; 
Prenter et al. 2004; Taraschewski 2006). One reason 
to focus on these parasite co-introductions is that this 
phenomenon may have a serious impact as the lack of 
co-evolution between non-native parasites and native 
hosts can result in the lack of an adequate immune 
response to the infection. The scale of the problem 
may be underestimated when biodiversity assessment 
data are either lacking or incomplete, which can be 
the case when dealing with cryptic species. Cryptic 
species are two or more species usually reported as 
a single one because of their indistinguishable mor-
phology and a lack of systematic studies (Bickford 
et  al. 2007). One such example of cryptic diversity 
is the case of minnows Phoxinus spp. (Leuciscidae) 
(Kottelat 2007; Palandačić et  al. 2017; Corral-Lou 
et al. 2019; Denys et al. 2020), small freshwater fish 
widely distributed across Eurasia, for which reliable 
diagnosis on the field is impeded by the difficulty of 
observing the diagnostic characters (Bianco 2014), 
except the nuptial coloration pattern shown in French 
species (Denys et  al. 2020), i.e. only during their 
spawning period. There are currently 26 valid Phoxi-
nus species in Eurasia (Berg 1949; Mitrofanov et al. 
1987; Chen 1988; Kottelat 2006, 2007; Bianco and 

De Bonis 2015; Zhang and Zhao 2016; Palandačić 
et al. 2017; Bogutskaya et al. 2020, 2023; Denys et al. 
2020; Dyldin et  al. 2023; Turan et  al. 2023; Artaev 
et  al. 2024; Bayçelebi et  al. 2024), 5 more molecu-
lar lineages potentially corresponding to distinct spe-
cies (Palandačić et al. 2017) and the taxonomy of this 
genus is still under study, owing notably on the emer-
gence of molecular tools. Within the genus, several 
introduction events have been documented e.g. Phoxi-
nus csikii Hankó, 1922 and Phoxinus septimaniae 
Kottelat 2007 were likely introduced in the lower and 
middle Rhine catchment systems (Netherland, Bel-
gium and Germany) (Palandačić et  al. 2020, 2022); 
the latter species was also introduced in the western 
Po river basin (Italy), possibly during the same period 
with the growing popularity of trout angling (De San-
tis et  al. 2021). Corral-Lou et  al. (2019) highlighted 
the introduction in Catalonia of P. septimaniae and 
of a lineage from the Garonne which may be Phoxi-
nus dragarum Denys, Dettai, Persat, Daszkiewicz, 
Hautecoeur and Keith, 2020 which is endemic to 
the Garonne drainage basin. Similarly, Denys et  al. 
(2020) affirmed the introduction of P. dragarum in 
the Guadalquivir drainage basin on the basis of the 
nuptial coloration of the specimen illustrated by Sáez-
Gómez and Prenda (2019). Garcia-Raventós et  al. 
(2020) noted the introduction of a population from 
the Charente drainage basin (Western France) in the 
Sousa river (Portugal). Introductions of Phoxinus 
were due to their use as live bait for angling, or via 
contamination of Salmonidae used to reinforce stocks 
to enhance angling (Museth et  al. 2007; Miró and 
Ventura 2015; Garcia-Raventós et  al. 2020). These 
introduction events contributed to the alteration of 
the distribution of Phoxinus minnows and have made 
their management more complex. Knowledge of this 
genus’ taxonomy has evolved over the last fifteen 
years (Kottelat 2007; Palandačić et  al. 2017, 2020, 
2022; Corral-Lou et al. 2019; Denys et al. 2020; Gar-
cia-Raventós et al. 2020; De Santis et al. 2021).

The small Mediterranean island of Corsica 
(France) displays a unique freshwater fish stock, with 
a native fish fauna composed of only 4 native fish 
species: the European eel Anguilla anguilla (Lin-
naeus 1758), the brown trout Salmo trutta Linnaeus, 
1758, the freshwater blenny Salariopsis fluviatilis 
(Asso 1801) and the three-spined stickleback Gas-
terosteus aculeatus Linnaeus, 1758; and naturally 
devoid of several Cypriniformes occurring in the 
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Ibero-Franco-Italian region (Roule 1933; Changeux 
1998); and more than 20 non-native species result-
ing from successive waves of introductions into the 
island’s rivers and lakes (Roche and Mattei 1997; 
Roché 2001). These introductions started at the end 
of the nineteenth century with the addition of the 
mosquitofish Gambusia holbrooki Girard 1859 in an 
attempt at biological control of malaria vectors (mos-
quito control). The introductions then continued in 
the 1970s with the release of the brook trout Salveli-
nus fontinalis (Mitchill 1814) and the domestic brown 
trout Salmo trutta Linnaeus, 1758 in mountain lakes. 
Several species such as the roach Rutilus rutilus (Lin-
naeus, 1758), the rudd Scardinius erythrophthalmus 
(Linnaeus, 1758), the tench Tinca tinca (Linnaeus, 
1758), the carp Cyprinus carpio Linnaeus, 1758 and 
the pikeperch Sander lucioperca (Linnaeus, 1758) 
were then introduced into artificial lakes and probably 
dispersed by anglers to rivers. Several non-controlled 
introductions occurred afterwards at unknown dates, 
such as those of Carassius sp., the common perch 
Perca fluviatilis Linnaeus, 1758 and gudgeons Gobio 
spp. Being an insular environment, Corsica is espe-
cially sensitive to species introductions (Towns et al. 
2006; Donlan and Wilcox 2008). The arrival of Phox-
inus minnows in Corsica are one such example of 
fish introductions that may have an impact on native 
fish populations e.g. the heritage species Salmo trutta 
Linnaeus, 1758. According to Denys et  al. (2020), 
two species of Phoxinus are known to occur on the 
island: Phoxinus phoxinus Linnaeus, 1758 in the Golo 
river and P. dragarum in the Tavignano river. How-
ever, this data was acquired at only two localities on 
the island, and owing to the difficulty of discriminat-
ing between Phoxinus species outside their spawning 
period, the specific diversity of this genus has yet to 
be explored in Corsica.

Parasites have been used as a tool for assessment 
of conservation issues, helping to untangle the intro-
duction history of their hosts, to identify their origin 
and spreading routes by acting as proxies for their 
hosts’ genealogy and ecology (Whiteman and Parker 
2005; Nieberding and Olivieri 2007; Gagne et  al. 
2022). The shorter generation time and smaller popu-
lation size of parasites, compared to their hosts, allow 
the use of parasites as markers to clarify the origin 
and dispersal of invasive species (Nieberding and 
Olivieri 2007; Gagne et  al. 2022). For this purpose, 
considerable attention has been paid to viruses (e.g. 

Biek et  al. 2006; Allen et  al. 2010; Wilfert and Jig-
gins 2014). However, macroparasites have also been 
used successfully to gain insight into the origin of 
introduced hosts, their introduction routes and vec-
tors, to highlight contemporary and historical con-
tacts between host populations, to identify the source 
population of migratory individuals, past migrations 
and differentiation events (Wickström et  al. 2003; 
Nieberding et  al. 2004, 2006; Criscione et  al. 2006; 
Reshetnikov et al. 2011; Huyse et al. 2015; Kmentová 
et al. 2019; Šimková et al. 2022). A key feature with 
regard to the ability of a parasite to be a useful marker 
is its shared history with its host, which is depend-
ent on the strength of the host-parasite interaction and 
thus on its host specificity, on the absence or presence 
of intermediate hosts and on the absence or presence 
of a free-living stage (Page 2003; Clayton and John-
son 2003; Charleston and Perkins 2006; Nieberding 
and Olivieri 2007). Monogeneans, with their often 
strong association with their host, their direct life 
cycle and direct transmission, are good candidates to 
study their fish host’s introductions, dispersion, bio-
geography and evolutionary history (Pariselle et  al. 
2011; Lumme et  al. 2016; Kmentová et  al. 2019; 
Benovics et al. 2020; Šimková et al. 2022; Rahmouni 
et al. 2023a).

The aims of this study were (1) to inventory the 
Phoxinus species introduced to the small Mediterra-
nean island of Corsica and their intraspecific variabil-
ity, and to retrace their introduction routes through 
haplotype networks and parasite fauna, (2) to study 
their parasite communities for the first time in this 
region and (3) assess their potential impact on the 
native fish fauna, especially native S. trutta.

Material and methods

Study area and sample collection

A total of 225 Phoxinus minnows were taken from 
12 different freshwater sampling localities across the 
Haute-Corse Département (Corsica, French Medi-
terranean, Fig.  1, Table  1). The sampling localities 
cover a total of 10 rivers and five drainages basins. 
The samplings were conducted from June to October 
2022 by electrofishing in compliance with French 
legislation and with the help of the French Agency of 
Biodiversity (OFB) as well as the Angling Federation 
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of Corsica (FDAAPPMA2). Sampled watercourses 
were selected to include all rivers for which Phoxi-
nus minnow abundance was sufficient, on the basis 
of data obtained through the European Union Water 
Framework Directive fish monitoring conducted by 
the OFB.

Dissection and parasitological examination

Phoxinus minnows were euthanized in compliance 
with French legislation (NOR: AGRG1238753A), 
transported on ice in individual bags to the labora-
tory, and kept on ice until examination. Each indi-
vidual was weighed to the nearest 0.1 g (TW, in g), 

and measured to nearest millimeter (TL, in mm). 
Fin-clips were preserved in 95% ethanol for molec-
ular studies. The stomach, intestine, swim bladder, 
spleen, and liver were placed in Petri dishes with 
physiological saline and examined under a stereom-
icroscope for parasites. The skin, gills, fins, mouth, 
and abdominal cavity were also checked for para-
sites. Brains were checked for Diplostomum phoxini 
(Faust, 1959) metacercariae by squashing the brain 
gently between two microscope slides as described 
in Müller (1995). All parasites collected were pre-
served in 70% or 90% ethanol. A subsample of 
Gyrodactylus (Platyhelminthes: Monogenea) were 
used for further molecular analysis.

Fig. 1  Sampling localities 
for Phoxinus minnows in 
Corsica, with the cor-
responding proportions 
of Phoxinus species and 
corresponding Gyrodac-
tylus clusters. Locality 
number (river, locality 
name): 1 (Asco, Moltifao); 
2 (Casaluna, Gavignano); 
3 (Tartagine, Castifao); 
4 (Golo, Barchetta); 5 
(Fium’Alto, Taglio-Isolac-
cio); 6 (Vecchio, Venaco); 
7 (Tavignano, Altiani); 8 
(Tavignano, Piedicorte-
di-Gaggio); 9 (Tavignano, 
Saint-Georges); 10 (Cor-
sigliese, Pancheraccia); 11 
(Fium’Orbo, Ghisonaccia); 
12 (Abatesco, Prunelli-di-
Fium’Orbo). Diamonds are 
the major cities in Corsica, 
n is the number of individu-
als of the corresponding 
species in the correspond-
ing locality
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Statistical analysis

Parasite indices were calculated following the termi-
nology of Bush et al. (1997): prevalence is the num-
ber of hosts infected with at least one individual of a 
particular parasite species divided by the number of 
hosts examined and expressed as a percentage; mean 
abundance is the total number of individuals of a 
given parasite species in a sample divided by the total 
number of hosts in that sample; and mean intensity 
is the total number of individuals of a given parasite 
species in a sample divided by the number of infected 
hosts in that sample. As species are considered bio-
indicators when their abundance and/or frequency 
in a particular habitat are significantly higher in this 
habitat (Mouillot et  al. 2002), an analysis of indica-
tor values (IndVal) (Dufrêne and Legendre 1997) was 
used to combine the parasite species’ relative abun-
dance (specificity) and relative frequency (fidelity) 
for a given variable. Specificity is the mean abun-
dance of a parasite species in a given group of Phoxi-
nus minnows divided by the same parasite abundance 
infecting all Phoxinus minnows. Fidelity is defined as 
the percentage of Phoxinus minnows in a given group 
infected by a given parasite species. The IndVal anal-
ysis’s capacity to include both specificity and fidelity 
in the same index constitutes an advantage over clas-
sical statistical tests (e.g., ANOVA) when looking 
for indicator species in highly variable communities, 
such as parasites (Mouillot et al. 2002). Calculations 
of IndVal and associated p values (10,000 permuta-
tions) were conducted using the labdsv R package 
(Roberts 2019).

Molecular analyses

For minnows, a DNA barcoding approach sensu 
(Hebert et  al. 2003) was done with the cytochrome 
oxidase subunit 1 (COI) marker. DNA extraction, 
PCR, sequencing and sequences cleaning follow 
Denys et al. (2020). Concerning parasites, total DNA 
was extracted following the same protocol as for 
minnows.

Concerning Gyrodactylus parasites, total DNA 
was extracted with a QIAamp ® DNA Micro kit 
(QIAGEN) following the manufacturer’s instructions. 
The D1 + D2 regions of the 28S rDNA gene was 
amplified using the forward primer C1 5’-ACC CGC 
TGA ATT TAA GCA T-3’ and the reverse primer D2 

5’-TGG TCC GTG TTT CAA GAC -3’ (Wu et  al. 2005) 
and a partial fragment of the Internal Transcribed 
Spacer (ITS2) region was amplified using the for-
ward primer ITS4.5 5’-CAT CGG TCT CTC GAACG-
3’ and the reverse primer IST2 5’-TCC TCC GCT 
TAG TGATA-3’ (Matejusová et  al. 2001). DNA was 
amplified by PCR in a final 20 µL volume contain-
ing 1 µL DMSO, 1 µL of dNTP 6.6 µmol/L, 0.15 µL 
of Qiagen Taq DNA polymerase, using 2 µL of the 
buffer provided by the manufacturer and 0.4 µL of 
each primer at 10 pmol/L; 3 µL of DNA extract was 
added. After 3 min denaturation at 95 °C (hot start), 
the PCR was run for 50 cycles (30 s at 94 °C; 1 min 
at 50 °C for ITS2 and 56 °C for 28S; 1 min 30 s at 
72 °C), with a 3 min terminal elongation at 72 °C on 
a Bio-Rad t100™ thermal cycler. Successful PCRs 
were selected on ethidium-bromide stained agarose 
gel. Sanger sequencing was performed in both direc-
tions by a commercial company (Eurofins) (http:// 
www. eurofi ns. fr).

Species identification, phylogenetic grouping and 
haplotype networks

Phoxinus COI sequences were compared with a 
molecular dataframe from different publications (Gei-
ger et  al. 2014; Knebelsberger et  al. 2015; Behrens-
Chapuis et  al. 2015, 2021; Thalinger et  al. 2016; 
Schönhuth et  al. 2018; Denys and Manne 2019; 
Denys et al. 2020; De Santis et al. 2021; Zangl et al. 
2022; Table  S1). Aligning, p-distances and NJ-tree 
reconstruction based on the DNA barcodes were per-
formed under MEGA X (Kumar et  al. 2018) with 
the Kimura 2 parameter model (K2P; Kimura 1980). 
Bootstrap values (Felsenstein 1985) with 1000 repli-
cates were also calculated for evaluating the robust-
ness of clusters.

Median-joining networks were built from the COI 
datasets of each species using Network v.4.6 (Bandelt 
et al. 1999). We applied a maximum parsimony algo-
rithm and the criterion “frequency > 1” to simplify 
the complex branching scheme and generate networks 
representing the most parsimonious relationships. 
Genetic diversity indices (haplotype diversity (Hd), 
number of polymorphic site (S) and number of hap-
lotypes (h)) were calculated with DnaSP V6 (Rozas 
et al. 2017).

Gyrodactylus delineation was performed as fol-
lows: data processing and sequence assembling were 
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done with Geneious Prime ® 2020.2.4 (http:// www. 
genei ous. com). Sequences were aligned with MAFFT 
alignment (Katoh et al. 2002). PartitionFinder v.2.1.1 
(Lanfear et  al. 2012) was used to estimate the best 
evolution model for the Bayesian phylogenetic infer-
ence analyses selected under the Bayesian Informa-
tion Criterion (GTR + G for ITS2 and 28S). The 
percentage of divergence between sequences was 
calculated in Geneious Prime. The phylogenetic tree 
was constructed with MrBayes v.3.2.6 (Ronquist et al. 
2012). Two independent analyses were run for 10 
million generations, sampling every 200 generations. 
The convergence of the two analyses was checked 
and the tree obtained is a consensus with ten percent 
of the trees discarded as burn-in. Sixteen sequences 
were obtained for the phylogenetic reconstruction and 
two sequences of Benedenia armata were added from 
GenBank (LC602801.1 for ITS2 and LC408961.1 for 
28S) as out group. A total of 16 sequences were used 
for the phylogenetic reconstruction based on ab align-
ment of 1390 base pairs (pb).

Results

Diversity of introduced Phoxinus in Corsica

The Phoxinus minnows sampled in Corsican riv-
ers were molecularly identified at the species level 
as P. phoxinus, P. dragarum, P. septimaniae and P. 
csikii, as supported by the phylogenetic tree (Fig. 1, 
S1, Table 1, S2,). The distribution of these recorded 
species seems to be dependent on the drainage basin, 
with P. csikii recorded exclusively from the Golo 
drainage basin and P. septimaniae from the Tavig-
nano drainage basin. P. dragarum was recorded only 
in the Tavignano drainage basin and those to the 
south of it. P. phoxinus is the majority of the identi-
fied individuals in both northernmost sampled drain-
ages basins (Golo and Fium’Alto) (Fig. 1, S1).

Five P. dragarum haplotypes were detected in 
Corsica (Fig.  2). H7 is shared by 19 individuals 
sampled in the Fium’Orbo and specimens originat-
ing from the Garonne drainage basin in the Pyrenees 
and the Landes (six sequences), H4 is shared by 72 
P. dragarum from the Tavignano and one specimen 
from the Garonne drainage basin in the Massif Cen-
tral (Fig.  2a). Three haplotypes (H5, H6 and H11; 
respectively 12, 15 and 5 individuals) were new and 

did not correspond to any available sequence. Three 
haplotypes were detected in Corsica for P. septima-
niae (Fig. 2b): no correspondence was found for H4 
and H5 (one and five individuals respectively), which 
are separated from specimens originating from the 
Rhone drainage basin by two and three mutational 
steps, respectively. The haplotype H24 recorded from 
the Tavignano in Corsica (6 sequences) was shared by 
minnows sampled in several drainage basins: Medi-
terranean and Rhone (France, 7 sequences), Mid-
dle Rhine (Germany, 12 sequences) and Po (Italy, 
one sequence). Three P. phoxinus haplotypes were 
recorded in Corsica of which H11 was the major one 
(69 sequences) and was shared with four specimens 
originating from the Meuse drainage basin (France), 
the Middle Rhine (Germany, 178 sequences) and one 
specimen from the Boyne River in Ireland. No haplo-
type was shared with specimens from the Seine. The 
second most represented haplotype in Corsica (H10) 
was shared with three specimens from the Upper 
Danube and the Middle Rhine (Germany). Concern-
ing P. csikii, only one haplotype (H23) was detected 
in Corsica (seven sequences) and was shared with 
specimens from the Middle Rhine (Germany, 132 
sequences) and the Po (Italy, two sequences).

Genetic diversity indices are given in Table  S2. 
Comparison of genetic diversity parameters among 
the four species found in Corsica showed that P. 
septimaniae had the highest haplotype diversity, 
mean number of pairwise differences and nucleotide 
diversity while P. phoxinus had the lowest. The high-
est number of haplotypes was reported for P. csikii 
though only one was detected in Corsica. This spe-
cies also showed the highest number of polymorphic 
sites. Conversely, the lowest number was reported for 
P. dragarum while this species had the highest num-
ber of haplotypes in Corsica and the lowest number of 
polymorphic sites.

Parasite diversity in Phoxinus minnows in Corsica

A total of six distinct parasites were recovered from 
Corsican Phoxinus minnows. Gyrodactylus spp. 
(Monogenea: Gyrodactylidae, recovered from all 
sampling localities) and a black spot disease-causing 
metacercariae, most likely Posthodiplostomum cuti-
cola (Digenea: Diplostomidae, recovered from half 
the localities) were the two main parasites recov-
ered from Corsica. Prevalence, mean abundance 
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and mean intensity for both these two main para-
sites are reported for each locality and each host 
species (Tables  1, S3). P. cuticola metacercariae 
were recovered from all Phoxinus species except 
P. septimaniae and Gyrodactylus from all four spe-
cies present in Corsica. Gyrodactylus species could 
not be identified at the species level due to the lack 
of matching sequences in GenBank, but our phylo-
genetic analysis showed the occurrence of four dis-
tinct clusters of Gyrodactylus sequences (Figs. 1, 3). 
The first cluster consists of Gyrodactylus recovered 

from a P. phoxinus from Tartagine river (Golo drain-
age) and from several P. dragarum from Fium’Orbo, 
Tavignano and Abatesco. Cluster 2 comprises a sin-
gle sequence from a P. dragarum sampled in the 
Abatesco. The third cluster shows haplotypes being 
shared between a P. phoxinus from Vecchio river 
(Tavignano drainage basin) and from P. dragarum 
from the Asco (Golo drainage basin), Tavignano and 
Fium’Orbo rivers. The last cluster (Cluster 4) con-
sists of two sequences originating from a P. dragarum 
from Corsigliese river (Tavignano drainage basin). 

Fig. 2  COI haplotype networks obtained for the four Phoxinus 
species detected in Corsica, on the 745 sequences generated 
in this study and retrieved from GenBank (Table  S1). Circle 

size is proportional to the observed haplotype frequencies and 
black points represent hypothetical haplotypes. Colors high-
light drainage basins
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Besides Gyrodactylus spp. and P. cuticola, several 
parasites could not be identified due to the low num-
ber of recovered individuals and development stages 
lacking diagnostic features. One Trematoda larvae 
was recorded from the body cavity of P. dragarum, 
Nematoda larvae were observed in the swimbladder 
of P. phoxinus, P. dragarum and P. septimaniae, two 
leeches (Hirudinea) were recovered from the skin of 
a P. phoxinus and a P. dragarum and a few freshwater 
mussel glochidia (Bivalvia: Unionidae) were recov-
ered from the gills of three individuals P. dragarum, 
only in locality 9. The examination of brains did not 
show any D. phoxini metacercariae.

Influence of sampling localities on parasite 
communities

IndVal analysis did not show any preference of Gyro-
dactylus spp. nor black spot disease metacercariae 
towards a particular Phoxinus species and those 
results are thus not presented here. However, IndVal 
analysis showed that both black spot disease-causing 
metacercariae and Gyrodactylus spp. are characteris-
tic of locality 3 (Tartagine river) as the IndVal as sig-
nificantly higher for this locality (Table S4). Fidelity 
of Gyrodactylus spp. was very high whereas the spec-
ificity was intermediate as this taxon was recovered 
from all studied localities. Black spot disease meta-
cercariae showed quite high specificity and interme-
diate fidelity. This corresponds to the locality show-
ing the highest abundances for both parasites (Fig. 4).

Discussion

Phoxinus minnows in Corsica: underestimated 
diversity and diverse introduction routes

Only one Phoxinus species was reported from Corsica 
(Roché 2001) until 2020 when Denys et  al. (2020) 
showed not only the presence of P. phoxinus in the 
Golo river, but also of P. dragarum in the Tavignano 
river. The present study reports for the first time the 
occurrence of two additional species in Corsica: 
P. septimaniae and P. csikii. The results of the pre-
sent study should however be analyzed taking into 
account the limitation of the molecular marker used. 
Hybridization events were reported for this genus 
(Palandačić et al. 2017, 2020, 2022; Corral-Lou et al. 

2019). Our study used only a mitochondrial marker 
(COI) which does not allow the detection of eventual 
hybrids. However, as numerous Corsican localities 
present admixed populations, the presence of hybrids 
is likely. So, using a nuclear marker could be of inter-
est in the future.

All four species of Phoxinus species introductions 
in Corsica are likely to result from their use as live 
bait by anglers. This mechanism has already been 
shown to be the cause of Phoxinus minnows intro-
ductions in other regions in Europe e.g. Norway and 
Portugal (Museth et al. 2007; Garcia-Raventós et al. 
2020). This hypothesis is supported by the isolation 
of Corsica from the mainland by the Mediterranean 
Sea and the fact that Phoxinus minnows are not part 
of the native Corsican fish fauna (Changeux 1998; 
Roché 2001; Keith et al. 2020), indicating a human-
mediated introduction and the common use of Phoxi-
nus minnows as live bait for recreational fishing e.g. 
Salmo trutta angling (Banha et  al. 2016). Two pat-
terns of introduction are supported by the COI hap-
lotype networks (Fig.  5): (1) In both northernmost 
Corsican drainage basins (Golo and Fium’Alto), P. 
phoxinus was the majority of sampled individuals, 
and P. csikii was only found in the Golo drainage 
basin, with haplotypes originating from the Mid-
dle Rhine, pointing toward an introduction through 
individuals from a continental Europe wholesaler 
and used as baits. This pattern resembles the case of 
P. csikii and P. phoxinus in Germany and the Neth-
erlands (Palandačić et al. 2022). In France, minnows 
sold in all angling shops come from a same whole-
saler (Amorvif; http:// www. armor vif. com/) located 
in Brittany. Costedoat et  al. (2014) characterized 50 
specimens from this wholesaler and they found that 
86% belong to the Meuse lineage of P. phoxinus, 
6% were identified as P. csikii, 6% as Phoxinus fay-
ollarum Denys, Dettai, Persat, Daszkiewicz, Haute-
coeur and Keith, 2020 and 2% as P. septimaniae. The 
proportions of each species in both northernmost 
drainage basins (92% P. phoxinus and 8% P. csikii) 
add support to the hypothesis of a wholesaler-medi-
ated introduction as the main species is the same 
in these localities and the wholesaler’s stock. The 
absence of two minor species P. septimaniae and 
P. fayollarum and presence of P. csikii would result 
from a random sampling that most likely occurred 
during the importation process. (2) In the southern-
most drainages basins (Tavignano, Fium’Orbo and 
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Abatesco), the occurrence of haplotypes from South-
ern France (Garonne, Mediterranean and Rhone) for 
P. septimaniae and P. dragarum could be indicative 
of angler-mediated introductions, as has been shown 
in the case of P. dragarum and Phoxinus bigerri Kot-
telat 2007 in the Iberian Peninsula (Corral-Lou et al. 
2019). In this region, it is known that anglers travel 
widely and can use and introduce invasive species 
(Banha et al. 2016), and it is likely that anglers from 
continental France bring their live baits with them to 
be used in Corsican freshwaters.

Six species are recognized from continental 
France: P. phoxinus, P. csikii, P. septimaniae, P. dra-
garum, P. fayollarum and P. bigerri (Geiger et  al. 
2014; Corse et  al. 2017; Palandačić et  al. 2017; 
Schönhuth et  al. 2018; Denys et  al. 2020). To our 

knowledge, Phoxinus species reported from Italy con-
sist of Phoxinus lumaireul (Schinz, 1840), P. septima-
niae and P. csikii (Palandačić et  al. 2017; De Santis 
et  al. 2021) and those from Spain are P. bigerri, P. 
septimaniae and P. dragarum (Geiger et  al. 2014; 
Corral-Lou et  al. 2019; Keith et  al. 2020). Accord-
ing to the extent of current knowledge concerning 
the distribution of this genus’ species, France is the 
only country where all species introduced to Corsica 
were reported. The known distribution of Phoxinus 
species in the countries closest to Corsica is thus an 
additional argument strengthening the hypothesis of 
multiple introductions from continental France. The 
inclusion of more individuals in haplotypes analy-
sis would be of interest to better resolve haplotype 
networks as those generated in this study showed 

Fig. 3  Phylogenetic tree inferred with MrBayes for the Gyrodactylus sampled in Corsica using ITS2 gene, with their corresponding 
host species. Numbers indicated in grey correspond to the four clusters. Minnows pictures come from Denys et al. (2020)
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several hypothetical haplotypes and thus uncertain 
relationships.

Additionally, the study of these fishes’ parasites 
allows the hypothesis of secondary dispersion routes 
(Fig. 5). The observation of two shared Gyrodactylus 
clusters (clusters 1 and 3) between P. phoxinus from 
Golo drainage and P. dragarum from Tavignano and 
Fium’Orbo (plus Abatesco for one of them) drainages 
basins, combined with the absence of observation of 
P. dragarum in the Golo drainage basin, allows the 
hypothesis of a recreational anglers-mediated sec-
ondary dispersion of fish and their parasites from 
the Golo drainage to the Tavignano, Fium’Orbo and 
Abatesco drainages basins. As P. phoxinus was not 
observed in the Fium’Orbo and Abatesco rivers, a 
probable suite of events would be: a first transfer of 
P. phoxinus from the Golo drainage basin to the Tavi-
gnano drainage basin, and a second transfer of P. 
dragarum from the Tavignano drainage basin to the 
Abatesco and Fium’Orbo. The use of parasites as 
potential markers for introduction routes and histori-
cal distribution of hosts has already been discussed 
e.g. Kapentagyrus (Monogenea: Dactylogyridae) 
were used to clarify the origin of the Clupeidae Lim-
nothrissa miodon (Boulenger, 1906) in Lake Kariba, 

Zimbabwe (Kmentová et al. 2019), the lack of Gyro-
dactylus on the round goby Neogobius melanostomus 
(Pallas, 1814) in Belgium suggested an introduction 
via ballast water (Huyse et  al. 2015), host specific 
Dactylogyrus (Monogenea: Dactylogyridae) were 
used to evidence historical contact between North 
American and European Leuciscidae as well as 
contemporary contacts between these fish in North 
America (Šimková et al. 2022) and the host-specific 
Nippotaenia perccotti (Akhmerov, 1941) (Cestoda: 
Nippotaeniidae) proved useful to analyze the intro-
duction vectors and dispersion pathways of its host, 
the Chinese sleeper Perccottus glenii Dybowski, 1877 
(Reshetnikov et al. 2011). Again with regard to P. gle-
nii, the Monogenea Gyrodactylus perccotti Ergens 
& Yukhimenko, 1973 has been used to suggest dis-
tinct introduction events in the Vistula and Danube 
drainages basins and a migration from the Vistula to 
the middle Dnieper River (Ondračková et  al. 2012; 
Kvach et  al. 2016). Here we show the usefulness of 
Gyrodactylus species as tags to elucidate regional-
scale inter-basin transfer of their hosts in the case of 
Phoxinus minnows introduction in a small Mediterra-
nean island.

Fig. 4  Abundance of infection for a Gyrodactylus spp. and 
b Black spot disease (metacercariae) in Phoxinus minnows 
for each locality. Localities: (1) Moltifao, (2) Gavignano, (3) 
Castifao, (4) Barchetta, (5) Taglio-Isolaccio, (6) Venaco, (7) 
Altiani, (8) Piedicorte-di-Gaggio, (9) Saint-Georges, (10) 

Pancheraccia, (11) Ghisonaccia, (12) Prunelli-di-Fium’Orbo. 
Drainage basin A: Golo, B: Fium’Alto, C: Tavignano, D: 
Fium’Orbo, E: Abatesco. Boxplots appearing flat are due to the 
low prevalence of parasite in the corresponding locality
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Low parasite diversity of introduced Phoxinus 
minnows

In Eurasia, wild parasite communities of Phoxinus 
spp. show species richness ranging from four hel-
minths reported from Frongoch lake in the UK (Bibby 
1972) to 14 helminths species in the river Pechora, 
Russia (Dorovskikh and Stepanov 2008, 2009) and 14 
parasite species including helminths and Copepoda in 
the rivers Chulman and Ungra, Russia (Boutorina and 
Reznik 2015). With five helminth species, the parasite 
richness of Phoxinus minnows in Corsica was thus 
among the lowest reported for this genus in Eurasia, 

along with two reports from the UK and one from a 
mountain water system in southern Norway (Ash-
worth and Bannerman 1927; Bibby 1972; Kristoffer-
sen and Teigland 1997). A likely explanation for the 
low diversity reported from the UK is its insularity 
whereas the Phoxinus examined in southern Norway 
were qualified as recently spread. Corsica combines 
both these characteristics, being a small Mediterra-
nean island where Phoxinus minnows are part of the 
non-native fauna, most likely introduced circa 2000 
(Roché 2001). Several taxa known to occur in Phoxi-
nus in mainland southern Europe were not recorded 
from Corsica, such as the Acanthocephala, the 

Fig. 5  Resume of introduc-
tion events of Phoxinus 
minnows in Corsica based 
on results from this study. 
Solid arrows correspond to 
primary introduction routes 
(wholesaler and angler-
mediated introductions), 
dashed arrows to secondary 
routes (angler-mediated 
inter-drainage basin trans-
locations)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Multiple introduction pathways of non‑native Phoxinus minnows (Teleostei: Leuciscidae)…

1 3
Vol.: (0123456789)

Argulidae (Ichthyostraca), the Allocreadiidae (Dige-
nea) and the Cestoda (both Proteocephalidae and 
Diphyllobothridae) (Cruz et al. 2022). The few para-
sitological analyses of Phoxinus minnows conducted 
in mainland France showed radically distinct parasite 
communities, with the presence of Dactylogyrus spp., 
D. phoxini and Diplozoon spp., taxa not recorded in 
Corsica (Joyeux and Baer 1953; Euzet and Lambert 
1971; Lambert 1977; Le Brun et al. 1988). However, 
it should be noted that these records originate from 
localities pertaining to the distribution ranges of P. 
fayollarum, a species not observed in Corsica, and of 
P. septimaniae, which was one of the least abundant 
Phoxinus in our samples and may have been intro-
duced in small numbers Data concerning the parasite 
fauna of Phoxinus species found in Corsica are cur-
rently lacking.

The absence of record for D. phoxini in Corsica 
can appear surprising as this species was reported 
from Phoxinus minnows from Russia in the east to 
Spain in the west (Dorovskikh et al. 2008; Cruz et al. 
2022). However, there are two possible explanations 
for this: (1) D. phoxini “missed the boat” and never 
reached Corsica i.e., the Phoxinus introduced to Cor-
sica were devoid of this parasite, or (2) D. phoxini 
“drowned on arrival”, being unable to complete its 
life cycle.

As a side observation, there may still be much to 
unravel concerning Gyrodactylus diversity in Phoxi-
nus. The four distinct clusters detected in the fresh-
waters of Corsica and highlighted by the use of ITS2 
gene potentially correspond to four different species 
and two of them were shared between two species of 
hosts (P. phoxinus and P. dragarum) while the other 
two have only be found in P. dragarum. Due to tech-
nical difficulties, molecular and phylogenetic analysis 
could not be performed for Gyrodactylus specimens 
sampled on all Phoxinus species present in Corsica 
despite their occurrence on the four species recovered 
from the island. Numerous species of Gyrodactylus 
are known to occur on Phoxinus minnows through-
out Eurasia (Harris et  al. 2004; Bakke et  al. 2007; 
Lumme et  al. 2017), with some species recorded 
from a restricted number of sampling localities e.g., 
Gyrodactylus vimbi Shulman, 1954 (Finland) (Blazek 
et  al. 2008), Gyrodactylus prostae Ergens, 1963, 
Gyrodactylus llewellyni Ergens & Dulmaa 1967 and 
Gyrodactylus minimus Malmberg, 1957 (Mongo-
lia) (Ergens and Dulmaa 1967), and Gyrodactylus 

konovalovi Ergens 1976 (Russia) (Boutorina and 
Reznik 2015); and other species known from a wider 
geographical range e.g. Gyrodactylus macronychus 
Malmberg, 1957 (Czech Republic, Finland, Mongo-
lia, Norway, Russia, the UK and Spain) (Ergens and 
Dulmaa 1967; Ergens 1976; Matějusová et al. 2000; 
Ziętara and Lumme 2003; Dorovskikh and Stepanov 
2008; Grano-Maldonado et  al. 2011; Pettersen et  al. 
2016; Cruz et al. 2022) or Gyrodactylus pannonicus 
Molnár, 1968 (Czech Republic, Finland, Russia, Slo-
vakia and the UK) (Matějusová et  al. 2000; Ziȩtara 
and Lumme 2002; Dorovskikh and Stepanov 2008; 
Blazek et  al. 2008; Grano-Maldonado et  al. 2011; 
Lumme et al. 2017). As Gyrodactylus is an extremely 
diversified genus, comprising both generalists and 
highly specialist species, with an estimated propor-
tion of 30% infecting a single host (Bakke et al. 1992, 
2007; Harris et al. 2004), it is likely that the diversity 
of introduced Gyrodactylus in Corsica is still under-
estimated. As an additional argument, this genus is 
known for its cryptic diversity resulting from the lack 
of morphological characters that would enable unam-
biguous species identification (Hansen et  al. 2007; 
Razo-Mendivil et  al. 2016; Ondračková et  al. 2020; 
Rahmouni et  al. 2023b, a). Studies of fish Monoge-
nea regularly allow detection and description of new 
species of Gyrodactylus (e.g. Vanhove et  al. 2011, 
2014; Přikrylová et al. 2012a, b; Ziętara et al. 2012; 
Lumme et al. 2017; Shigoley et al. 2023; Zhang et al. 
2023). More effort focused on the molecular identifi-
cation of Gyrodactylus and their Phoxinus minnows 
hosts across Eurasia would likely reveal a consider-
able diversity which remains unknown for now. An 
example of this potential is the description of three 
new Gyrodactylus species from minnows sampled in 
the Baltic, White Sea and Black Sea basins, and in 
Mongolia (Lumme et al. 2017).

May introduced minnows transmit parasites to native 
species?

Black spot disease is caused by encysted metacer-
cariae of Digenea, to which the fish host reacts by 
forming a fibrous capsule (Wittrock et al. 1991). Fish 
melanocytes are then attracted by these processes 
and melanin is deposited around the parasite, creat-
ing black spots visible to the naked eye (Tobler and 
Schlupp 2008). Though black spot disease-causing 
metacercariae observed in the present study could not 
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be identified at the species level, there is a restricted 
number of Digenea known to cause such symptoms. 
Several species cause black spot disease in marine 
fish: Ichthyophaga sp. (Fecampiida: Piscinquilini-
dae) (Justine et  al. 2009), Scaphanocephalus expan-
sus (Creplin, 1842) and Scaphanocephalus sp. (Pla-
giorchiida: Heterophyidae) (Kohl et al. 2019; Dennis 
et al. 2019; Elmer et al. 2019; Cohen-Sánchez et al. 
2023), and Cryptocotyle concava (Creplin, 1825) and 
Cryptocotyle lingua (Creplin, 1825) and Cryptocotyle 
jejuna (Nicoll, 1907) (Plagiorchiida: Opisthorchii-
dae) (Khan 2006; Aalvik et  al. 2015; Duflot et  al. 
2021, 2023; Kornyychuk et  al. 2022). Considering 
their environmental preferences, it is highly unlikely 
that the metacercariae found on Phoxinus minnows 
in Corsican freshwaters are any of these species. 
The genus Crassiphiala and Uvulifer (Diplostomida: 
Diplostomidae) are known to occur in American 
freshwaters (Berra and Au 1978; Quist et  al. 2007; 
Tobler and Schlupp 2008; Wisenden et  al. 2012; 
Achatz et al. 2019; López-Hernández et al. 2023) and 
Uvulifer sp. was detected in Northern Africa (Charo-
Karisa et  al. 2021). In Eurasia, black spot disease 
in fish has been attributed to Apophallus muehlingi 
(Jägerskiöld, 1899) and Apophallus donicus (Skrjabin 
and Lindtrop, 1919) (Plagiorchiida: Opisthorchiidae) 
(Sándor et  al. 2017; Tyutin et  al. 2023) but, to the 
extent of our knowledge, Posthodiplostomum cuticola 
(von Nordmann, 1832) (Diplostomida: Diplostomi-
dae) is the most commonly reported agent of this con-
dition in Europe (Shukhgalter and Chukalova 2002; 
Ondracková et  al. 2004b, a, c; Zrnčić et  al. 2009; 
Kirankaya and Ekmekçi 2011; Maja et al. 2012; Innal 
et al. 2020; Cech et al. 2021). As P. cuticola is also 
the only black spot disease-causing Digenea to have 
been reported from Phoxinus minnows including 
in continental France (Nicoll 1924; Kennedy 1974; 
Prouff 2017; Cruz et al. 2022), assuming that it is the 
species present in Corsica is a reasonable hypothesis. 
Unfortunately, parasitological data concerning Corsi-
can fish anterior to this introduction of Phoxinus min-
nows on the island are not available, and it is thus not 
possible to know whether black spot disease was co-
introduced with these fish. Black spot disease-caus-
ing Digenea, including P. cuticola, typically have an 
complex life cycle involving a piscivorous bird such 
as Ardeidae (Dönges 1964). Corsica being a Mediter-
ranean island situated on bird migration routes (Bru-
derer and Liechti 1999; Jourdain et al. 2007; Maggini 

et al. 2020), the parasite could have been transported 
by migrating birds and have found competent fish 
hosts among the numerous species introduced in 
the island waterways, including Phoxinus minnows. 
While black spot disease does not seem to cause 
mortality in fish hosts, symptoms can include body 
deformation, muscle fiber necrosis and dysfunction of 
kidney and liver, which can be particularly harmful to 
fry (Williams 1994; Marković and Krsmanović 2008; 
Innal et al. 2020). This pathogenicity could be a point 
of concern as a preliminary study conducted in 2021 
allowed detection of the presence in locality 3 (Tart-
agine river) of black spot disease-causing metacer-
cariae on brown trout Salmo trutta Linnaeus, 1758, a 
species considered of patrimonial interest in Corsica. 
This disease had not been detected in S. trutta in Cor-
sica before the present study despite extensive sur-
veys of this species’ parasitofauna (Quilichini et  al. 
2007; Quilchini et al. 2010), and, to the extent of our 
knowledge, P. cuticola was only reported once from 
S. trutta, in Poland (Rolbiecki et al. 2009).

Conclusion

Although the extensive range of ecological conse-
quences of Phoxinus minnows introduction in Corsica 
is not yet fully understood, their presence in sustain-
able populations is of concern as they could com-
pete with native fish. Phoxinus minnows are reported 
to impact native fish e.g. reduced recruitment and 
growth rates in S. trutta in Scandinavia, possibly 
resulting from competition for trophic resources as 
there is a dietary overlap between Phoxinus minnows 
and young S. trutta (Museth et al. 2007, 2010). It has 
been suggested that the harsh Mediterranean climatic 
conditions could limit the establishment of introduced 
species having evolved under different environmental 
conditions (Filipe et al. 2010), but Phoxinus minnows 
seem to have broad-enough ecological tolerances to 
successfully colonize this type of habitat.

The introduction of Phoxinus minnows has likely 
had parasitological impacts on native species, as 
shown by the case of black spot disease. While it is 
not possible to know whether these fish co-introduced 
the parasite responsible for this infection, its occur-
rence in Corsican freshwaters is most likely favorable 
to the disease’s persistence on the island, and thus its 
potential transmission to native species. Parasites, 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Multiple introduction pathways of non‑native Phoxinus minnows (Teleostei: Leuciscidae)…

1 3
Vol.: (0123456789)

especially Monogenea with relatively restricted host 
spectrum, can be useful markers of small-scale sec-
ondary introduction patterns, and allow detection of 
inter-basin transfer of hosts at the regional scale.

In the context of the European Water Framework 
Directive, all member states of the European Union 
have to monitor their fish populations. It has been 
shown that Phoxinus species are reliably identifiable 
on the basis of the nuptial coloration pattern only dur-
ing their spawning period (Denys et al. 2020). As the 
monitoring periods of fish populations are not always 
compatible with the Phoxinus spawning period, the 
addition of molecular identification (i.e. barcoding) in 
the context of the Water Framework Directive should 
be considered. A complementary approach could be 
the use of eDNA detection methods (Pont et al. 2021).

Another primordial aspect of Phoxinus minnows’ 
introductions is the importance of applying manage-
ment plans able to prevent future introductions. A 
Europe-wide ban on live bait fishing could be one 
approach to prevent future fish introductions, espe-
cially in other Mediterranean islands that currently 
seem free of Phoxinus minnows, such as Sardinia and 
Sicily (Orrù et al. 2010; Marrone and Naselli-Flores 
2015).
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