
HAL Id: hal-04562531
https://hal.science/hal-04562531

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-class Neural Additive Models : An Interpretable
Supervised Learning Method for Gearbox Degradation

Detection
Charles-Maxime Gauriat, Yannick Pencolé, Pauline Ribot, Gregory Brouillet

To cite this version:
Charles-Maxime Gauriat, Yannick Pencolé, Pauline Ribot, Gregory Brouillet. Multi-class Neural
Additive Models : An Interpretable Supervised Learning Method for Gearbox Degradation Detection.
2024 IEEE International Conference on Prognostics and Health Management, Jun 2024, Spokane WA,
United States. �hal-04562531�

https://hal.science/hal-04562531
https://hal.archives-ouvertes.fr


Multi-class Neural Additive Models : An
Interpretable Supervised Learning Method for

Gearbox Degradation Detection
Charles-Maxime Gauriat∗†, Yannick Pencolé†, Pauline Ribot† and Gregory Brouillet∗
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Abstract—This paper introduces the Multi-class Neural Addi-
tive Models (MNAMs), an extension of Neural Additive Models
(NAMs) designed to solve multi-class classification problems
while remaining interpretable. The paper firstly presents a set of
definitions around model interpretability and associated concepts,
concepts on which the proposed machine learning method relies
on. The core of the contribution lies in the development of
MNAM, a model training method designed to minimize the
traditional trade-off between accuracy and interpretability. This
method is then put to test in a concrete application: the detection
of gearbox degradation levels using vibration data, as part of
the PHM Society data challenge of 2023. The obtained results
demonstrate that a MNAM reaches higher accuracy performance
than other interpretable methods such as Decisional Tree (DT)
or Generalized Additive Models (GAMs).

I. INTRODUCTION

In the industrial field and for the last decade, factories
are more and more seeking to move away from corrective
maintenance to condition based maintenance (CBM) [1]. By
instrumenting complex systems in order to acquire data, they
can develop a data-driven approach [2] able to compel with
a Prognostic and Health Management (PHM) strategy and
therefore moving toward predictive maintenance. Predictive
maintenance consists in optimally deciding when to replace
a component in a complex system like a machine tool so that
it is always operating properly [3]. It also helps to prevent
manufacturing waste.

To get such a predictive maintenance strategy, relevant
sensors are added to components of the complex system
to measure data at operating time and use a prognostic
model to check the current health and predict the Remaining
Useful Life (RUL) of every component of the machine at
any time. Through its life, a component will reach various
degradation levels until it is no longer functional. With a
data-driven approach, it is possible to detect and predict when
these degradation levels will appear. Various data processing
techniques and machine learning (ML) methods are used to
determine the RUL [4]. However, as performance increases,
confidence in these algorithms can decrease. As in the medical
and legal fields, the industry needs more than ever to be able
to better understand the ML methods that are used and the
decision-making process of the trained models, in order to

avoid the use of so-called black box models [5]. With a better
understanding of the trained models, data scientist experts
can indeed more effectively detect deviations and learning
bias. However, in a PHM context, maintenance operators must
also have a better understanding of the decisions produced
by the trained models, as the operators are responsible for
the efficient maintenance of their equipment. To ensure that
operators follow the predictive maintenance strategy obtained
by machine learning techniques, the underlying trained model
must offer an acceptable level of confidence. This can only be
achieved through the use of interpretable models.

There are plenty of supervised learning methods available
at different scales that aim at learning interpretable models
such as Linear Models, Decision Trees (DT) or Generalized
Additive Models (GAMs) [6]. However, more complex and
performant methods such as Multi Layer Perceptron (MPL) are
still considered as black box models so far, as the interactions
between the hidden layers of the model cannot be interpreted.
Recently, to overcome this issue in such models, Neural
Additive Networks (NAMs) [7] have been introduced. This
supervised method proposes to use the concepts of GAMs
applied to neural network structures. To date, NAMs have been
able to solve supervised task like regression problems or binary
classification problems [8]. However, to solve some PHM
problems, multi-class classification is required: for instance in
the classification of fault degradations or ageing models that
characterize a RUL as a set of classes [9].

The contributions of this paper are the following. First,
model interpretability and related concepts are discussed lead-
ing to a fixed set of definitions that will be used throughout
this paper. The second contribution is the proposition of the
Multi-class Neural Additive Model (MNAM) as an extended
version of the NAM algorithm for multi-class classification to
train models that are interpretable. A MNAM is developed
to reduce the accuracy-interpretability tradeoff that can be
found with other interpretable methods. With help of this new
model, a new supervised learning method is presented that
learns models for detecting degradation levels. To compare
the proposed method and illustrate its advantage with regards
to other supervised learning techniques, MNAMs and these
methods have all been implemented and tested on the PHM



Society Data Challenge 2023 [10] which is a problem of multi-
class degradation detection relying on gearbox vibratory data.

The paper is organized as follows. Section II discusses the
different notions about interpretability. Section III presents the
MNAM architecture. In Section IV, the proposed MNAM used
for learning degradation models is applied to the PHM Data
challenge and its performance is experimentally compared
with other methods. The interpretation of the obtained model
is then detailed. Section V finally discusses the performance
and the limitations of the MNAM.

II. ABOUT INTERPRETABLE MODELS

Lately, the Explainable Artificial Intelligence (XAI) com-
munity has been using various terms referring to the compre-
hension of machine learning models: interpretability, explain-
ability, intelligibility or even comprehensibility [11]. As the
vision behind these concepts seems to be fuzzy and does not
refer to a monolithic concept so far [12], it is decided for this
paper to propose the following definitions.

Explainability is the ability to explain a prediction. It is a
post prediction process where the model is able to justify the
prediction using the feature interactions that the model has
used to perform this specific prediction.

Interpretability is a stronger concept than explainability
(interpretability ⇒ explainability). An interpretable model is
able to give overall feature-based rules as functions that map
a feature to every possible future prediction.

Unlike explainable models, it is not related to a post
prediction process and it does not depend on the current
prediction of the model. Whatever the set of predictions the
model will perform in the future, they can be explained by
these feature-based rules. This concept ensures the algorithmic
transparency: any user is able to make a prediction by using
these rules so an interpretation by the user of any prediction
is possible.

The last concept is intelligibility that can be associated with
explainability and interpretability. This is about the ability of
the model to be understood by a human. It is achieved by
keeping the explanation as minimalist as possible. Lesser are
the number of features and rules used to make a prediction, and
higher will be the intelligibility. Intelligibility is bringing up
together concepts as simulatability, decomposability from [12]
and comprehensibility from [11] which are about maximizing
the human comprehension using the minimum set of rules.

Known supervised learning methods are more or less
explainable or interpretable. For example, explainability is
available in DT, as it is possible to explain a prediction in
terms of the features involved in the prediction. This can be
obtained with a feature importance plot for this prediction.
But actually, DT is interpretable. A DT rule is defined by a
branch of the tree and the thresholds defined in any node of the
branch. All rules can be displayed, and a human can manually
make the prediction just following those rules. This is why DT
is considered to be interpretable. However, it is the shortness

of the tree that makes it intelligible. The fewer nodes needed
to make a prediction, the greater the intelligibility.

GAMs are also explainable using an additive structure,
which allows each variable to be treated separately. The
impact of each variable on a prediction is thus visible. GAM
interpretabilty lies in the rules given by splines that capture the
linear and non-linear relations between the input and output
features. Intelligibility depends on the number of involved
features and how easy they are to read.

In Multi Layer Perceptron (MLP), explainability can be
achieved by observing the feature importance plot for a given
prediction, but also with agnostic tools like SHapley Additive
exPlanation (SHAP) [13] that gives a detailed explanation of
the output of any model. However, precise model rules are
not available, as a fully connected network is very complex.
Next section introduces MNAM, which takes advantage of the
training performance of neural networks like MLP, while the
trained models are interpretable.

III. MULTI-CLASS NEURAL ADDITIVE MODELS

This section focuses on the definition and the use of a
Multi-class Neural Additive Model (MNAM), which is an
interpretable supervised learning method for multi-class clas-
sification problems. The structure of Neural Additive Models
(NAM) is first briefly summarized. Next, the structure of
MNAM is introduced, with its differences from the original
NAM. Finally, the way in which trained MNAM can be
interpreted is detailed.

A. Supervised learning problem: mathematical notations

In order to understand the structure of these methods, here
are provided some mathematical definitions that will be used
throughout the paper. Let A be the set of features, such that
A = {a1, . . . , a|A|}. The domain of a feature ai is Xi. Let X
be the set of all possible individuals defined by the features
of A. x ∈ X is an individual such as x = [x1, . . . , x|A|]
with ∀i ∈ {1, . . . , |A|}, xi ∈ Xi. A dataset, denoted X , is
the available set of N individuals for training, testing and
validating the trained models. So, X ∈ XN is the data matrix
of dimension N × |A| that will be used as a set of inputs to
the models, such that:

X =

x1

...
xN

 = [a1, . . . ,a|A|] =

x1,1 · · · x1,|A|
...

...
xN,1 · · · xN,|A|


with ai ∈ Xi the vector composed by N values for the

feature ai such as : ai =

x1,i

...
xN,i


This paper deals with multi-class classification, and C

denotes the number of classes that are named by the indexes
{1, . . . , C}. Any individual in the dataset X is associated
with one of these classes. The aim of any supervised learning



method is then to produce a model that predicts a class c given
an input x ∈ X with c ∈ {1, . . . , C}.

B. Neural Additive Models

Neural Additive Models (NAMs) are glass-box models de-
fined in [7] which use a methodology belonging to the family
of Generalized Additive Models [14] known for their ability
to capture linear and non-linear relations between predictive
features and predictions while remaining interpretable. Its
strength lies in using the versatility of Deep Neural Networks
(DNNs) instead of boosted trees.

Fig. 1. NAM architecture

The particularity of a NAM is that it is composed of a set
of shallow Neural Networks, one network for each feature ai
(called the feature network Snni

) and a structure that combines
their outputs to perform the predictions ŷ. The predicted output
ŷ of the NAM for an individual x is defined as follows :

ŷ =

|A|∑
i=1

fi(xi) + β (1)

where xi is the value of x for the feature ai. fi(xi) is the
feature network output associated with the feature ai and β is
the bias parameter. In Figure 1, each feature network Snni

is
composed of its input xi, a structure Hi made up of successive
hidden layers defined during the model design phase, and its
output fi(xi). The Hi structure can be composed of several
hidden layers, generally made up of regular units, using a
ReLU activation function.

One of the problems with Snn that have only one input
feature is that they often struggle to approximate 1D sharp
jump functions with the regular unit and a ReLU activation
function on the first layer of Hi. This is why the authors in
[7] propose the use of a new hidden unit named EXp-centered-
Unit (ExU) that can learn and adjust the weight parameters in

logarithmic space. Each new hidden unit using an activation
function σ compute h(x) given by :

h(x) = σ(ew(x− b)) (2)

with x the input value of the hidden unit, w the weight
parameter and b the shifting bias. In this way, it can be used to
overfit 1D sharp jump functions. This hidden unit is preferably
placed in the first layer of the Hi structure.

C. Multi-class Neural Additive Models

NAMs are efficient when dealing with regression and bi-
nary classification problems. However, they are not designed
for multi-class classification. We propose Multi-class Neural
Additive Models (MNAMs) as an extension of NAMs.

Fig. 2. MNAM architecture

1) MNAM structure: The structure of a NAM does not
allow for multi-class classification, as the output is composed
of a single neuron. With a classical MLP, there are two ways
of performing multi-class classification. The first method is
the one-vs-all model, in which several models learn a binary
classification between one class and the others. The second
method uses as many outputs as there are classes. The latter
method is chosen to keep only one model training, with all
parameters updated at the same time. Like the model output,
the structure of each Snn is modified to comply with the
multi-class classification. In the multi-class context, Snni must
produce an output for all available classes. To achieve this, the
structure of Snni

is modified as shown in Figure 2 to replace
the output fi(xi) by a vector ci defined as follows:

ci(xi) =

fi,1(xi)
...

fi,C(xi)

 (3)

where fi,j(xi) is the output by Snni of the input xi

associated with class j ∈ {1, . . . , C}. Next, the sum of all
the outputs of the feature networks is replaced by a vector r



composed of the sums of all feature network outputs for each
class.

r(x) =

r1(x)...
rC(x)

 =


∑|A|

i=1 fi,1(xi) + β1

...∑|A|
i=1 fi,C(xi) + βC

 (4)

with βj the bias with j ∈ {1, . . . , C}. Since the network
now has C outputs, a softmax function is applied to transform
r into a probability distribution that produces the MNAM
output ŷ :

ŷ = σsoftmax (r(x)) =

[
erj(x)∑C
j=1 e

rj(x)

]
j∈{1,...,C}

(5)

As with NAM methods, ExU can be used on the first layer
of each Snn of MNAM methods. However, this unit cannot
learn sharp function when x is negative. This problem is solved
by the ExpDive hidden unit proposed by [15]. ExpDive hidden
unit is defined by:

h(x) = σ((ew − e−w)(x− b)) (6)

with x the input value, w the weight parameter, b the shifting
bias and σ the activation function of the ExpDive hidden unit.

2) MNAM interpretability: As with NAMs and GAMs,
interpretability is based on two tools : feature importance and
shape function plots. A feature importance plot measures the
average impact of all features on the final prediction score.
These indicators provide information on the rules learned by
all Snn. Feature importance of MNAM methods is obtained
by determining the mean absolute score Ii of Snni based on
dataset X and is defined by:

Ii =
1

NC

C∑
j=1

N∑
k=1

∣∣∣∣∣fi,j(xk,i)−
1

NC

(
C∑

p=1

N∑
m=1

fi,p(xm,i)

)∣∣∣∣∣
(7)

By plotting Ii, i ∈ {1, . . . , |A|}, we can see which feature
has the greatest impact on the prediction. The use of this
indicator can be helpful to perform feature selection in order
to reduce the number of dimensions. It can also be used to
detect features that introduce bias during model learning.

Shape functions are, however, the exact description of the
model decision process for all features [7]. The shape function
of feature ai for the class j ∈ {1, . . . , C} is given by the plot
of all predictions from dataset X:

{(vi, fi,j(vi)),∀vi ∈ {xk,i, k ∈ {1, . . . , N}}}. (8)

where the expression vi ∈ {xk,i, k ∈ {1, . . . , N}} corre-
sponds to the set of single values of the vector ai of feature
ai. By using shape functions, users get full transparency on the
model rules and are able to perform the prediction manually,
as all predictions from a class only have to be summed to make

the prediction. In addition, the density of individuals can be
displayed using shape functions. This provides information on
the distribution of individuals in the dataset. This can be used
to detect potential biases, as well as a lack of model robustness
on under-represented data.

Fig. 3. Basic dataset feature importance

Fig. 4. Shape functions of the Kurtosis BSF feature

To illustrate how interpretability works in a MNAM, a
basic dataset produced by Bosch Rodez industry is used as
an example. This dataset is composed of amplitude values for
specific vibration frequencies of spindle bearings in operation
(like the specific BPFO, BPFI frequencies for bearings [16]).
The data have been recorded for several months and capture
several run-to-failure signals of spindle bearings rotating at
90K rotation per minute and have been labeled from healthy
stage to the most degraded stage 2. The MNAM is trained
on the original measured frequencies and on some inferred
statistics like RMS (Root Mean Square) and Kurtosis. After
training, the feature importance plot presented in Figure 3
suggests that the kurtosis of the ball (BSF) is the input feature
with the greatest impact on the prediction. The shape functions



for this feature presented in Figure 4 clearly define a rule
between the BSF-kurtosis and the degradation: for a BSF-
kurtosis within the range [0, 25], Snn(BSFKurtosis) predicts
a healthy stage, for a range in [25,32] the stage 1 and for
[32,72] only stage 2. In this example, this rule is simple
enough for a human to understand the model’s decision and
is therefore intelligible.

Based on this type of rules, the shape function of feature
ai on class j provides a direct relation between feature ai and
the prediction of model Snni

with respect to class j.
To summarize, thanks to the feature importance plot and

the shape function plot, operators are able to understand the
model’s reasoning. Moreover, they can also perform a manual
prediction and obtain the same results as the model, hence the
interpretability of the model.

IV. APPLICATION TO A PROBLEM OF DEGRADATION

DETECTION

This section presents how MNAM methods can be ap-
plied to learn models for the detection of degradations and
a comparative analysis with a set of classical supervised
learning techniques. To perform the comparison, the dataset
from the data challenge PHM2023 is used. To evaluate the
method, a benchmark is set up to compare MNAM accuracy
and loss performance with respect to these other methods.
The interpretation provided by the trained MNAM for this
challenge is finally presented.

A. Data challenge PHM2023

The data challenge that is used for these experiments has
been proposed by the Prognostic and Health Management
(PHM) Society in 2023 [10].

Fig. 5. Data challenge test rig [10]

The purpose of this challenge is to develop an estimate of
the severity of a fault in a gearbox, where each class represents
a level of fault. To simulate this degradation, an experimental
test rig has been set up with two motors and a gearbox. The
first motor serves as a drive motor, while the other acts as
the load motor (see Figure 5). To measure the fault level of
the gearbox, a triaxial accelerometer has been fixed to the
gearbox case, close to the bearing house. Vibration data were
collected at 20,480 Hz for the horizontal, vertical and axial
axes under several conditions of rotation speed and torque.

The test rig recorded 11 fault levels, from 0 (healthy) to 10
(most damaged).

The original dataset is divided into three parts for the
purpose of the challenge: a training set, a test set and a
validation set. The training set contains 7 fault levels. The
other two sets are composed of the same levels, but also
contain the 4 missing levels. This paper uses only the training
set, as labels for the other sets are currently unavailable.

B. Data processing

The original dataset consists of acceleration records for 3
axes measured in m/s2 (horizontal, axial and vertical). Mea-
sured velocity and torque, respectively measured in rotations
per minutes (RPM) and Newton (N), are given for all records.
For each axis, the condition record is split up into a vector s of
signals with 20480 values, depending on the test rig recording
frequency.

It is common to use Fast Fourier Transform (FFT) for
analyzing the frequency components of the signal. However,
when dealing with high frequency signals, the FFT yields
a high-dimensional output encapsulating a large range of
features corresponding to the various frequency components.
A high number of feature means an increase of the complexity
of the MNAM which could lead to a curse of dimensionality
[17], [18]. Another risk is a loss of intelligibility for the
MNAM, as the set of rules would increase. This is why we
propose to use statistic measures to capture the trends and
derivations of all signals. For each signal on the three axes,
three statistical features are computed, hence the production
of 9 new features. First, the Root Mean Square (RMS) value
of an acceleration signal vector s is defined by :

RMS(s) =

√√√√ 1

G

G∑
i=1

s2i (9)

with si ∈ s a value of the signal s and G the length of s.
Secondly, the peak of the measured signal is defined by:

Peak(s) = max(s1, . . . , sG) (10)

The third feature is the crest, defined as follows:

Crest(s) =
Peak(s)

RMS(s)
(11)

Each new signal feature is concatenated into individual vectors
which are completed by the rotation speed value, the torque.
The processed dataset consists of |A| = 11 features, N =
12555 total of individuals and completed by a label vector
composed of C = 7 classes that are the pitting degradation
levels. All values xi,j of the individuals xi are normalized
between 0 and 1.

The new dataset is mixed and divided into a training
set (80%) and a test set (20%). An evaluation is now set
up to compare different learning methods in terms of their
performance and interpretability levels.



C. Models training and benchmarks
1) Models: Several supervised Machine Learning (ML)

methods have been tested on this dataset. The choice is to
compare the MNAM with other classical methods. Some of
them are highly accurate (namely XGBoost (XGB) and Multi
Layer Perceptron (MLP)) but are black-box while others are
more interpretable but less accurate (namely Decisional Tree
(DT) and Generalized Additive Models (GAM)). All methods,
except GAM and MNAM, are trained with a Gridsearch
strategy to automatically adjust the model structure and its
hyperparameters in order to optimize their respective perfor-
mance.

Some of the most important tuned hyperparameters are
the maximum depth (DT) and the number of tree estimators
(XGB). Different combinations of the number of neurons
per hidden layer for the MLP were also tested. About the
GAM settings, as all variables of the investigated dataset
are continuous, the model is set up with |A| splines. The
number of knots by spline is iteratively increased to maximize
performance. The final model is trained with 50 knots per
spline.

About the MNAM settings, the tuning process is done
manually. The training phase has been set to use a batch
size of 1024 individuals for 300 epochs. Categorical cross-
entropy loss is chosen as it is one of the most widely used loss
functions for multi-class classification problems. Stochastic
gradient descent was performed by the ADAM optimizer, as it
is computationally efficient and well suited for large data sets
with many parameters [19]. The model consists of a first layer
of ExpDive units. Two hidden layers of 256 and 128 neurons
respectively, using a ReLU activation function are added to
the ExpDive layer. It is important not to add more layers, as
the complexity of each Snn would be unsustainable.

2) Evaluation and results: Two metrics have been selected
to evaluate the results of the different ML methods. The
problem being a multi-class classification, Balanced Accuracy
(BA) has been chosen for its robustness to the presence of
unbalanced classes in a dataset [20]. The second metric is
the logloss score, which is penalized if the algorithm predicts
erroneous classes with a high confidence level. The lower
this score, the better the model’s performance. The results are
presented in Table I and show the performance metric scores
on the created test set (20% of the whole data).

TABLE I
DATA CHALLENGE RESULTS

metric
method

MNAM DT GAM XGB MLP

BA (%) 92.03 88.13 88.11 96.32 96.11
Logloss 0.273 2.977 0.406 0.378 0.103

The results show that MNAM is able to achieve a higher
BA score than DT and GAM, but still lags behind MLP and

XGB. This is understandable, given that MNAM treats each
feature independently. In terms of logloss score, MNAM is
in second place, just behind MLP, and therefore outperforms
XGB. Recall that a high logloss score is due to the algorithm’s
confidence in predicting the wrong class. For DT, this score
explodes as all its predictions are close to 100% confidence.

By carrying out this comparative study, MNAM can be
positioned in terms of its performance in comparison with
other conventional, high performing methods.

D. Data Challenge interpretability with MNAM

Fig. 6. MNAM feature importance

Figure 6 presents the feature importance of the trained
model. It shows that velocity and vertical acceleration are the
features that provide the most important information about
the gearbox degradation (followed by axial and horizontal
axes). RMS values seem to better capture the level of gearbox
degradation than the peak and the crest values, which have
little impact on the model prediction. Since velocity directly
depends on the vibration level, it is understandable that this
feature should have the highest importance score. However, it
is interesting to note that torque has less impact than RMS
acceleration and peak values for each axis.

Figures 7 and 8 present the shape function plots of the two
most important features. About the velocity, Figure 7 shows
a different behavior for all its shape functions. The prediction
score for the degradation levels 6 and 8 (brown and black
curves) seems to constantly increase with a higher RPM. This
means that the probability of having one of these two classes
on the output prediction of the trained MNAM increases with
RPM. The curves for the levels 0 and 1 (blue and green)
decrease in the [0,500] RPM range before stabilizing around a
prediction score of 0. This means that their contribution to the
final prediction above this velocity threshold is neutral. For
the degradation levels 2 and 3 (yellow and orange curves), the
score decreases as the velocity increases. This means that the
probability of having one of these class for the final prediction



Fig. 7. Shape functions for velocity Fig. 8. Shape functions for RMS vertical acceleration

is reduced as RPM increase. The same behavior is observed for
the shape function of the degradation level 4, which predicts
a stable score over the [0, 700] RPM, then decreases as the
velocity increases.

About the RMS acceleration, feature plot presented in
Figure 8 shows that the behavior of each shape function
has no clear trend, as the curves are almost sinusoidal. It is
important to note that above 1.0 RMS vertical acceleration,
the density of individuals is low. This reduces confidence in
the model’s prediction for these values. In the range [0.0,0.08],
the degradation levels 6 and 8 have a higher prediction score,
followed by the level 0 (healthy) in the range [0.08, 0.3] and
then levels 3 and 4 in the range [0.3, 1.1], which is confusing
because in a context of progressive degradation (from 0 to 8),
one would expect to see a higher prediction score for most
degraded levels only with higher RMS acceleration values
values as input. In a normal case, the data recorded by an
accelerometer through the lifetime of a machine tool increases
as the degradation progresses. The decision-making process of
the MNAM suggests that these degradation levels are learned
as fault classes, not as progressive degradation.

V. DISCUSSION

In this section, we discuss the accuracy-interpretability
trade-off of the MNAM and its positioning compared to
other methods as seen in Figure 9. MNAM uses the same
intepretability tools as NAM or GAM, but in a multi-class
context that adds more complexity. For each class j with
j ∈ {1, . . . , C}, interpretability is given by the sum of all
fi,j(xi). To perform a manual prediction using NAM, it is
sufficient to use this sum. In MNAM, as only the class with the
maximum score will be predicted, it is necessary to determine
all rj given an input x, which can be complex as the number of
classes increases. However, a significant advantage of MNAM
methods is their ability to provide counterfactual explanations.
When the model erroneously predicts a class j = 1 while the

ground reality is j = 2, the use of shape functions facilitates
the analysis of features influencing this incorrect decision. By
identifying the specific attributes that led to a preferred class
over another, MNAM enhances the transparency of the model’s
decision-making process.

As shown in Figure 9, MLP is considered the most black
box of the algorithms used here due to its complex and fully
connected structure. XGBoost employs an additive approach to
make a prediction, allowing traceability in the decision-making
process on the final prediction, which make this method
more explainable but not interpretable yet. On the other hand,
MNAM, sharing the same methods as NAMs and GAMs to
achieve interpretability, is placed at an equivalent high level of
interpretability. With the help of shape functions, all the rules
learned by the model are explicitly given. However, while the
shape functions are presented in the form of a curve, they
actually represent an approximation on a scatter plot. This is
why these models are considered less interpretable than a DT
which has precise rules.

Fig. 9. Performance positioning for the data challenge

About intelligibility, the relations between independent fea-
tures and the predicted class may be more complex to interpret
than with a classic NAM, due to the number of shape functions
per feature. In a classical NAM, by examining the evolution



of the shape function for a specific feature, one can intuitively
grasp how variations in that feature influence the outcome of
the model. It is even more straightforward for binary classifi-
cation task as the direction of the shape function curve directly
indicates its influence on the prediction (positive or negative).
In multi-class classification, there is an interplay between the
shape functions of all classes fi,j(xi), j ∈ {1, . . . , C} that
can be visually misleading [21]. This can reduce the model’s
ability to be intelligible. Just as the number of features is an
obstacle to understanding a model, it seems that the number
of classes poses a similar challenge.

This complexity arises with the data challenge, especially
in the RMS acceleration vertical shape function plot, where
shape functions become entangled. However, it should also
be noted that for the DT, the number of nodes obtained after
training was 1711, which is too high to be intelligible. One
reason behind this lack of intelligibility could be that the
different fault levels do not accurately reflect the progressive
degradation in this data processing. Another reason could be
linked to the use of only the training set proposed by the
data challenge, which may induce significant overfitting in
the prediction. This can be observed in the shape function
behavior when the density of individuals is low. Therefore, at
this stage, it is preferable to use MNAM methods with fewer
classes.

Nevertheless, the aim of this work is to approach perfor-
mances of a MLP that fully exploit the relations between fea-
tures using full-connected layers. Without these connections,
MNAM succeeded in halving the performance-interpretability
trade-off, with an accuracy of 92%, compared with 88% for
DT and 96% for XGB on the data challenge. This positions
MNAM between highly accurate but black-box methods and
less accurate but interpretable methods as seen in Figure 9.
Moreover, MNAM’s interpretability through shape functions
enables the detection of bias, potential overfitting, and makes
it easier to perform feature selection.

VI. CONCLUSION

This paper introduces Multi-class Neural Additive Models,
an adaptation of the NAMs developed by [7] designed to
address multi-class classification problems while maintaining
interpretability. This implementation has been tested for de-
tecting levels of degradation in a gearbox using data from the
PHM Society Data Challenge of 2023. Its performance demon-
strates the possibility of reducing the trade-off between the
best performing methods and the interpretable ones. Further
work is currently underway to improve both the performance
and intelligibility of MNAM methods. The goal remains to
provide maintenance operators with the simplest understanding
of the model’s decision-making process, even when dealing
with multiple degradation or ageing classes.
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