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We perform a numerical study of the scaling laws of tearing modes in different parame-9

ter regimes of incompressible fluid electron magnetohydrodynamics (EMHD), both in the10

small and large wavelength limits, as well as for the fastest growing mode that can be11

destabilized in a large aspect ratio current sheet. We discuss the relevance of these results,12

also for the interpretation of the "electron-only reconnection regime", recently identified13

in spacecraft measures and in numerical simulations of solar wind turbulence. We restrict14

here to a single parameter study, in which we selectively consider only one non-ideal effect15

among electron inertia, perpendicular resistivity and perpendicular electron viscosity, and16

we also consider the cases in which a proportionality exists between the parallel and the17

perpendicular dissipative coefficients. While some known theoretical results are thus con-18

firmed, in other regimes and/or wavelength limits, corrections are proposed with respect19

to some theoretical estimates already available in literature. In other cases, the scalings20

are provided for the first time. All numerical results are justified in terms of heuristic ar-21

guments based on the measurement of the scaling laws of some new microscopic scales22

associated to the gradients of the eigenfunctions. The alternative scalings we have found23

are consistent with this interpretation.24
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I. INTRODUCTION25

In this work we revise and complement with some new results the normal mode problem for26

tearing-type modes1 in incompressible, slab geometry electron-magnetohydrodynamics (EMHD).27

We consider the case in which a finite electron inertia, electron-electron viscosity and electron-ion28

viscosity (i.e., resistivity) separately allow magnetic reconnection. In some regimes this problem29

has been already addressed in literature by analytically solving the boundary layer equations2–10,30

or by means of numerical integration6,10–12 in some parameter range. The asymptotic scalings so31

obtained were not always in agreement. Here we address the problem by relying on a version of32

the numerical solver presented in Ref. 13, purposidly adapted to the set of EMHD equations, and33

on elements of the heuristic-type analysis recently discussed in Ref.14. In this way we perform a34

systematic numerical scan of the growth rate and of the current layer width in the different wave-35

length limits respectively corresponding to the so-called small-∆′, large-∆′, and fastest growing36

mode regimes. We complement these results with the scalings of some characteristic scales lengths37

associated to the gradients of the eigenfunctions.38

Most of the theoretical predictions already available in literature for the single parameter de-39

pendence of EMHD tearing modes are confirmed, although with a few exceptions: a correction40

of the asymptotic EMHD scalings in the long wave-length (i.e., large-∆′) limit is proposed with41

respect to the only previously available theoretical estimates obtained in all the collisionless6,42

resistive8 and viscous10 regimes. The new scalings obtained in the collisionless regime allow us to43

interpret and understand in terms of heuristic arguments the discrepancies between the numerical44

results and theoretical estimates of the scalings of the fastest growing mode, which were already45

noted in Ref. 11: the new theoretical predictions based on the corrected scaling in the large-∆′
46

limit allow us to analytically recover the numerical results therein. In all wave-length limits and47

in all regimes which we have considered, the results which were already available in literature are48

also complemented with the identification of the scalings of other microscopic scales related to49

the spatial gradients of the eigenfunctions, which have been only recently identified and/or char-50

acterized in Ref. 14. The scalings of the fastest growing mode in a large aspect ratio, static current51

sheet are also systematically discussed −in most regimes for the first time− and some threshold52

conditions, possibly relevant for the application of these scalings to turbulent reconnection, are53

presented. All these results are summarized in Table I.54

55
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The agreement of previous theoretical estimates with the numerical results we have obtained56

for the short wave-length limit of tearing modes in all resistive regimes is instead shown for some57

examples in Table II.58

We also discuss the relevance of incompressible EMHD tearing modes to the more recent notion59

of "electron-only" reconnection, which has been recently identified and discussed in connection60

especially with the turbulent solar wind plasma (see, e.g., 15–23 just to cite a few examples of an61

increasingly large literature), and of which, we argue, the incompressible EMHD represents the62

fluid, cold, non-relativistic limit.63

The article has the following structure:64

In Sec. II we introduce the equations and we recall the key features and limitations of the65

incompressible EMHD model.66

In Sec. III we compare the EMHD regime to the identifying features of the so-called "electron-67

only reconnection" regime: we recall and discuss the main points which possibly justify the ap-68

plicability of the tearing mode theory to magnetic reconnection in turbulence, and we discuss why69

EMHD can well represent the incompressible, cold fluid limit of the electron-only reconnection70

regime, which has been identified in spacecraft measures and kinetic simulations of solar wind71

turbulence.72

In Sec. IV we introduce the key elements of the linear problem: the linearized equations;73

the equilibrium profiles we are going to consider; the operational definition of the characteristic74

lengths associated to the spatial gradients of the eigenfunctions; and the hypotheses with which75

the latter can be used in heuristic-type estimates of the tearing mode scalings.76

In Sec. V we discuss the relative orderings of the non-ideal EMHD parameters in some cases of77

potential physical interest. We then discuss in this light the relevance and limitations of the single78

parameter study we perform.79

In Sec. VI we present and discuss the numerical results of a single parameter study of the scal-80

ings of EMHD tearing modes in different regimes. In comparing our results to those of previous81

theoretical and numerical studies, we provide heuristic consistency arguments for the scaling we82

find.83

Conclusions follow in Sec. VII.84
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II. THE EMHD MODEL AND ITS INCOMPRESSIBLE LIMIT85

Incompressible, barotropic EMHD is a fluid model for the description of a non-relativistic86

magnetized plasma at microscopic and fast scales, where the dynamics is dominated by electrons87

and ions constitute a uniform neutralizing background, which is assumed not to have the time to88

evolve. In presence of a guide field of uniform amplitude B0, the normal modes named “whistler89

waves” or “helicons” (name initially given to whistler waves in solids, and which has been later90

used to indicate whistler waves propagating in a bounded domain −see, e.g. Ref. 24) define the91

characteristic frequency and wave-length of EMHD. Their dispersion relation in the collisionless,92

incompressible limit reads93

ωw = Ωed2
e

k||k
1+ k2d2

e
. (1)94

Here de is the electron skin depth, related to the ion skin depth by d2
i = mid2

e/(Z
1/2me) =95

c2ω2
pemi/(Z1/2me), where Z is the ion charge, c the speed of light, ωpe the electron plasma96

frequency and mα the mass of the α species, with α = e, i for electrons and ions, respectively;97

Ωe = eB0/(mec) = miΩi/(Zme) is the electron cyclotron frequency (Ωi is that of ions). The label98

|| refers to the component of the wave-vector k that is parallel to the direction of the guide field.99

A. EMHD model equations at non-relativistic fluid velocities100

We restrict to non-relativistic fluid velocities and we neglect the ion dynamics while supposing101

a polytropic closure. By relaxing for the moment the incompressibility assumption, the equations102

for the density ne and for the fluid velocity ue read103

∂ne

∂ t
+∇ · (neue) = 0, (2)104

(
∂ue

∂ t
+ue ·∇ue

)
=− e

me

(
E+

ue

c
×B

)
− ∇Pe

mene

+µe∇
2ue +

eη

me
J , (3)

where we have kept account both of a finite electron-electron collision rate νee, which gives rise to105

the electron viscosity µe, and of a finite electron-ion collision rate νei, which leads to a resistivity106

η .107
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These equations must be coupled to a closure condition on the pressure Pe, which we assume108

to be of the polytropic kind109

∂

∂ t

(
Pen−Γ

e
)
+ue ·∇

(
Pen−Γ

e
)
= 0, (4)110

and to Faraday’s equation, which, thanks to the null contribution of the ion motion to the current111

density, reads112

∇×B =
1
c

∂E

∂ t
+

4π

c
J =

1
c

∂E

∂ t
− 4πe

c
neue. (5)113

It must be emphasized that Eq.(4) is here assumed as a closure condition heuristically compati-114

ble with the phenomenon we want to consider, and not as a general closure appropriate for the115

EMHD range of validity, in which an anisotropic pressure tensor Πe is instead likely to be met25,116

especially when the collision rate is small with respect to the cyclotron frequencies and the char-117

acteristic scale of the (inverse of the) spatial gradients of the velocity is of the order of |ue|/Ωe.118

Also note that continuity Eq.(2) coincides by construction with the charge density equation,119

when ions are at rest: retaining electron density fluctuations with respect to the equilibrium value120

n0 prevents us to neglect the displacement current (1/c)∂E/∂ t in Faraday’s equation (5), since121

taking the divergence of the latter and combining it with Gauss law, one trivially re-obtains Eq.(2).122

Intuitively speaking, this happens because both a charge separation and a displacement current are123

induced when ne−n0 ̸= 0, since the ion density maintains its initial, uniform value n0. This means124

that the proportionality between ue and ∇×B in EMHD is only valid in the incompressible125

limit, which is justified at non-relativistic phase-velocities, whereas allowing for an electron fluid126

compressibility corresponds here to a kind of relativistic correction.127

While a relativistic, compressible EMHD has been considered to model the current filamenta-128

tion instability in both the cold collisionless26–30 and collisional31 limit, to model the generation129

of magnetic vortices32, and to model magnetic reconnection and “annihilation” processes33–36 in130

the context of laser-plasma interactions, different levels of approximation have been considered131

for compressible EMHD with a non-relativistic fluid velocity: density fluctuations have been in-132

cluded to study tearing-type modes37–40 as first order perturbative corrections proportional to the133

expansion parameter (Ωe/ωpe)
2 ≪ 1, which appears in the incompressible EMHD equations via134

the substitution d2
e → d2

e +(Ωe/ωpe)
2; non-barotropic closures in presence of a guide field have135

been considered to study magneto-genesis problems induced by a Biermann battery-type effect41
136

arising as a consequence of a localized electron heating in 2D-EMHD42, to study the collision-137
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less instability of shock-waves associated to nonlinear magneto-acoustic modes, whose wave-138

front can be considered as essentially steady at the whistler frequency range43, to study magnetic139

reconnection44, and to model some kinds of magnetic activity in neutron stars45,46; an adiabatic140

pressure closure with “finite-Larmor-radius-like” corrections in a strong magnetic field47 and with141

a full pressure tensor dynamics combined with the hypothesis of a null heat-flux divergence48,49
142

have been considered as alternative closure conditions to Eq.(4), in order to study the eigenmode143

problem of tearing modes in warm, collisionless, compressible EMHD; a model including the full144

pressure tensor dynamics has been used for the linear Weibel instability in the “hydrodynamic145

limit”50, and for both the Weibel and current filamentation instabilities in a warm plasma, while146

assuming a null heat flux gradient51,52.147

Part of the interest in the EMHD modelling, which has attracted such a broad attention in148

literature since the early 1980s, is related to its mathematical properties, and in particular to the149

conservations that are implied in its collision-less, barotropic regimes, both in the non-relativistic150

and relativistic limits. Limiting our attention to the case of non-relativistic fluid velocities, taking151

the rotational of Eq.(3) for µe = η = 0 and combining it with the other equations above while152

writing153

E =−∇φ − 1
c

∂A

∂ t
, (6)154

where A is the electromagnetic vector potential such that B =∇×A, leads us to the conservation155

equation156

∂

∂ t
(∇×Pe) =∇× [ue × (∇×Pe)] . (7)157

Here Pe ≡ (meue − eA/c) is the electron canonical momentum associated to the fluid flow. The158

vector under time derivative is the fluid counterpart of the “generalized (electron) vorticity” intro-159

duced by Dirac53,160

Ωe ≡∇×
(
ue −

eA
mec

)
= ωe −

eB
mec

, (8)161

whose Lagrangian conservation is stated by (7). Using indeed a well known vector identity and162

Eq.(2), Eq.(7) can be identified with the null Lie derivative of Ωe/ne,163

∂

∂ t

(
Ωe

ne

)
+ue ·∇

(
Ωe

ne

)
−
(
Ωe

ne

)
·∇ue = 0, (9)164

which states the invariance of the tensor density Ωe/ne with respect to the drag of the velocity field165

ue (see, e.g., Ref.54). This corresponds to the topological conservation of the field lines of Ωe/ne166
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during the plasma evolution, which, in the incompressible and “mass-less electron” limit where167

Ωe/ne → mecB/(en0), implies the well known Alfvén theorem55 (conservation of the magnetic168

flux), Woltjer theorem56 (conservation of linking number of flux tubes) and Newcomb connection169

theorem57 (co-variance of the magnetic line equation during the evolution of the plasma flow)170

−see Ref. 40. Magnetic reconnection can take place when such conservations are broken, which171

can happen when at least one among de, η or µe is non-zero.172

B. Incompressible EMHD and slab-geometry limit173

Incompressible EMHD holds when |n− n0| ≪ n0. Formally speaking, this limit applies to174

spatial scales L ≲ di and to frequencies Ωi ≲ ω ≲ Ωe ≪ ωpe. In this range, the system of Eqs.(2-175

5) reduces to a single equation (the equation of the generalized vorticity) for the magnetic field176

components, since the displacement current can be neglected in Eq.(5) so that177

ue =−d2
e Ωe∇× (B/B0). (10)178

After normalizing lengths to a reference length L0, which we will later assume to be the equilib-

rium magnetic shear length a, and times to the time scale τw ≡ L2
0/(Ωed2

e ), the equation of the

generalized vorticity in presence of collisions reads

∂

∂ t
(B− d̃2

e ∇
2B) =∇×

[
(∇×B)×

(
B− d̃2

e ∇
2B

)]
+∇

2 (RB−V ∇
2B

)
. (11)

Here d̃e = de/L0 and we have introduced the resistive diffusivity R and the viscous hyperdiffusivity179

V defined as the ratio between the “whistler time” τw and, respectively, the “resistive time” τη and180

the “viscous time” τµ , according to:181

R ≡ τw
ηc2

4πL2
0
=

τw

τη

, V ≡ τw
µed2

e

L4
0

=
τw

τµ

. (12)182

Notice that, for simplicity, we have here assumed that η and µe, and therefore R and V , are scalar183

quantities. Instead, they are more likely to be tensorial quantities (see below).184

Also, for simplicity of notation, from now on we will drop the “ ˜ ” symbol in the writing of185
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d̃e, leaving as implicit the fact that it is normalized to L0.186

It is not of particular interest to consider here the role of the further expansion parameter187

Ωe/ωpe ≲ 1 of the semi-compressional model of Ref. 37, previously mentioned, since for the188

purposes of the linear analysis its inclusion just implies a trivial re-scaling of the value of the189

(effective) electron skin depth.190

Chronologically speaking, incompressible EMHD is the first model that has been provided191

of the EMHD regime. Although its formalization is typically associated to the review works of192

Kingsep, Chukbar and Yan’kov58 and of Gordeev, Kingsep, and Rudakov59, first applications are193

in fact earlier (dating back to the 1965, at least). These encompassed: the propagation of “heli-194

con modes” in magnetized laboratory plasmas60; the linear study of tearing modes in a plasma195

column with a radially sheared, helicoidal magnetic field2; the modelling of electron currents196

in fast switches in laboratory61; and the dynamics of electromagnetic vortices in plasmas and197

conductors62. The latter subject has been further largely investigated, especially in the context198

of laser-plasma interactions32,63–70 and in dedicated experiments in helicon devices71,72. Beside199

of that, incompressible EMHD has been widely studied for its capability of capturing some es-200

sential features of a wide range of phenomena. These include: the propagation and instabil-201

ity of linear and nonlinear whistler waves in laboratory magnetized plasmas, which constitutes a202

large amount of the experimental studies that have been carried out by Stenzel, Urrutia and co-203

workers at the UCLA Basic Plasma Physics Laboratory (see, e.g., Refs.71–77); turbulence78–85;204

Kelvin-Helmholtz and other shear flow instabilities86–88; and, of course, magnetic reconnection.205

The latter, after the seminal work in which Gordeev2 applied the tearing mode theory1 to the206

EMHD model, has been studied in different regimes both with linear3–7,10–12,89,90 and nonlinear207

models5,12,39,40,91–95, and it has been specialized to study the coalescence instability96,97, as well.208

In particular, in order to study spontaneous reconnection via tearing-type instabilities, it is209

convenient to consider the slab geometry limit of Eq.(11): assuming the spatial dependence of B210

to be just on x and y, and the gluide field to be along z, we can write B =∇ψ(x,y, t)×ez+(B0+211

b(x,y, t))ez. Then, the information contained in Eqs.(11) can be split into two scalar equations212

∂

∂ t
(ψ −d2

e ∇
2
ψ)+ [b,ψ −d2

e ∇
2
ψ] = R⊥∇

2
ψ −V⊥∇

4
ψ, (13)213
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∂

∂ t
(b−d2

e ∇
2b)+ [b,b−d2

e ∇
2b] = [∇2

ψ,ψ]

+R||∇
2b−V||∇

4b, (14)

where we have used the customary Poisson-bracket notation for [ f ,g] = (∇ f ×∇g) ·ez and we214

have in principle made distinction between the parallel and perpendicular collision rates νei and215

νee, which leads to the further labels || and ⊥ for the dissipation coefficients R and V . While216

Eq.(14) is the projection along ez of (11), Eq.(13) is more conveniently obtained by making the217

appropriate substitutions and normalization in the z-component of Eqs.(3).218

Direct comparison of Eqs.(13-14) with those of slab geometry, reduced MHD (cf., e.g., Eqs.(1-219

2) of Ref.13), where τw is replaced by the Alfvén time, shows that the perturbation of the guide220

field, b, plays in EMHD the role of the fluid stream function of the E×B-drift in MHD. The latter221

drags the magnetic flux function ψ associated, in MHD, to the “poloidal” components B⊥. In the222

collisionless, nonlinear regime, the analogy between EMHD and reduced-MHD reconnection has223

been addressed in Refs.40 and 91. Eqs.(13-14) display however a slightly more “symmetric” form224

than their MHD counterpart, both in the argument under time derivative and in the dissipation225

terms: although R and V can be respectively read as the homologous of the inverse Lundquist226

number S−1 and of the inverse Reynolds number in MHD (cf. definitions (12)), in EMHD they227

affect both scalar fields ψ and b. In particular, in EMHD the electron-electron viscosity, allows228

magnetic reconnection in the (x,y) plane by violating the Lagrangian conservation of ψ via V⊥, as229

it happens in MHD (cf. Eq.(13)). On the other hand, however, the electron viscosity also affects230

the evolution of the EMHD fluid vorticity via V||. In this sense it plays the role which, in the MHD231

regime, is played by the ion-ion viscosity on the MHD fluid vorticity (see, e.g. Ref.98).232

III. RELEVANCE OF EMHD RECONNECTION AND COMPARISON TO233

"ELECTRON-ONLY RECONNECTION"234

Two main reasons can be recognized, which generally motivate the interest in the study of235

EMHD tearing modes.236

The first one concerns the usefulness that this kind of study can bring in shedding light on237

the transition from MHD tearing-type reconnection in the Alfvénic regime to the so-called Hall-238

dominated reconnection. The former is essentially a single-fluid theory, where magnetic reconnec-239

tion can be interpreted as related to the violation of the frozen-in condition involving ions, alone.240

9



AIP

In the Hall-dominated reconnection, instead, two-fluid effects become crucial, multiple layers can241

be identified in the integration domain, and the magnetic reconnection is made possible only if the242

frozen-in condition of electrons, too, is relaxed in the innermost layer. Indeed, it has been often243

suggested (see, e.g., Ref. 4 and 99) that EMHD reconnection may be formally seen as occurring244

in the limit in which Hall term dominates in Ohm’s law, while fluid incompressibility is assumed.245

More generally, indeed, Eq. (3) is the dominant contribution to generalized Ohm’s law including246

the Hall term, when me/mi ≪ 1. Therefore, the whole set of Hall-MHD equations converges to247

Eqs. (3-5) in the limit in which the ion fluid velocity is negligible. On the one hand, however, dif-248

ferent models and quantitative characterizations of the "Hall-dominated" reconnection have been249

proposed7,93,95,100–111, in which whistler dynamics becomes important but which may differ from250

EMHD. On the other hand, the study of the asymptotic threshold of the current sheet aspect ratio,251

for which the normalized growth rate becomes of order unity in both collisionless EMHD and252

reduced MHD11 (i.e., the so-called "ideal tearing" critical aspect ratio first devised in the resistive253

reduced MHD case by Pucci and Velli112), suggests that the incompressible EMHD-tearing mode254

scalings should not be trivially recovered as a continuous limit of the scalings of the reduced-MHD255

case: naming τA the Alfvén reference time of reduced-MHD and considering the case of a Harris-256

pinch magnetic equilibrium profile, in Ref. 11 it was found that the threshold aspect ratio condition257

for the onset of the fastest tearing mode γτA ∼ O(1), which develops when a continuum spectrum258

of modes can be destabilized1, occurs in MHD for (a/L)MHD ∼ (de/L)2/3, whereas the tearing259

mode having γτw ∼ O(1) develops in EMHD for (a/L)EMHD ∼ (de/L)3/8. This means that, for260

a fixed current sheet length L, the critical current sheet thickness of collisionless "ideal" tearing261

modes is smaller in MHD than in EMHD, since, asymptotically, aMHD/aEMHD ∼ (de/L)7/24 ≪ 1 :262

in the case of a current sheet shrinking (or stretching) "slowly enough", so to grant the applicability263

of the linear analysis on a "static" equilibrium profile, this suggests that the current sheet disruption264

always occur because of EMHD-tearing type modes, if the latter were accessible by just "moving"265

from ideal MHD to microscopic scales. The fact, instead, that there is enough experimental and266

numerical evidence of MHD-type reconnection, in which ion dynamics plays a prominent role,267

motivates a better understanding of the quantitative modelling of the EMHD regime and of its268

connection to the Hall-dominated MHD reconnection.269

The second main reason of interest for EMHD tearing type modes is strongly related, and270

somewhat complementary, to the point above: it concerns the cases of experimental and numerical271

evidence of magnetic reconnection in regimes where ion dynamics is negligible. This is related272
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to the more recent notion of "electron-only" reconnection, with respect to which the term "ion-273

coupled" reconnection is sometimes used18 in recent literature, in order to identify the Alfvénic274

or Hall-dominated magnetic reconnection in which ion dynamics is important, instead. The pos-275

sibility to start from reconnection at Alfvénic scales and to attain a regime where only the elec-276

tron dynamics becomes relevant was already pointed out in numerical simulations of Hall-type277

reconnection100,102, once the current layer thickness shrinks to a sufficiently small scale. In Ref.278

100, in particular, it was noted that, while Kelvin-Helmoltz-type modes destabilizing the electron279

flow are expected to be dominant for a current layer thickness a < de (occurrence indeed con-280

sistent with the numerical results of Ref. 39, 40, and 91), reconnecting instabilities are expected281

to dominate for de < a < di(δB/B0) in a regime where the ion dynamics is negligible −here δB282

is the characteristic jump of the magnetic field at the sides of the current sheet and B0 its refer-283

ence value). In particular, the simulation results of Ref. 100 already suggested that ion dynamics284

could become negligible in a turbulent regime, once spatial scales sufficiently small were attained285

(cf. Figs. 1-2 therein). This is indeed the case shown by a more recent set of both experimen-286

tal data and dedicated numerical studies: in recent years, spacecrafts have provided experimental287

evidence15–17,21,93,113 of reconnection events in the turbulent solar wind, in which the current den-288

sity is dominantly carried by electrons only. This has been dubbed "electron-only reconnection"289

and has fostered an increasingly high number of dedicated numerical and theoretical studies, in290

which this regime was shown to be induced by turbulence, even when the latter is initialized at the291

ion scales −see, e.g., Refs.18–20, 22, 23, and 114. In Ref. 20 it has been however pointed out292

that that some of the general features of the electron-only reconnection regime can be described293

by the equations of EMHD. This point of view has been further quantified through the simulation294

results of Ref. 114. In the latter, enough evidence is provided, from both local analysis of the295

electron and ion outflows along the reconnecting current sheets (see Fig. 6 therein) and from the296

quantification of the wavelength scaling of the power spectra, that what can be identified as an297

electron-only reconnection regime in a 2D spatial dependence geometry, occurs compatibly with298

the conditions ue ≃∇×B and |ne −n0| ≪ n0. These are the conditions which formally lead to299

the incompressible EMHD equations discussed in Sec. II B.300

It is true that kinetic effects can play an important role in the electron-only reconnection dis-301

cussed in the aforementioned works, as it is suggested for example by the non-negligible electron302

pressure anisotropy measured close to the electron-only reconnection sites in Ref. 114; and it is303

true that electron pressure anisotropy is well known to play a dominant effect also in extended304
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Alfvénic reconnection (see, e.g., Ref. 115). The inclusion of pressure anisotropy in EMHD can305

be however regarded as an extension of EMHD to compressible "warm" regimes48, the same way306

further non-ideal effects like Finite Larmor Radius corrections or non isotropic pressure closures307

can be accounted for in tearing-type MHD reconnection.308

All this suggests that the incompressible EMHD reconnection, which we discuss in this work,309

can be indeed considered as the incompressible cold fluid limit of the more recent notion of310

"electron-only reconnection". This is the point of view which we assume, although a few fur-311

ther comments are due, in this regard, in support of this statement. We develop them below, in312

Sec. III A313

A. EMHD vs. electron-only reconnection314

It should be first noted that the hypotheses with which the EMHD model is traditionally intro-315

duced are those stated at the beginning of Sec. II B, which rely on the restriction to "small enough"316

spatial scales and to "short enough" time scales. By then looking at the collective properties of the317

plasma, this is translated into a restriction on the frequency and on the wavelength of the normal318

modes propagating in the model: it is this way that one a posteriori verifies that whistler waves319

(index "w", below) obtained by linearising Eqs, (10-11) satisfy kwdi ≳ 1 and Ωi ≲ωw ≲Ωe ≪ωpe.320

However, stated in this form, the conditions of validity of EMHD are "global", in the sense they321

need to be valid in a spatial and temporal domain much wider than that of the spatial and time os-322

cillations of the whistler wave, as it is implied by the normal mode analysis. Therefore, although323

these conditions on k and ω can be satisfied in the plasmas generated by fast switches, in helicons324

devices and in other dedicated experiments (like those of the UCLA Basic Plasma Physics Lab-325

oratory quoted above), in which electrons are almost uniformly accelerated over "large" spatial326

domains, they are unlikely to be verified, when one performs a spectrum analysis of numerical or327

experimental data in a spatial domain in which the conditions ue ≃∇×B and |ne−n0| ≪ n0 are328

only locally satisfied, as it is suggested by the numerical results of turbulent reconnection quoted329

above.330

On the other hand, the tearing mode analysis only requires the spatial Fourier transform to be331

feasible along the direction of the current sheet extension, and that the latter can be considered as332

static.333

In general, if τcs is the characteristic evolution time and if L is the characteristic length of the334
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current sheet, the application of the "simplest", standard tearing mode analysis (upon which we335

rely, in this work) to the current sheet generated by 2D turbulence, generally requires the following336

conditions to be satisfied:337

i) τcsγ ≫ 1, with γ growth rate of the tearing mode, so to be able to perform a linear analysis338

on a steady current sheet (i.e., so that we can assume ∂/∂ t = 0 for equilibrium quantities). This339

assumption can be heuristically made and then a posteriori verified. As a further simplification, in340

the following we will then assume the equilibrium configuration to be also static (i.e., the equilib-341

rium b field is independent on space, so that there is not any perpendicular equilibrium flow). This342

allows us to neglect as a first approximation the role of parallel flow to the current sheet, although343

we note that this may be an important effect in turbulent reconnection. A parallel flow can indeed344

make tearing modes compete with Kelvin-Helmholtz-type instabilities, when the velocity gradient345

is sheared across the current sheet (see, e.g., Refs. 116–119) so to cite some of the earliest works),346

and a combined tearing-Kelvin Helmholtz type mode can be also encountered, in these cases120.347

Otherwise, a parallel flow u|| may have a generally stabilizing role on tearing modes, when the348

gradient is along the current sheet121. In general, however, this stabilizing effect can be effectively349

neglected as long as121,122 γ ≳ u||/L. This condition can be argued to be valid whenever a current350

sheet generated by turbulence develops "plasmoids", i.e., magnetic islands which can be associated351

to the destabilization of high wavenumber tearing modes, and it can be a posteriori verified.352

ii) kL ≫ 1, with k expressing here the tearing mode wave-length which corresponds to the353

spatial oscillations along the current sheet. In the formal limit kL → ∞, that is, assuming a large354

aspect ratio current sheet to be almost "infinitely long" with respect to the mode wavelength, a355

continuum spectrum of unstable modes may be considered: a standard tearing mode theory may356

be thus applied disregarding border effects due to the lack of periodicity of the current sheet. This357

assumption is probably the most delicate to be handled, as no quantitative analysis has been done,358

so far, to assess this latter approximation. Nevertheless, it is at least implicitly assumed in any359

existing work addressing the turbulent reconnection in terms of the tearing mode analysis.360

iii) The orientation of the background, i.e., "guide" magnetic field is orthogonal to the reconnec-361

tion plane: although the effect of an in-plane magnetic component has been sometimes included362

in studies of tearing type reconnection123,124, here we do not consider this possibility. Instead,363

we assume the presence of a standard guide field. These assumptions are generally compatible364

with turbulent-induced reconnection, at least in a 2D spatial coordinate dependence. The relative365

amplitude of the magnetic field in these cases results to depend on the level of magnetic fluctua-366
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tions and on the plasma β . These factors in principle weigh the transition from an Alfvénic to an367

Hall-mediated reconnection (see, e.g., Ref. 125).368

iv) The curvature of the current sheet is negligible: although corrections related to the current369

sheet curvature can be included in tearing mode analysis (see, e.g., Refs. 126 and 127 for reduced-370

MHD reconnection in a tokamak), we neglect them, here. For a local curvature radius of the371

order of L this assumption gets well along with the kL ≫ 1 condition. Note that accounting for372

the current sheet curvature would lead us to consider tearing modes developing on asymmetric373

magnetic equilibrium profiles. The effect of the latter on the linear and nonlinear evolution of374

instabilities has been studied in different reconnection regimes (see, e.g., Refs. 128–133 just to375

cite a few), and also in the EMHD framework134.376

Hypotheses (i-iv) are quite general and, although they can quantitatively differ in different re-377

connection regimes, they must in principle hold regardless of the latter. Therefore, if one assumes378

by "experimental evidence" that in the neighborhood of a current sheet generated by turbulence379

the conditions ue ≃∇×B and |ne −n0| ≪ n0 locally hold for a time interval larger (maybe just380

by one or two of orders of magnitude) than 1/γ , the EMHD tearing theory based on Eqs. (10-11)381

and on the hypotheses (i)-(iv) above can be in principle applied: in the case in which further ef-382

fects, such as density fluctuations, or kinetic effects such as a finite temperature or an anisotropic383

pressure, or the transition to the ion-coupled dynamics should be retained, one could try to look384

at an extension of the incompressible EMHD model (and/or at bridging it to the Hall-mediated385

reconnection regime), as mentioned above. In any case, this generally makes the EMHD tearing386

theory and its possible extensions relevant to these phenomena.387

This is why we suggest to identify the incompressible EMHD reconnection as a limit regime of388

the kinetic electron-only reconnection cases experimentally or numerically observed: in this sense,389

the study of incompressible EMHD tearing mode may provide a starting point for the theoretical390

modelling also of electron-only reconnection processes. A similar standpoint is expressed also391

in Ref. 135: therein, the limit of the nonlinear equations for the so-called inertial-kinetic Alfvén392

wave model136, which allows the modelling of the "inertial whistler-wave turbulence" by means393

of the collisionless inertial EMHD limit of Eqs. (13-14) of this work, was argued to be relevant to394

electron-only reconnection.395

In support of this point of view it should be finally noted that some agreement between396

spacecraft reconnection data and EMHD reconnection was already pointed out in previous397

literature93,113. Moreover, dedicated numerical studies of kinetic reconnection on a single, thin,398
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current sheet, when both ion and electron dynamics were included in a Vlasov-Maxwell PIC nu-399

merical solver, have already shown the occurrence of reconnection in an EMHD-type regime106.400

In the work of Ref. 106, in particular, Singh et al. noted that (quoting) "EMHD-type of flows401

consisting of magnetized electrons and un-magnetized ions in current sheets could be relevant402

for a longer time period even on spatial scales comparable to the ion-Larmor radius after the403

introduction of the magnetic perturbations, which initiate magnetic reconnection. Consequences404

of such limitations of artificially low ion to electron mass ratio remain largely unexplored.". This405

remark seems to be indeed in agreement or at least compatible with the more recent numerical406

simulations18–20,22,23,114 performed with smaller electron-to-ion mass ratios.407

IV. EIGENVALUE PROBLEM408

Linearization (with labels 0 and 1 indicating respectively equilibrium quantitites and perturba-409

tions) of Eqs.(13-14) with perturbations f1 ∼ exp[iky+ γt] around an equilibrium with uniform b0410

and ψ0 = ψ0(x), leads to an eigenvalue problem that can be cast in the matrix form:411

[M ] ·

 ψ1

b1

=

 0

0

 , (15)412

413

[M ] =

 γF −R⊥L +V⊥H −A

−B γF −R||L +V||H

 . (16)414

Here we have introduced the differential operators415

L ≡ ∂ 2

∂x2 − k2, F ≡ 1−d2
e L , (17)416

417

A ≡ ik(ψ ′
0 −d2

e ψ
′′′
0 ), B ≡ ik(ψ ′

0L −ψ
′′′
0 ), (18)418

419

H ≡ ∂ 4

∂x4 − k4 −2k4L . (19)420

Previous studies have addressed the eigenmode analysis by separately considering the role421

played by electron inertia3,4,6, resistivity2,3 and electron viscosity5,10. Here we revise such results,422

by providing corrections for some of them, and we complement them with new scalings in the423

fastest-mode wavelength limit and for some further scale lengths of the eigenmodes.424

For this purpose we will discuss numerical results obtained by integrating Eqs.(15) with an425
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adapted version of the solver of Ref.13. We consider magnetic equilibria of the form137
426

ψ0 =
B0a

2cosh2(x/a)
in [−2πa,2πa], (20)427

(note that ψ0(±2π)≲ 10−5 is sufficiently small so that it does not appreciably violates the period-428

icity in x required by the present version of the solver) or of the form138
429

ψ0 = B0acos
(x

a

)
in [−πa/2, πa/2]. (21)430

From now on, we will assume L0 = a to be the reference normalization length of the system, while431

L is the current sheet length, i.e., its “spatial period” in the y direction.432

In the following we will use “SD” and “LD” to label, respectively, the small-∆′ (or small wave-433

length) limit, and the large-∆′ (or large wavelength) limit. The label “M” will refer instead to434

the fastest growing mode that can be destabilized when a continuum spectrum of unstable modes435

can be excited1. We recall that, while the asymptotic scalings in the small- and large-∆′ limits do436

not depend on the magnetic equilibrium profile, those of the fastest growing mode do, since they437

depend on the power-law dependence that the ∆′(ka) expression gets in the ka ≪ 1 limit. In this438

sense, the equilibria of Eq.(20) and (21) provide two typical examples useful in a domain periodic439

in x, since they respectively correspond to ∆′(ka)∼ (ka)−2 and ∆′(ka)∼ (ka)−1.440

We also recall that the notion of “asymptotic limit” means that the normalized non-ideal pa-441

rameters are much smaller than unity: d2
e ,R⊥,R||,V⊥,Vll ≪ 1. Numerically speaking, this approxi-442

matively means, as it has been verified in previous works and in different tearing regimes11,13, that443

each of these dimensionless parameters must be ≲ 0.01. This is coherent with further numerical444

results12,39 that have shown important discrepancies with respect to theoretical predictions from445

boundary layer analysis when, e.g., de ∼ O(1).446

A. Some characteristic scale lengths and their role in an heuristic, dimensional-type447

analysis448

Heuristic estimates of the scaling of the growth rate γ and of the reconnecting layer width

(operationally defined14 as the distance |x|= δ from the neutral line for which J′′z,1(δ )=ψ
(iv)
1 (δ )=

0) represent a delicate issue in incompressible EMHD: similarly to what it happens in the warm-
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resistive regime of reduced MHD13,14, in the EMHD regimes it is generally not possible to obtain

the correct scalings by “trivially” balancing the terms of the equations, differently from what can

be done, instead, in the collisionless and resistive MHD regimes138. Nevertheless, analogously

to what has been shown for reduced-MHD tearing modes14, it is possible to provide a heuristic

interpretation of the asymptotic scalings if we order the spatial derivatives of both the magnetic

and “velocity” stream functions, ψ1 and b1, in terms of the usual ∆′ parameter1 and of the D′ and

∆′
vy

inverse scale lengths recently introduced in Ref. 14:

∆
′ ≡ lim

ε→0

ψ ′
1,(id)(+ε)−ψ ′

1,(id)(−ε)

ψ1(0)
=

2c1

c0
, (22)

D′ ≡ lim
ε→0

ψ ′
1(+ε)−ψ ′

1(−ε)

ψ1(0)
, (23)

∆
′
vy

≡
vy,1(δ )− vy,1(−δ )

vy,1(δ )
=

2b′′1(δ )
b′1(δ )

. (24)

Above, ψ1,(id)(x) corresponds to the “outer” solution of the eigenvalue problem, valid in the449

“ideal” region of the domain |x| ∼ L0 where, in the boundary layer integration procedure, non-450

ideal terms can be neglected (we used the index "(id)" to indicate this). Its limit as |x| → 0 can be451

expressed, like for tearing modes in reduced MHD, as lim|x|→0 ψ1,(id) ≃ c0 + c1|x|+O(x2). Note452

that, as discussed in Ref. 14, D → ∆′ only in the small-∆′ (i.e., "tearing mode") wavelength limit,453

whereas D′ departs from ∆′ in the large-∆′ limit.454

All the numerical results we will discuss next (see Sec. VI) will prove to be coherent with the455

heuristic-type interpretation that can be given combining hypotheses (22-29) with ∂ 2/∂x2 ≫ k2
456

and with the fact that limx→δ ψ ′
0 ∼ limx→δ ψ ′′′

0 ∼ δ . Applying these latter orderings, Eqs.(13-14),457

once linearized, read458

γ(ψ1 −d2
e ψ

′′
1 )∼ kδb1 +R⊥ψ

′′
1 −V⊥ψ

iv
1 , (25)459

460

γ(b1 −d2
e b′′1)∼ kδψ

′′
1 +R||b

′′
1 −V||b

iv
1 . (26)461

The further hypothesis we will use is the ansatz that the terms of the linearized Eq.(13), all balance462

each other, whereas in Eq.(14) the two terms with higher order derivatives are dominant. Note that463

the first hypothesis gives, in each regime,464

b1

ψ1

∣∣∣∣
δ

∼ γ

kδ
. (27)465
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In particular, we will show all the numerical results to be coherent with the heuristic hypotheses:

ψ ′
1

ψ1
∼ 1

lc
,

ψ
(N)
1

ψ1
∼ 1

lcδ N−1 ,
b(N)

1
b1

∼ 1
δ N , (28)

466

lc ∼ (D′)−1 and ∆
′
vy
∼ δ

−1. (29)467

The quantities δ , ∆′, D′, ∆vy and lc, can be numerically computed as detailed in Ref. 14. However,468

a difference should be pointed out with respect to the reduced-MHD case discussed therein, in469

which the fluid stream function ϕ proportional to the electrostatic field determining the leading470

term of the in-plane fluid velocity −there corresponding to the E×B-drift speed of the bulk ion471

plasma− formally replaces the scalar field b of this EMHD regime: in the reduced-MHD case the472

third of Eqs. (28) is replaced by ϕ ′′
1 ∼ ∆′

vy
ϕ ′

1, with ∆′
vy

which can in general differ from δ−1 (i.e.,473

the second of Eqs. (29) does not hold in the warm-electron reduced-MHD regime); in MHD, the474

first of Eqs. (29) is instead found to be replaced by lc ∼ max{(∆′)−1, (∆′
vy
)−1}. Nevertheless, a475

similarity with the warm reduced-MHD case discussed in Ref. 14 must be emphasized: like in that476

case, the heuristic hypotheses of Eqs. (28-29) do not constitute a closed set of conditions which477

allow one to determine the asymptotic scalings of the characteristic quantities δ , D′, ∆vy and γ478

by simple dimensional arguments. In EMHD the numerical evaluation of the scalings of D′ turns479

out to be necessary for this purpose, so as knowledge of the scaling of ∆′
vy

seems to be necessary480

in reduced-MHD. We will postpone to some future work a more specific discussion of this issue481

and a comparison with the reduced-MHD case: below, we will just provide numerical evidence482

of this interpretation for which, as for the reduced-MHD case, we do not have yet a complete483

“explanation”, provided in the analytical terms of the boundary layer integration. In this sense,484

the coherence we provide of the assumptions (28-29) must be read as a kind of “experimental”485

(i.e., numerical) evidence, hoping it may help to shed light, in the future, about the non-trivial486

behaviour of the eigenmode solutions in this regime. Then, we address the interested reader to487

look at Ref. 14 for a more detailed discussion about the failure of the heuristic-type estimates in488

reduced-MHD tearing and about the usefulness/relevance of having introduced the scale lengths489

(D′)−1 and (∆vy)
−1, therein.490
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V. RELEVANCE AND LIMITATIONS OF A SINGLE-PARAMETER STUDY OF491

EMHD-TEARING MODES492

Even for the case of a single non-ideal parameter, the boundary layer integration of EMHD493

tearing modes results to be more complex, under the technical point of view, than that of reduced494

MHD. This difficulty is related to the different structure of the equation of the "vorticity" field in495

EMHD (Eq. (14), here) with respect to the case of reduced MHD, in which the fluid equation496

expresses the time derivative of a vorticity variable U related to the reduced-MHD fluid stream497

function ϕ by U = ∇2ϕ . The latter is simpler than the W = b− d2
e ∇2b case relating the EMHD498

vorticity field W to the "fluid" stream function b. Because of this, two matching layers appear in499

the EMHD boundary layer integration even when a single parameter like de or R is considered3,6,500

differently from the reduced MHD case, in which this occurs only in some regimes where two non-501

ideal parameters contribute139 (see also Ref. 14 for details): in RMHD, indeed, the corrections502

to the eigenvalues determined by the change of the structure of the equation for ϕ in the different503

sub-region of the domain of integration, vanish in the asymptotic limit140.504

It should be also noted that, even in reduced MHD, there are some two-parameter reconnection505

regimes in which the dispersion relation is known not to display a power law scaling: it is the506

case where both electron inertia and resistivity contribute with comparable weight, although in507

reduced-MHD this happens only in a quite limited interval of the parameter space13. A preliminary508

numerical study we have performed, but which is not shown here, indicates that analogous non-509

power law scalings are measured in EMHD regimes in a broader parameter interval, when more510

than one non-ideal effect is retained. Moreover, in EMHD this seems to be not limited to the511

case of combination of de and R. Due to the richness of behaviors observed, we will therefore512

postpone to a future work a more systematic investigation of a multi-parameter dependence of513

EMHD tearing modes: here we will focus on the single-parameter case only, since, as we are514

going to show, this alone yields non-trivial results, in some case in disagreement with previous515

analytical estimates available in literature.516

It is then worth spending a few words about the relevance and limitations of a single parameter517

study to EMHD reconnection regimes of possible experimental interest. To this purpose, it is use-518

ful to consider some explicit formula141,142 for the quantification of the dimensionless parameters519

de, R⊥, R||, V⊥, and V||, in terms of some plasma quantities, namely the electron density (ne) and520

temperature (Te), the ion charge (Z), the amplitude of the guide field (B0), and in terms of the521
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purely geometrical factor represented by the equilibrium shear length a. This intervenes in the522

a-dimensioning of the non-ideal parameters (i.e., when we take L0 = a). In the formulae below,523

lnΛ is the Coulomb logarithm, which generally depends on Z, Te and ne, but which typically con-524

tributes with a numerical factor of the order of 10 ≲ lnΛ ≲ 20, the temperature is expressed in eV525

and all other dimensional quantities are written in cgs units.526

The parallel and perpendicular components of Spitzer’s resistivity143,144 can be synthetically527

expressed141 in terms of a characteristic electron collision time528

τe ≃
3.44×105

lnΛ

T 3/2
e

Zne
sec, (30)529

as530

η⊥ = A⊥(Z,Λ)
me

nee2τe
, η|| = A||(Z,Λ)

me

nee2τe
, (31)531

where the numerical factors A|| and A⊥ are related to the effective particle scattering in the direc-532

tions parallel and perpendicular to a magnetic field, and they are such that 0.29 ≤ η||/η⊥ ≤ 0.51533

for Z formally varying from Z = +∞ to Z = 1 (cf. Table I of Ref. 141; see also Ref. 145 for534

further comments in this regards).535

Concerning the electron viscosity and hyperviscosity, we can also rely on Braginskii’s estimates536

of the components of the electron viscous stress tensor141 and generically write537

µe,⊥ = B⊥(Z,Λ)
neTe

Ω2
eτe

, µe,|| = B||(Z,Λ)neTeτe, (32)538

where, again, B⊥ and B|| are numerical factors of the order of some decimal unit, and are in539

general comparable to unity. By substituting L0 = a in the definition of τW we can thus write540

R⊥,|| =
c2

4π

η⊥,||
Ωed2

e
=

A⊥,||
Ωeτe

, V⊥,|| =
µe⊥,||
Ωea2 , d̃e =

de

a
, (33)541

where, for the sake of clarity, we have temporarily restored the distinction between de, meant as542

dimensional quantity, and d̃e, indicating here its normalized version. Except for numerical factors543

of order unity, we thus obtain544

R⊥
R||

=
A⊥
A||

∼ O(1),
V⊥
V||

∼ 1
(Ωeτe)2 . (34)545
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Since all of Braginskii’s estimates used above rely on the hypothesis Ωeτe ≫ 1, it follows546

that, typically, V⊥ ≪ V|| in a strongly magnetized plasma, and that a departure from the previous547

estimates could be in principle obtained in weakly magnetized plasmas with a sufficiently large548

electron particle density.549

This indicates that a single-parameter dependence is natural for the resistivity, which can550

be taken to be essentially isotropic, since the difference between R⊥ and R|| in a fully ion-551

ized, magnetized plasma with a unique ion species with charge Z is just of a numerical factor552

comprised141,143,144 between 2 (for Z=1) and 3 (for Z → ∞); in particular, the case R|| = R⊥ = R is553

applicable in the unmagnetized limit. Instead, a strong anisotropy can be expected for the electron554

viscosity. In particular, the dissipative cases which are most significant for experimental appli-555

cations, compatible with a Braginskii-type closure valid for Ωeτe ≫ 1, correspond therefore to556

R⊥ ∼ R|| ∼ R and V⊥ ≪V||. The appropriateness of Braginskii’s-type estimates based on Eqs. (32)557

is subject to investigation in the framework of transport theory, both for magnetically confined558

plasma devices and for space plasmas. For example, if Braginskii’s estimates for electrons were559

applicable to the solar wind Hydrogen plasma, based on the values ne ≃ 300cm−3, B0 ≃ 10−4 G,560

Te ≃ 30eV (and thus lnΛ ≃ 25) measured at ∼ 0.17 solar radii from the Sun surface146,147, one561

would obtain Ωeτe ∼ 107, and thus R⊥ ∼ R|| ∼ 10−7 and V⊥/V|| ∼ 10−14, where V|| ∼ 10−8, if one562

assumes a ∼ di in the second of Eqs. (33 ); there are however indications that a departure from563

the prediction of Braginskii’s model should be expected for the collision time of the solar wind564

electrons148. Further contraints should be kept into account for the collisionless case: the applica-565

bility of the EMHD model for inertia driven tearing modes for asymptotically small parameters is566

limited by the small scale separation existing between de and di, which, for an hydrogen plasma,567

is only di/de ≃ 42. The requirement L ≲ di combined with the condition d2
e ≪ a2 imposed by the568

asymptotic analysis on which the tearing mode theory is grounded, does not leave a wide margin569

of values available for the shear length a, which should thus be comparable to di. For example,570

for a ∼ di, a normalized value of de ∼ 0.023 −but not a much smaller one− would be meaningful571

for a hydrogen plasma. At the same time, assuming a ≪ di to be the normalization length of the572

system, one sees that likely values of the normalized de can be well of the order of de ≳ 0.1, which573

yields growth rates that depart from the asymptotic tearing-type scaling and are of the order of574

fractions of 1/τW (see Fig. 1 of Ref. 39). Therefore, the range of variability of de of practical575

interest for an asymptotic analysis can be quite limited, especially in astrophysical plasmas, but576

a wider range of values can be meaningful for laboratory experiments in which heavier ions are577
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considered. In any case, the collisionless regime has been already addressed by several theoretical578

works, in the past3–6,8–12.579

The actual relevance of a single parameter study should be therefore measured, in a first ap-580

proximation, with respect to the relative ordering between R, V|| and d2
e . In this sense, both a purely581

(isotropic) resistive regime and a purely collisionless regime can be meaningful2,3,5,7, whereas the582

case V⊥ =V|| typically is not, although, for analytical simplicity, it is the only one which seems to583

have been considered, so far, in EMHD5,10. In the following, however, we will not restrict to this584

rationale: we will proceed instead in a more systematic and formal way −regardless of the exper-585

imental applications− by selectively fixing only one among de, R⊥ and V⊥ to be non zero. The586

choice of retaining, in this study, the perpendicular components of resistivity and viscosity instead587

of the parallel ones is motivated by the fact that only the former can induce magnetic reconnec-588

tion in the (x,y)-plane, when de = 0. Because of this, and in the light of the previous estimates589

(cf. Eqs.(34)), although some of the 1-parameter regimes we are going to considered below are590

expected to hold in some specific physical situations, other regimes, which we are going to study,591

can be regarded as limit cases of theoretical and somewhat "academic" interest. Nevertheless,592

studying them has a twofold usefulness.593

First of all, their study allows an identification of regimes where the reconnection rate gets a594

clear power law scaling −task which is non trivial, from an analytical point of view, as it appears595

evident from the fact that the scalings we have numerically obtained and which we discuss below596

(cf. Table I) do not always confirm the theoretical predictions already available in literature (in the597

following, we are also going to provide some consistency arguments in support of the scalings we598

obtain, while comparing them to previous analytical estimates with respect to which they differ). In599

this sense, a numerical study of these limit cases is of support to the theoretical analysis, too, since600

it can help in the identification of ranges of parameter towards which the 1-parameter analytical601

solution should converge. It should be noted, indeed, that in the few cases in which a dispersion602

relation of EMHD-tearing modes has been obtained via non-trivial boundary layer calculations,603

specific approximations have been done about the ordering of some characteristic parameters. The604

final dispersion relation has been obtained only in an implicit and quite complex form (cf., e.g.,605

Eq.(35) of Ref. 6 or Ref. 10), so that, extracting from it self-consistent power law scalings in some606

limits is not a trivial task and requires further specific heuristic-type assumptions. The latter are607

not easy to be a posteriori verified, if not numerically.608

Then, the second element of usefulness of this one-parameter analysis is that all of the regimes609
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we consider can provide useful indications for limit cases of a multi-parameter tearing-mode anal-610

ysis, or for some limits of the possible extensions of the EMHD tearing-mode model (e.g., those611

that can be obtained by including other kinetic effects, such as the contribution of the full pressure612

tensor in the EMHD regime). For example, in the case of kinetic electron-only reconnection, both613

electron inertia and temperature effects are likely to play a fundamental role, together with viscous614

electron dissipation. These arguments, however, will be addressed and developed in forthcoming615

works.616

VI. ASYMPTOTIC ONE-PARAMETER DEPENDENCE OF EMHD TEARING617

MODES618

Let us now discuss the results of the numerical integration performed in the limit in which,619

from the mathematical point of view, a single independent parameter is chosen.620

The numerical results summarized in Table I provide the asymptotic scalings we have obtained621

in different limit regimes: in the purely collisionless case dominated by electron inertia, i.e., de ̸= 0622

(first column); in the case in which R⊥ ∼ R|| and a proportionality relation exists between R||623

and R⊥, which encompasses the "isotropic resistivity" limit R|| = R⊥ = R (second column); in624

the case −more of mathematical interest− where only R⊥ is different from zero (third column);625

in the case in which a proportionality relation exists between V|| and V⊥ with V|| ≥ V⊥, which626

encompasses the limit of an "isotropic" electron viscosity V|| =V⊥ (fourth column); in the further627

case of mathematical interest where V⊥ alone contributes to the reconnection rate (fifth column).628

Note that the limit de = 0 is formal and corresponds to the me → 0 limit of Eq.(3) but it does not629

affect the normalization time we have chosen, since τw does not depend on me.630

All the scalings reported in Table I have been verified numerically. In the collisionless regime631

(Sec. VI A), and for the smallest values of the non-ideal parameters in the collisional regimes (Sec.632

VI B), the scalings have been obtained using an arbitrary precision version of the eigensolver,633

which strongly enhances the numerical convergence of the measured scaling laws (e.g. the scaling634

of the width of the reconnection layer δ ) when the non-ideal parameters become very small. This635

arbitrary precision algorithm, tested and validated for reduced-MHD in Refs. 13 and 14, was based636

on the multi-precision toolbox developed by Holoborodko 149 . In all other regimes a satisfying637

convergence has been obtained by using the double precision version of the solver on a non-638

uniform grid.639
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TABLE I. : Asymptotic scalings of collisional reduced-MHD tearing modes. The five columns corre-
sponds, in order, to the single-parameter case in which the tearing reconnection rate respectively depends
on: de (cf. §VI A); on R = R⊥ = R|| (these asymptotic scalings are also applicable to the case R|| = A R⊥,
cf. §VI B ); on R⊥ (cf. §VI C); on V = V⊥ = V|| (these asymptotic scalings are also applicable to the case
V|| = BV⊥, cf. §VI D); on V⊥ (cf. §VI E). The lines correspond to the asymptotic scalings of the character-
istic scale lengths δ (cf. first line of §IV A), D′ and ∆′

vy
(cf. Eqs. (22)) and of the growth rate γ (cf. Eqs.

(25-26)). These are provided first for the large wave-length limit (i.e., large-∆′, label "LD"), then for the
small wave-length limit (i.e., small-∆′, label "SD") and finally for the fastest growing mode which can be
destabilized when a continuum spectrum of tearing modes is allowed (label "M"; cf. Sec. IV before §IV A).

Bottom line refers to the scaling of the critical aspect ratio (a/L)crit discussed in Sec. III.
inertial resistive resistive viscous viscous
(de) (R⊥ = R|| = R) (R⊥,R|| = 0) (V⊥ =V|| =V ) (V⊥,V|| = 0)

δLD ∼ d
6
5
e k−

1
2 R

1
2 k−

2
3 R

4
7
⊥ k−

1
4V

1
4
⊥ k−

2
7V

1
4
⊥

(lc)LD ≡ (D′)−1
LD ∼ d

4
5
e k−

1
3 R

1
3 R

2
7
⊥ k−

1
4V

1
6 V

5
28
⊥

(∆′
vy
)−1

LD ∼ d
6
5
e k−

1
2 R

1
2 k−

2
3 R

4
7
⊥ k−

1
4V

1
4
⊥ k−

2
7V

1
4
⊥

γLD ∼ kd
2
5
e k

5
6 R

1
6 k

2
3 R

1
7
⊥ kV

1
12
⊥ k

6
7V

1
14
⊥

δSD ∼ ∆′d2
e k−

1
2 R

1
2 k−

2
3 ∆

′ 1
3 R

2
3
⊥ k−

1
4V

1
4 ∆

′ 1
7 k−

2
7V

2
7
⊥

(lc)SD ≡ (D′)−1
SD ∼ (∆′)−1 (∆′)−1 (∆′)−1 (∆′)−1 (∆′)−1

(∆′
vy
)−1

SD ∼ ∆′d2
e k−

1
2 R

1
2 k−

2
3 ∆

′ 1
3 R

2
3
⊥ k−

1
4V

1
4 ∆

′ 1
7 k−

2
7V

2
7
⊥

γSD ∼ k(∆′de)
2

∆′(kR)
1
2 (k∆′)

2
3 R

1
3
⊥ ∆′k

3
4V

1
4 ∆

′ 4
7 k

6
7V

1
7
⊥

∆′(ka)−−−→
ka≪1

(ka)−p p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

γM ∼ d
6
5
e d

4
5
e R

3
8 R

2
7 R

1
3
⊥ R

5
21
⊥ V

13
60 V

17
108 V

5
28
⊥ V

1
8
⊥

kM ∼ d
4
5
e d

2
5
e R

1
4 R

1
7 R

2
7
⊥ R

1
7
⊥ V

2
15 V

2
27 V

1
8
⊥ V

1
16
⊥

δM ∼ d
6
5
e d

6
5
e R

3
8 R

3
7 R

8
21
⊥ R

10
21
⊥ (V

13
60 ) (V

25
108 ) V

13
56
⊥ V

1
4
⊥(a

L

)
crit

∼ (d∗
e )

3
8 (d∗

e )
2
7 (R∗)

3
16 (R∗)

1
7 (R∗

⊥)
1
6 (R∗

⊥)
5
42 (V ∗)

13
146 (V ∗)

17
250 (V ∗

⊥)
5
66 (V ∗

⊥)
1
18

The upper half of the Table shows, beside of the scalings of γ and of δ , the scaling of D′ and640

of ∆′
vy

. The latter two have not been reported in previous works, since these quantities, opera-641

tionally defined via the second and third of Eqs. (22), respectively, have not been identified in642

former boundary layer calculations (a partial discussion of their interpretation in the framework of643

a boundary layer analysis has been done only in Ref. 14, and only for the reduced-MHD case). In644

particular, the scaling of D′ results to be non-trivial in the large-∆′ limit, similarly to what happens645

for ∆′
vy

in the reduced-MHD case. In EMHD, instead, we always find that ∆′
vy
∼ δ−1. The scalings646

of δ and those of γ can be compared with the theoretical estimates which have been provided in647

different regimes, in a number of former works.648
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TABLE II. : Some values of the growth rates in the small-∆′ limit, which we have obtained numerically
(columns of the values γnum), and their ratio with respect to the analytical estimates available from bound-
ary layer calculations (columns of the values γnum/γth) are shown for different reconnection regimes. We
have reported also the reference analytical formulae for γSD and the corresponding source articles (which
appear in the Table as "Refs."). The value γnum/γth ≃ constant is expected as long as the power law scaling
holds. Therefore, a slight departure from such constant(s), which in all cases reported below is practically
unity, occurs as the values of the normalized non-ideal parameter approach the limits of applicability of the
boundary layer theory. This is quite visible in the inertial collisionless regime and in the resistive regime, in
which an excellent agreement with the numerical factors of the analytical estimates is measured only for the
smaller values of de and of R, respectively, which are reported in the upper lines of the Table: a departure
from γnum/γth ≃ 1 appears instead as d2

e approaches 10−2 and as R approaches 10−3. The range of values of
V considered in the viscous case, instead, falls well inside of the asymptotic regime. However, the formula
shown for this γSD regime in the Table differs by a factor 2 with respect to the writing of Eq.(36) of Ref. 10:
in the formula below, that factor has been removed from the denominator of Eq.(36) of Ref. 10 in order to
grant agreement with the numerical results, which we preliminary assume here as a kind of "experimental
evidence" (the convergence of the solver has been tested in all reconnection regimes); in Eq. (112) of Ref.
5, instead, the numerical factors are not reported.

inertial regime: de resistive regime: R viscous regime: V

γSD =
Γ2( 1

4)
Γ2( 3

4)
k(∆′de)

2

4π2 Refs.3,5–7
γSD =

Γ( 1
4)

Γ( 3
4)

∆′(kR)
1
2

2π
Refs.2,3,7

γSD =
Γ( 3

8)
Γ( 5

8)
∆′

π

(
k3V

8

) 1
4 Refs.5,10

example with k = 1.78 example with k = 1.78 example with k = 1.85
de γnum γnum/γth R γnum γnum/γth V γnum γnum/γth

0.02 1.1×10−3 1. 2×10−7 7.5×10−4 1. 5×10−9 9×10−3 0.99
0.04 4.5×10−3 0.97 8×10−7 1.6×10−3 0.99 7×10−9 1×10−2 0.99
0.06 9.5×10−3 0.94 9×10−6 5×10−3 0.98 1×10−8 1.1×10−2 0.99
0.08 1.8×10−2 0.9 6×10−4 4.1×10−2 0.85 5×10−8 1.6×10−2 0.98
0.1 2.8×10−2 0.85 9×10−4 4×10−2 0.81 9×10−8 1.8×10−2 0.98

In general, we have recovered the theoretical predictions of the small-∆′ inertia driven limit3,5–7,649

of the small-∆′ limit for2,3,7 R|| = R⊥ = R, and of the small-∆′ limit for5,10 V|| = V⊥ = V . For all650

these cases, as long as the non-ideal parameters are small enough so to grant applicability of651

the boundary layer theory, our numerical results are in excellent agreement with the analytical652

formulae (including possible multiplicative geometrical factors) provided in the aforementioned653

references, as it shown for some examples in Table II.654

Figs.1-10 show the power-law dependence of some quantities with respect to a few of the655

parameters of interest, in support of the scalings in the table. Therein we have reported the plots of656

some non-trivial scalings, especially concerning new results or corrections to previous theoretical657

estimates available in literature.658

Concerning the scalings of the growth rate and of the inner layer width, the numerical results we659
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have obtained in the large-∆′ limits differ, more or less importantly, from the theoretical predictions660

obtained in all one-parameter regimes previously studied analytically (i.e., the collisionless, the661

isotropic-resistive and the isotropic-viscous cases): a slight correction in the scalings analytically662

evaluated in Ref. 6 is found in the inertia-driven case (from γLD ∼ kd2/3
e and δLD ∼ de of Ref.663

6 to γLD ∼ kd2/5
e and δLD ∼ d6/5

e of this work); the corresponding limit for the purely resistive664

R|| = R⊥ = R case agrees with previous estimates8 for δLD, but nor for the growth rate (for which665

the scaling γLD ∼ k3/4R1/4 of Ref. 8 must be compared to γLD ∼ k5/6R1/6 of this work). In the666

isotropic viscous case V|| =V⊥ =V the scalings γ ∼ k7/8V 1/8 and δ ∼ k−7/32V 7/32 (the latter only667

implicitly expressed in Ref. 10 via the relation V ∼ γδ 4) obtained in Refs. 5 and 10 are here668

replaced by the scalings γLD ∼ kV 1/12 and δLD ∼ k−1/4V 1/4.669

All these results, numerically obtained in the small- and large-∆′, are unchanged when some670

proportionality constants A and B are fixed between the parallel and perpendicular dissipation671

coefficients, that is, when R|| =A R⊥ and V|| =BV⊥. For this, we will show below, as an example,672

two numerical cases in regimes of possible experimental interest (cf. Sec. V), corresponding to673

A = 0.5 and to B = 103, respectively.674

These results will be compared with those obtained in the formal, mathematical limits R⊥ ≫675

R|| ∼ 0 and V⊥ ≫V|| ∼ 0. In general, it is found that when the parallel resistivity and the parallel676

viscosity are negligible with respect to the corresponding perpendicular coefficients, the growth677

rates display a weaker power law dependence on the surviving dissipative coefficient than in the678

corresponding "isotropic" case. Also the dependence on the wavelength changes in the corre-679

sponding dispersion relations.680

The lower half of Table I displays the scalings of the fastest growing mode, which we have681

numerically obtained. They coincide, like for the reduced-MHD case, with the estimates that can682

be deduced11,13 by balancing δLD(kM)∼ δSD(kM) or γLD(kM)∼ γSD(kM), so to find the scaling of683

kM and therefore that of δM and of γM. These results are of potential interest for reconnection in684

large aspect ratio current sheets −arguably in some electron-only reconnection regimes observed685

in turbulence (cf. Sec. V). In previous works on EMHD tearing modes, they had been provided686

only in the inertia-driven regime11 and, partially, in the resistive regime8. The numerical results687

we have here obtained in the collisionless regime provide a correction to the estimates of Ref.688

11 but confirm the numerical results therein obtained, for which a discrepancy from theoretical689

estimates, based on previous scalings available in literature6, had been remarked. Our result differ690

instead from the previous scalings of the resistive case8.691
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It is interesting to note that, once the scalings of the growth rates and of the reconnection layer692

are expressed using the heuristic arguments presented in Sec. IV, the scalings of each quantity are693

formally identical in both the small- and large-∆′ limits in any one-parameter regime considered694

in the following (cf., e.g., Eqs. (39, 44, 48, 56, 56) next): the scalings obtained in the different695

wave-length limits are thus entirely determined by the specific scaling that lc ∼ (D′)−1 gets in the696

small- and large-∆′ limits. This "symmetry" in the dispersion relation had been already noted in697

Ref. 14 for tearing modes in reduced MHD, where D′ can be replaced by ∆′
vy

(see Appendix F698

therein). As a remarquable consequence, it turns out that both conditions δLD(kM)∼ δSD(kM) and699

γLD(kM)∼ γSD(kM), when they are non-trivial, lead to the unique condition700

D′
LD
[kM]∼ D′

SD
[kM]. (35)701

The latter, once more, highlights the usefulness of having introduced the characteristic scale length702

D′, together with a numerical procedure for evaluating it.703

Finally, the last line at bottom of Table I shows the asymptotic scaling that the inverse critical704

aspect ratio a/L of the current sheet must have in order to give a growth rate of order unity, once705

the reference length is assumed to be L0 = L, rather than L0 = a. This is likely to occur for706

secondary tearing modes. The critical value (a/L)crit correspond to the threshold for the “ideal707

tearing” condition of Ref. 112, below which the current sheet is abruptly disrupted over the ideal708

time scales of evolution of the system. Note that in assuming L0 = L also the reference time τw709

must be rescaled to τ∗w = τw(a/L)2. Below and in the table, the apex “∗” labels quantities for which710

the normalization scale is L0 = L, instead of L0 = a. The scaling of the last line have not been711

numerically obtained like it has been done, e.g., in Refs.11, 98, 110, and 112, but are deduced712

from the other scalings by imposing γMτ∗w ∼ O(1).713

It should be finally noted that the previously available theoretical scalings in the purely714

collisionless6 and in the purely viscous10 cases had been obtained by relying on the same kind715

of boundary layer calculations and approximations first detailed in Ref. 6. The different results716

we have numerically found, and which we believe to be more accurate, are instead supported717

by the heuristic analysis outlined in Sec. IV A. In some respect the latter could be considered718

"less rigorous" or at least, more prone to false assumptions than the approximations and orderings719

required by the boundary layer approach, on which the previous theoretical results are grounded720

−this difference had been explicitly discussed, for example, in the reduced-MHD context in Ref.721
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14. Nevertheless, we will see that the heuristic approach discussed above agrees with the nu-722

merical results in cases in which the difference with respect to the theoretical estimates is quite723

evident. At the same time, we will see that the same heuristic analysis even plays a crucial role in724

the quantification of the power-law scalings, in cases in which discriminating univocally between725

fractions like 7/32 and 1/4 from the fit of the numerical data would not be possible, otherwise:726

the key point we want to emphasize, here, is the global coherence displayed by the combination727

of the numerical estimates and of the heuristic analysis in both the small- and large-∆′ limits and728

in the wavelength range of the fastest growing mode, in all reconnection regimes we have inves-729

tigated. This supports the result we have found, also when they differ from previous theoretical730

estimates and, in our opinion, provides an a posteriori verification of the correctness −or at least731

consistency− of the heuristic assumptions we made.732

A. Collisionless, inertia-driven regime733

In this regime we can assume ψ1|δ ∼ d2
e ψ ′′

1 |δ , which gives734

d2
e ∼ lcδ , (36)735

and b1|δ ≪ d2
e b′′1|δ . Combining the appropriate limit of Eq.(26),736

γd2
e b′′1|δ ∼ kδψ

′′
1 |δ , (37)737

with Eq.(27) and with Eq.(28), one finds738

d2
e

γ2

k2δ 2
1

δ 2 ∼ 1
lcδ

⇒ γ ∼ k
δ 2

d2
e
. (38)739

Combining the latter with Eq.(36) so to eliminate δ and using then the first of conditions (29) we740

find741

γ ∼ kd2
e (D

′)2, δ ∼ d2
e D′. (39)742

This writing is useful since numerical integration shows that the scaling of D′ is not trivial. The743

coherence of the relations in Eqs. (38) can be verified using the scalings, numerically obtained by744

scanning a wide parameter range, which are shown in Fig. 1: the scaling laws of γ (which are ∼ d2
e745
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FIG. 1. Numerical results of the linear analysis in the small-∆′ limit (left frames) and in the large-∆′ limit
(right frames) for the purely collisionless EMHD tearing mode. The growth rate scalings expressed as a
function of the electron skin depth are in the top frames, while the scalings of (D′)−1, of (∆′

v)
−1 and of δ

are in the bottom frames. A departure from the power-law scaling is visible for de ≳ 0.1 (cf. also Table II).

and ∼ d2/5
e for small- and large- ∆′ limits in the top-left and the top-right frames, respectively), and746

also of the scale lengths (D′)−1, (∆′
vy
)−1 and δ with respect to de are here shown in both the small-747

∆′ (left frames) and large-∆′ (right frames) wavelength limits. The overall results are summarized748

in the first column of Table I. They complement and correct the analytical estimates first obtained749

in Refs.3, 5–7 via boundary layer integration (some discrepancies between theoretical estimates750

and numerical integration had been already noted in Ref. 12). For illustrative purposes, the spatial751752

profiles of the eigenfunctions ψ and b are shown in Fig. 2: for the small-∆′ limit, a case with753

de = 0.05 and k = 0.01 is shown (left frames); for the large-∆′ limit a case with de = 0.021 and754

k = 2.1 is shown (right frames). Qualitatively analogous spatial profiles −which will not be shown755

in this manuscript− are obtained also for the resistive and viscous cases, which will be discussed756

next).757758

The wave-number of the fastest growing mode follows therefore from balancing, for example,759

either the layer widths (δLD(kM) ∼ δSD(kM)) or the growth rates (γLD(kM) ∼ γSD(kM)) for ∆′ ∼760

k−p. In both cases one has to solve the condition (35): this yields d6/5
e ∼ d2

e k−p
M , which gives761

kM ∼ d4/(5p)
e and therefore γM ∼ d(4+2p)/(5p)

e . Using this scaling and changing the normalization762

length scale to L0 = L, one obtains (a/L)2γMτ∗w ∼ (d∗
e )

(4+2p)/(5p)(L/a)(4+2p)/(5p). The condition763

γMτ∗w ∼ 1 implies764 (a
L

)
crit

∼ (d∗
e )

2+p
2+6p . (40)765
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FIG. 2. Spatial profile of the eigenfunctions ψ (top frames) and b (bottom frames) for a small-∆′ limit case
with de = 0.05 and k = 0.01 (left frames) and for a large-∆′ limit case with de = 0.021 and k = 2.1 (right
frames).

Note that condition (40) corrects the theoretical estimate (a/L)crit ∼ (d∗
e )

(3+2p)/(6+8p) of Eq.(17)766

of Ref. 11, which had been obtained by using indeed both the small- and large-∆′ estimates (36)767

and (37) of Ref.6, where, beside of the discrepancy with respect to the large-∆′ limit here found,768

the dependence on k in the small-∆′ limit had been neglected.769

Remarkably, for p= 1, the threshold condition (40) coincides with the result (a/L)crit ∼ (d∗
e )

3/8
770

that F. Pucci numerically obtained in the work of Ref. 11 for a Harris pinch equilibrium (ψ0 =771

B0a tanh(x/a), which indeed has p = 1) by using an adapted version of the solver of Ref. 112: this772

value was therein taken as the best estimate of the threshold condition to the “ideal tearing” regime773

in collisionless EMHD (cf. with Fig.2 and with comments between Eqs.(17) and (18), therein),774

in slight disagreement with the theoretical estimate there obtained from the previous collisionless775

EMHD scaling available in literature for the large- and small-∆′ limits. This fact is in further776

support of the scaling in the large-∆′ limit that we have numerically obtained, here.777

We also note that, thanks to the writing of Eq. (39), both the conditions γLD(kM) ∼ γSD(kM)778

and δLD(kM)∼ δSD(kM), when they are not trivial, translate into the unique condition (D′
LD[kM])∼779

(D′
SD[kM]). As we will see, this condition is common to all the one-parameter regimes that we are780

going to consider in this Section.781
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B. Resistive regime with R|| = A R⊥782

In the light of a heuristic interpretation, from the appropriate limit of (25) we obtain, after783

balancing the first and last term,784

γ ∼ R⊥
lcδ

. (41)785

Combining Eq.(27) with the equivalent of (37) obtained from (26), that is,786

kδψ
′′
1 |δ ∼ R||b

′′
1|δ , (42)787

and using again Eqs.(28,27), one finds788

kδ
1

δ lc
∼

R||
δ 2

γ

kδ
=⇒ γ ∼ k2δ 3

lcA R⊥
, (43)789

having used R|| = A R⊥ in the last passage. One can then use once more (41) so to alternatively790

eliminate δ and γ: combined with the first of Eqs. (29), i.e., lc ∼ 1/D′, this gives, respectively,791

γ ∼ k
1
2 A − 1

4 R
1
2
⊥D′, δ ∼ k−

1
2 A

1
4 R

1
2
⊥. (44)792

It should be noted that the scalings of δ are here identical for both the small and the large wave-793

length limits.794

The scalings (44), included their dependence on B, are numerically confirmed. This is shown795

in Fig.3, for what concerns the dependence on R⊥: in the top frame we show the scalings of γ with796

R⊥ for A = 1/2; the scalings in the center and bottom frames correspond instead to the isotropic797

case with A = 1, i.e., R|| = R⊥ = R. The scalings in the second column of Table I are obtained798

after numerically verifying that (D′)LD ∼ k1/3R−1/3 and (D′)SD ∼ ∆′ (their dependence on R⊥ is799

shown in the bottom frame of the aforementioned figure). It can be noted that all the results for the800

isotropic resistive case R|| = R⊥ = R can be recovered from the inertia-driven case, by formally801

substituting γd2
e → R.802

The scalings of δ and γ obtained in the small-∆′ limit in Ref. 2, 3, 7, and 12 are thus recovered.803

In this wave-length limit we also (numerically) verify that δ ∼ (∆′
vy
)−1.804

The scalings (44) also coincide with the analytical result of Shaikhislamov8 for what concerns805

δ evaluated in the large-∆′ limit, but the corresponding growth rate γ ∼ k3/4R1/4 therein obtained806
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FIG. 3. Numerical results of the linear analysis in the small-∆′ limit (left frames) and in the large-∆′

limit (right frames) for the purely resistive EMHD tearing mode with R|| = R⊥/2 (top frames) and with
R = R⊥ = R|| (center and bottom frames). Only the scalings of the growth rate are shown for the case
R|| = R⊥/2 for comparison, since the same power laws of the R = R⊥ = R|| are obtained also for (D′)−1,
of (∆′

v)
−1 and of δ (shown in the center frame): the proportionality factor A = 0.5 only determines a re-

scaling of each quantity by a factor close to one. Note the slight departure from the asymptotic power law as
the non-ideal parameters approach the limit of validity of the boundary layer theory (rightmost "diamonds"
approaching or overtaking R ∼ 10−5 −cf. the center column of Table II).

for ka ≪ 1 differs with respect to the scaling γLD ∼ k5/6R1/6 we obtain numerically and according807

to Eqs.(44).808

This time, the scaling of the fastest growing mode can not be recovered by balancing δLD ∼ δSD,809

since the two scalings are identical, but it can be rather obtained from γLD(kM)∼ γSD(kM). In any810

case we rely on Eq. (35), using the numerical scalings obtained for D′ in the two wavelength811

limits. This yields kM ∼ R1/(1+3p) and therefore γM ∼ R(2+p)/(2(1+3p)) and δM ∼ R3p/(2(1+3p)).812

These estimates agree with the scaling laws of the fastest growing modes, which we have obtained813

numerically and which for p= 2 are shown for both γM and δM in the top-left- and top-right frames814

of Fig.4, respectively. The analytical estimates kM ∼ R1/6 and γM ∼ R1/3 suggested in Ref. 8 differ815

from those we have obtained for both the cases p = 1 and p = 2 (although the dependence on the816

equilibrium choice had not been noted, in that work).817
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FIG. 4. Growth rates (left frames) and widths of reconnecting layer (right frames) of the fastest growing
modes for resistive EMHD modes with respect to R⊥ for R|| = R⊥.

Naming then R∗ the quantity R evaluated for L0 = L and using the fact that R∗ = R (cf. first of818

Eqs. (12) and the definition of τw) we write (a/L)2γMτ∗w ∼ (R∗)(2+p)/(2(1+3p)), which for γMτ∗w ∼ 1819

yields820 (a
L

)
crit

∼ (R∗)
2+p

4(1+3p) (45)821

C. Resistive regime with R⊥ ̸= 0 and R|| = 0822

Since generally R⊥ ∼ R|| (cf. Eq. (34)), this regime is meaningful just from a theoretical point823

of view, in the measure it provides the scalings in the formal limit R|| → 0, which can be potentially824

useful as a benchmark limit test for theoretical models. In this regime the equations are the same of825

the previous case, except for the relevant limit of Eq.(26). Therefore, the same conditions provided826

by Eqs.(27) and (41) hold. Eq.(51) is instead replaced by827

γb1|δ ∼ kδψ
′′
1 |δ , (46)828

which gives829

γ2

k2δ 2 ∼ 1
δ lc

⇒ δ
3 ∼ k−2R2

lc
. (47)830

The second of Eqs.(47) is obtained from the former after using (41). Therefore, combining them831

so to eliminate δ in the expression of γ and using the first of Eqs. (29), i.e., lc ∼ 1/D′, we can832

write the following general estimates, in principle valid in both wave-length limits:833

γ ∼ k2/3R1/3(D′)2/3, δ ∼ k−2/3R2/3(D′)1/3. (48)834
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FIG. 5. Growth rates (upper frames) and scaling of some characteristic lengths (lower frames) of resistive
EMHD modes with respect to R⊥ for R|| = 0 in the small-∆′ limit (left frames) and in the large-∆′ limit
(right frames). A departure from the power-law is visible for R⊥ ≳ 10−3 (four rightmost "diamonds" in any
frame).

After numerical integration, here again, we obtain D′ ∼ ∆′ and ∆vy ∼ δ−1 in the small-∆′ limit, and835

(∆′
vy
)−1 ∼ δ−1 and a non-trivial scaling D′ ∼ R−2/7 in the large-∆′ limit, whence the results in the836

table follow. In this regime, as it is reported in Table I, the scalings of the growth rate and of the837

reconnecting layer width differ in both the small- and in the large-∆′ limits from those previously838

discussed for the "isotropic resistive" case R⊥ = R||. Their scaling, numerically obtained, are839

shown in Fig.5, although with respect to their dependence on R⊥ alone: γLD ∝ R1/7
⊥ , δLD ∝ R4/7

⊥ ,840

γSD ∝ R1/3
⊥ , and δSD ∝ R2/3

⊥ .841

By following the same line of thoughts of the previous section, the scaling laws of the fastest842

growing mode can be obtained from Eq. (35). This leads to kM ∼ R2/7p
⊥ , γM ∼ R(4+3p)/21p

⊥ , and843

δM ∼ R(12p−4)/21p
⊥ . These scalings for the fastest modes are shown on the bottom frames of Fig.4.844

By looking at the scalings of fastest modes in Fig.4, one sees that the inclusion of non-vanishing845

R|| leads to a slight decrease in the growth rate with respect to R⊥.846

The critical aspect ratio in this regime reads847

(a
L

)
crit

∼ (R∗
⊥)

4+3p
42p , (49)848

where R∗
⊥ = R⊥.849
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FIG. 6. Growth rates (left frames) and widths of reconnecting layer (right frames) of the fastest growing
modes for resistive EMHD modes with respect to R⊥ ̸= 0 for R|| = 0.

D. Viscous regime with V|| = BV⊥850

In this regime, beside of Eq.(27) we obtain from Eq.(25),851

γ ∼ V⊥
lcδ 3 . (50)852

Eq.(26) reduces to853

kδψ
′′
1 |δ ∼V||b

iv
1 |δ , (51)854

which, using (28,29) and (27), yields855

γ ∼ k2
δ

5D′V−1
|| . (52)856

Using now V|| = BV⊥ and eliminating γ thanks to Eq. (29), one obtains857

γ ∼ k3/4B
5
8V 1/4

⊥ D′, δ ∼ k−1/4B
1
8V 1/4

⊥ . (53)858

Similarly to the resistive case with R|| ∝ R⊥, the scalings of δ are identical for both the small and859

the large wavelength limits.860

All the scalings in the table are thus recovered numerically: in the small-∆′ limit for D′ ∼ ∆′
861

and ∆′
vy
∼ δ−1, and in the large-∆′ limit for the non-trivial scaling numerically obtained for D′ (i.e.,862

D′ ∼ k1/4V−1/6) and for ∆′
vy
∼ δ−1. This is confirmed by the numerical results. The dependence863

of the intrinsic scale lengths and of the growth rates on V (i.e., γSD ∝ V 1/4 and γLD ∝ V 1/12) are864

shown in Fig.7 for the "isotropic viscous case" case V|| = V⊥ = V . These results agree with the865

theoretical predictions of the growth rates obtained by Avinash et al.5 and by Cai and Li10 in the866

small-∆′ limit. However, they differ from their results in the large-∆′ limit, where γ ∼ k7/8V 1/8
867
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FIG. 7. Numerical results of the linear analysis in the small-∆′ limit (left frames) and in the large-∆′ limit
(right frames) for "isotropic" viscous EMHD tearing mode with respect to V =V⊥ =V||. The growth rates
scaling of γ are in the top frames, while the scalings of (D′)−1, of (∆′

v)
−1 and of δ are in the bottom frames.
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FIG. 8. Scaling laws in the small-∆′ (left frames) and large-∆′ (right frames) limits as a function of V⊥ (top
frames) and as a function of the wavenumber k (bottom frames) for the case V⊥ = 10−3V||.

and δ ∼ k−7/32V 7/32 (therein implicitly given via the relation V ∼ γδ 4) have been obtained, in868

place of the scalings γLD ∼ kV 1/12 and δLD ∼ k−1/4V 1/4, which we have found. For comparison,869

the scalings of γ obtained in the small- and large-∆′ limits in the case B = 103 are shown in Fig.870

8: these are identical to those of the B = 1 case (Fig. 7), except for a rescaling factor in the871

amplitude, corresponding to the factor B
5
8 for γ and B

1
8 for δ (cf. Eqs. 56).872

Following the matching condition of Eq. (35), the scaling laws of the fastest mode are then873

found to be kM ∼ V 2/(3+12p), γM ∼ V (4p+9)/(12+48p), and δM ∼ V (1+12p)/(12(1+4p))). The scaling874
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FIG. 9. Growth rate scaling of the fastest growing modes for viscous EMHD modes and with respect to
V = V|| = V⊥ (top frames) and with respect to V⊥ for V|| = 103V⊥ (bottom frames): the asymptotic scaling
is identical in both cases, the factor B = 103 only affects the reference amplitude via the proportionality
factors B5/8 and B1/8, respectively, according to Eqs. (56).

numerically obtained for the magnetic equilibrium corresponding to p = 2 and shown in the top875

panels of Fig.9 for both the cases B = 1 and B = 103 agree with these predictions. In this876

regard it should be however emphasized the crucial role that the heuristic analysis has played in877

quantifying the scaling shown in Fig. 7: it is practically impossible to distinguish from a numerical878

fit, a scaling 17/108 from −for example− the value 1/6 = 18/108. Because of this, the numerical879

results shown in the top frames of Fig. 7 should be read as a whole, together with those in the880

small- and large-∆′ limits and in the light of Eqs. (56): it is indeed thanks to the consistency they881

display with the results in the small and large wavelength limits and with the heuristic argument882

we have used to obtain the fastest growing mode, that take them as reliable −although, rigorously883

speaking, should we read the numerical results separately, they would not exclude an infinity of884

numerically close fractional scalings. These issues will be even more evident in the regime we885

will discuss next.886

Naming V ∗ the quantity V evaluated for L0 = L and using V ∗ = (a/L)2V according to Eqs. (12)887

and to the definition of τw , we can write (a/L)2γMτ∗w ∼ (V ∗)(4p+9)/(12+48p)(L/a)(4p+9)/(6+24p) ,888

which for γMτ∗w ∼ 1 yields889 (a
L

)
crit

∼ (V ∗)
9+4p

42+104p (54)890
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E. Viscous regime with V⊥ ̸= 0 and V|| = 0891

Like for the "anisotropic resistive" regime of Sec. VI C, the interest in this anisotropic viscous892

regime, too, is mostly theoretical, since the opposite case V|| ≫ V⊥ is the one which is typicallly893

of experimental interest (cf. Sec. V). Nevertheless, knowing the scalings in the formal limit894

V|| → 0, can be useful as a benchmark limit test for theoretical models in which a mani-parameter895

dependence is considered.896

Similarly to what happen in the resistive regime, in this case Eq.(50) is unchanged whereas897

Eq.(51) is replaced by Eq.(46), provided the substitutions V → V⊥. Combining then (50) with898

Eqs.(28), (27) and (46), one obtains899

δ
7 ∼

k−2V 2
⊥

lc
. (55)900

Therefore, using again (29) and (50), we can write901

γ ∼ k6/7V 1/7
⊥ (D′)4/7, δ ∼ k−2/7V 2/7

⊥ (D′)1/7. (56)902

In the small-∆′ limit we numerically find D′ ∼ ∆′ and ∆′
vy
∼ δ−1 ∝ V−2/7

⊥ , and in the large-∆′
903

we find D′ ∼ V−1/8
⊥ and ∆′

vy
∼ δ−1. The scaling dependence on V⊥, numerically verified for904

these quantities, is shown in the bottom frames of Fig.10 (the dependence on k are not shown,905

here) together with the γLD ∝ V 1/14
⊥ and γSD ∝ V 1/7

⊥ dependence found for the growth rates. The906

complete scalings on both V⊥ and k are reported in the Table I.907

In this regard we must comment about the ∆′
vy
∼ δ−1 ∝ V−15/56

⊥ scaling shown in Figure 10908

and reported in Table I, for which the same arguments discussed in previous Section (VI D) for the909

scaling of the fastest growing mode hold: one could question about the accuracy of this estimate,910

since 15/56 ≃ 0.268± 0.0005 is very close, for example, to the fractional value 1/4 (actually,911

within a 6.7% relative error). The reason for which we opted to report the fractional value 15/56912

for the exponent of V⊥ is indeed that this numerical value is coherent with the heuristic-type913

analysis discussed in Sec. IV and which we have shown to work well in all regimes discussed914

so far: the exponent 15/56 in the scaling of δLD is indeed the value obtained by substituting915

lc = (D′)−1
LD ∼ V−1/8

⊥ in Eq.(55), which is also the scaling which, once substituted in the first of916

Eqs. (56), gives γLD ∝ V 1/14
⊥ . If, instead, had one taken the scaling (D′)−1

LD ∼V−1/4
⊥ , according to917

Eq. (56) this would have given a growth rate independent on V⊥, which is not reasonable, since918

we must have γ(V⊥)→ 0 as V⊥ → 0.919
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FIG. 10. Numerical results of the linear analysis in the small-∆′ limit (left frames) and in the large-∆′

limit (right frames) for viscous EMHD tearing mode with V⊥ ̸= 0 and V|| = 0. The growth rates scaling as
function of V⊥ are in the top frames, while the scalings of (D′)−1, of (∆′

v)
−1 and of δ are in the bottom

frames.
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FIG. 11. Growth rate scaling of the fastest growing modes for viscous EMHD modes with respect to V⊥ in
the V⊥ ̸= 0, V|| = 0 case .

Moreover, as a further consistency check, we notice that all this is coherent with the scaling920

laws of the fastest growing mode obtained by applying the matching criterion D′
LD(kM)∼D′

SD(kM)921

for D′
LD ∼ V−1/8

⊥ . This yields kM ∼ V 1/8p
⊥ , γM ∼ V (2p+3)/(28p)

⊥ , and δM ∼ V (15p−2)/(56p)
⊥ . The922

agreement of these estimates with the numerical results is shown in the bottom frames of Fig.11,923

where they have been numerically verified for the equilibrium (20). Using V ∗
⊥ = V⊥(a/L)2 the924

critical aspect ratio for this regime reads925

(a
L

)
crit

∼ (V ∗
⊥)

3+2p
6+60p . (57)926
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VII. CONCLUSIONS927

Using an adapted version of the linear solver of Ref. 13 we have revised the scalings of in-928

compressible EMHD tearing modes when they depend on a single parameter (Sec. VI). The latter929

has been chosen to be, respectively, the normalized electron skin depth (related to a finite electron930

inertia − Sec. VI A), the perpendicular resistivity (related to electron ion-collisions − Sec. VI B)931

and the perpendicular electron viscosity (see Sec. VI D). We have considered not only the cases932

in which the parallel resistivity and viscosity are proportional to the perpendicular counterparts,933

but also the cases in which the parallel resistivity and viscosity are respectively set to zero (see934

Sec.VI C, VI E): although of more theoretical interest, these latter cases can be useful to test the935

convergence of more complete analytical models in some regimes (see Sec. V). The analysis we936

have performed has spanned both the large- and small wavelength limits, respectively related to937

the small- and large-∆′ limits, and included also the study of the scalings of the fastest growing938

mode, which can be formally destabilized in a continuum spectrum of unstable modes. The latter939

condition is likely to occur in a large enough aspect ratio current sheet, which for EMHD tearing940

modes we argue to be relevant to the "electron-only" regime (Sec. III), in recent literature iden-941

tified to occur in the nonlinear development of Alfvénic reconnection. All the results we have942

obtained are summarized in Table I.943

The scalings in the small- and large-∆′ limits had been already estimated with analytical models944

in the purely inertial regime3,6, in the purely resistive isotropic regime2,3,8 and in the purely viscous945

isotropic regime5,10: while the numerical study we have performed recovers the results already946

available in literature for the small-∆′ limits, a different scaling is numerically found with respect947

to previous estimates provided in all large-∆′ limits (except for the scaling of the reconnecting layer948

width provided in Ref. 8 for the isotropic resistive regime). All the results we have obtained have949

been interpreted by means of a heuristic analysis performed in terms of some "new" characteristic950

scale lengths associated to the gradients of the eigenfunctions, which have been first introduced951

in Ref. 14 and which must be numerically evaluated. The scalings of the fastest growing mode952

have been previously considered only in the purely isotropic resistive regime8 and in the purely953

collisionless regime11. However, the numerical results we obtained in the former one, do not agree954

with previous analytical estimates. The numerical results we found in the collisionless regime, on955

the other hand, coincide with the numerical results already found in Ref. 11 and disagree with956

the theoretical estimates, which in the same work had been already noticed to slightly depart from957
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the numerical scaling. Interestingly, all these findings can be interpreted in a coherent way, in the958

framework of the heuristic analysis we have provided.959

We conclude by noting the crucial role played in this work by the combination of both the960

numerical analysis and the heuristic estimates: while the former is capable, in some regimes, to961

give unambiguous results, which a posteriori support the heuristic-type analytical derivation of962

the scaling laws, in other regimes it is only thanks to the heuristic estimates, that specific power963

law scalings can be singled out from the fit of the numerical data, which, otherwise, would be964

compatible with several different fractional scalings that are numerically too close one to each965

other to be unambiguously distinguished one from another. The global coherence provided by the966

combination of both approaches, especially in the verification of the scalings of the fastest growing967

mode by using those obtained in the small- and large-∆′ limits, strongly supports the results we968

have obtained, also when they depart from previous analytical estimates obtained using a boundary969

layer integration.970

The one-parameter study we developed here will be extended to a two parameter-study in971

regimes of relevance for experimental cases, in a future dedicated work.972
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