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Abstract

Stochastic shortest path (SSP) problems are a common frame-
work for planning under uncertainty. However, the reactive
structure of their solution policies is typically not easily com-
prehensible by an end-user, nor do planners justify the rea-
sons behind their choice of a particular policy over others.
To strengthen confidence in the planner’s decision-making,
recent work in classical planning has introduced a frame-
work for explaining to the user the possible solution space
in terms of necessary trade-offs between user-provided plan
properties. Here, we extend this framework to SSPs. We in-
troduce a notion of policy properties taking into account
action-outcome uncertainty. We analyze formally the com-
putational problem of identifying the exclusion relationships
between policy properties, showing that this problem is in fact
harder than SSP planning in a complexity theoretical sense.
We show that all the relationships can be identified through
a series of heuristic searches, which, if ordered in a clever
way, yields an anytime algorithm. Further, we introduce an
alternative method, which leverages a connection to multi-
objective probabilistic planning to move all the computational
burden to a preprocessing step. Finally, we explore empiri-
cally the feasibility of the proposed explanation methodology
on a range of adapted IPPC benchmarks.

1 Introduction
Stochastic shortest path (SSP) problems (Bertsekas and Tsit-
siklis 1991) are a common framework for planning under
action-outcome uncertainty. SSP solutions take into account
arising contingencies by means of policies deciding what
action to take next as a function of what happened in the
past. This complex structure, however, leads to an astro-
nomically large space Π of different possible solutions, a
direct overview of which is beyond the capability of actual
end-users of planning technology. At the same time, current
SSP solution methods lack functionality for providing rea-
sons behind the choice of a particular policy over others.

Krarup et al. (2021) introduced a generic iterative plan-
ning framework aiming at helping a user to interactively ex-
plore and comprehend the solution space Π. The goal of the
user-planner interactions is to arrive at a solution that is in
line with the user’s preferences. Eifler et al. (2020a,b) pro-
posed an instantiation of this framework for classical plan-
ning. The user-planner interactions are based on a set of
user-provided plan properties Ω, i.e. Boolean functions on

plans. The user iteratively navigates through the solution
space by selecting different property subsets Φ ⊆ Ω. In
response, she receives a summary of the part of the solu-
tion space satisfying Φ in terms of implied exclusions, i.e.,
the property subsets Ψ impossible to achieve simultaneously
with Φ. Such contrastive explanations (Miller 2019) have
proved particularly beneficial in strengthening the user’s un-
derstanding of the solution space (Eifler et al. 2022).

Explaining solutions to probabilistic planning models has
received significant attention in recent years, yet most prior
work deals with the explanation of individual solutions. In
explainable reinforcement learning, there is a particular fo-
cus on pointing out the importance of specific input features
to a policy’s decision (Milani et al. 2023; Selvey, Grastien,
and Thiébaux 2023). Khan, Poupart, and Black (2009) and
Juozapaitis et al. (2019) explain single action choices of a
given policy by contrasting them to all available options by
exposing trade-offs between different reward or cost objec-
tives. Topin and Veloso (2019) summarize an entire RL pol-
icy through the use of state abstraction.

Building on Eifler et al.’s (2020a) explanation methodol-
ogy, we propose a novel approach to explaining the global
space of all SSP policies, or a local user-chosen subset.
We introduce a notion of policy properties, taking into ac-
count action-outcome uncertainty, and formally study the
computational problem of identifying their exclusion re-
lationships. In order to compute the explanations, we de-
vise two approaches that relate to constrained SSPs (Alt-
man 1999) and multi-objective SSPs (Chen, Trevizan, and
Thiébaux 2023), respectively. We show that both approaches
can be efficiently realized by adapting the heuristic search
algorithm I-DUAL (Trevizan et al. 2016), which embeds
occupation-measure heuristics for effective guidance (Tre-
vizan, Thiébaux, and Haslum 2017). Finally, we explore the
feasibility of the proposed explanation methodology empir-
ically on a range of adapted IPPC and new benchmarks.

2 Background

For a finite set X , we refer with ∆(X) to the set of all prob-
ability distributions over X . For δ ∈ ∆(X), supp(δ) :=
{x ∈ X | δ(x) > 0} gives the support of δ.



2.1 Probabilistic Planning
We consider probabilistic planning tasks in a SAS+-like no-
tation (Bäckström and Nebel 1995). A planning task is
given by a tuple τ = 〈V,A, s0,G, c〉, where V is a finite
set of state variables, each v ∈ V having a finite domain
Dv; A is a finite set of actions; s0 is the initial state (a
complete variable assignment); G is a conjunctive goal (a
variable assignment); and c : A 7→ R+

0 is the cost function.
Pairs 〈v, d〉 of variables v ∈ V and values d ∈ Dv are called
facts. The set of all facts is denoted with F . The states of τ
are the complete variable assignments. The set of all states
is denoted with S. For a (partial) variable assignment G, we
denote with G[v] ∈ Dv the value assigned to v, if defined,
and with SG := {s ∈ S | G ⊆ s} the subset of states that
satisfy G. Each action a is associated with a precondition
prea (a variable assignment) and a probability distribution
Outa over probabilistic outcomes (variable assignments).
An action a is applicable in a state s if s ∈ Sprea . The
set of all actions applicable in s is denoted with A(s). The
state resulting from an action outcome o ∈ supp(Outa) is
sJoK[v] = o[v] if o[v] is defined, else sJoK[v] = s[v].

A task τ induces the stochastic shortest path (SSP)
problem Θτ = 〈S,A, T , s0,SG , c〉 with same states, ac-
tions, initial state, goal states, and cost function, and the
transition probability function T : S ×A 7→ ∆(S) makes
the outcome of action applications explicit. Unless impor-
tant, we treat τ and Θτ interchangeably.

We consider deterministic policies (policies for short),
which are (partial) functions π : S ⇀ A such that π(s) ∈
A(s) if π(s) is defined. We write π(s) = ⊥ if π(s) is not
defined. The terminal states Sπ⊥ ⊆ S under π are those s
where π(s) = ⊥. A state s′ is reachable from a state s via
π if there are states s1, . . . , sn such that s1 = s, sn = s′,
and, for all 1 ≤ i < n, π(si) 6= ⊥ and T (si, π(si), si+1) >
0. The set of states reachable from s via π is denoted with
Sπ(s); the reachable terminal states with Sπ⊥(s).

Let G be a variable assignment. The G-reachability
probabilities of π are given by the piecewise smallest func-
tion PG,π : S 7→ [0, 1] where PG,π(s) = 1 for s ∈ Sπ⊥∩SG,
PG,π(s) = 0 for s ∈ Sπ⊥ \ SG, and otherwise PG,π(s) =∑
s′∈S T (s, π(s), s′)PG,π(s′). The G-reachability proba-

bilities are also called goal probabilities. We say that π is
s-proper if PG,π(s) = 1. We denote the set of all s-proper
policies with Π(s). The expected cost of π under the cost
function c is given by Jc,π : S 7→ R+

0 ∪ {∞}; defined sim-
ilarly to PG,π , where Jc,π(s) = ∞ iff π is not s-proper.
Jc,∗(s) := infπ∈Π(s) J

c,π(s) is the optimal value for s un-
der c. π is optimal for s under c if Jc,π(s) = Jc,∗(s). When
c is omitted, we refer to the task’s cost function.

Example 1. We use the flight planning instance from
Fig. 1 as our running example. The state variables are
V = {X,Y } and describe the aircraft’s current po-
sition on the grid. There are four types of actions:
left(x, y), right(x, y), up(x, y) and down(x, y), moving
from the grid cell (x, y) in one of the four directions. Their
effect is however subject to weather conditions. Specifically,
we assume that each action has a 1

5 chance of drifting to the
cell left to the target cell (unless x = 0), e.g., preup(2,3) =

1 2 3 4

1

2

3

Figure 1: Illustration of the flight planning running example.

{〈X, 2〉, 〈Y, 3〉} and Outup(2,3) = {o1 7→ 4
5 , o2 7→ 1

5}
where o1 = {〈X, 2〉, 〈Y, 2〉} and o2 = {〈X, 1〉, 〈Y, 2〉}.
Each action a takes one time unit, c(a) = 1. The task is to
find a policy that brings the aircraft from its initial position
s0 = {〈X, 2〉, 〈Y, 3〉} to the airport G = {〈X, 2〉, 〈Y, 1〉}
with minimal expected travel time. The arrows in Fig. 1 pro-
vide the action choices for three different policies, distin-
guished by the arrow color. All three policies are proper. The
blue policy πb is optimal with Jc,πb(s0) = 49

20 = Jc,∗(s0).

2.2 Classical Planning & Plan-Space Explanations
Classical planning is a special case of probabilistic planning
where all actions have a single outcome. For brevity, we
denote the unique resulting state of applying an action se-
quence π in a state s, if applicable, by sJπK. π is called an
s-plan if it is applicable in s and G ⊆ sJπK. The set of all
s0-plans, also called plan space, is denoted Π(s0).

A plan property (Eifler et al. 2020a) φ can be any pred-
icate on plans representing some abstract behavior inter-
pretable by the user. Eifler et al.’s (2020a) methods consider
specifically properties φ expressible as facts 〈vφ, tφ〉 such
that π satisfies φ iff s0JπK[vφ] = tφ. Richer properties, such
as ones formalized via LTLf (Giacomo and Vardi 2013), can
be compiled into this format (Eifler et al. 2020b).

Let Ω ⊆ F be a set of user-provided plan properties. Let
Φ ⊆ Ω be a subset of properties. Φ is solvable if there is
a plan π ∈ Π(s0) such that Φ ⊆ s0JπK. In this case, we
also say π satisfies Φ. Φ is unsolvable if it is not satisfied
by any plan. Φ is a minimal unsolvable subset (MUS) if
Φ is unsolvable but every Φ′ ⊂ Φ is solvable. Φ excludes
another Ψ ⊆ Ω, written Φ ⇒Π ¬Ψ, if all plans π ∈ Π(s0)
that satisfy Φ violate Ψ. An exclusion Φ ⇒Π ¬Ψ is non-
dominated if there is no exclusion Φ′ ⇒Π ¬Ψ′ such that
Φ′ ⊆ Φ and Ψ′ ⊆ Ψ while one of the subset relations is
proper. Φ ⇒Π ¬Ψ is non-rhs-dominated (non right-hand-
side dominated) if no Ψ′ ⊂ Ψ is excluded by Φ. Observe that
Φ⇒Π ¬Ψ iff Φ ∪Ψ is unsolvable, and it is non-dominated
iff Φ ∪Ψ is a MUS.
Example 2. Desired plan properties in Fig. 1 could be
avoiding thunderstorms and high traffic areas. The satis-
faction of these properties can be tracked via additional
Boolean state variables thund and traf , initially true, and
set to false when entering the corresponding grid cells. Ig-
noring the weather influences, the shortest plan is mov-
ing the aircraft straight up to the airport. This plan satis-
fies the property {〈traf , 1〉}, yet violates {〈thund , 1〉}. In
fact, {〈traf , 1〉, 〈thund , 1〉} is a MUS, yielding the exclu-
sion 〈thund , 1〉 ⇒Π ¬〈traf , 1〉.



Eifler et al. (2020a) distinguish local and global expla-
nations. The former assume a given subset of properties
Φ ⊆ Ω, and aim at explaining the subspace of plans which
satisfy Φ. The Φ-explanation gives the consequences of
this plan-space restriction in terms of the set {Ψ ⊆ Ω |
Φ ⇒Π ¬Ψ is a non-rhs-dominated exclusion}. In contrast,
the global explanation provides a view on the entire plan
space by means of a directed graph over property sets with
an arc from Φ to Ψ if Φ ⇒Π ¬Ψ is a non-dominated exclu-
sion relation. Computing either type of explanations boils
down to solving AllMUSes, i.e., computing the set of all
MUSes. For global explanations, this is inherent from the
definition. For local explanations, this follows from the fact
that the non-rhs-dominated exclusions of any Φ are given by
the MUSes in the task with goal G′ := G ∪ Φ.

3 Exclusion-Based Explanations for SSPs
3.1 Policy Properties
We generalize Eifler et al.’s (2020a) concept of plan proper-
ties to SSPs. The exclusion-based explanation framework re-
quires properties to be Boolean predicates. In classical plan-
ning, each plan π uniquely determines an execution trace
along with the resulting outcome state s0JπK. This makes
the evaluation of every condition on π’s execution inher-
ently Boolean: either the condition is satisfied by π (e.g.,
s0JπK[vφ] = tφ for the plan property φ) or it is violated
(s0JπK[vφ] 6= tφ). One of the two cases definitely applies.
In the probabilistic setting, this is more complicated given
that policies no longer induce a unique outcome but instead
give rise to probability distributions over many possible ex-
ecutions, while conditions on individual executions may be
satisfied in some but not all the executions. Properties ex-
pressing characteristics of policies need to take into account
this uncertainty, and therewith need to reason over the expec-
tation of the properties’ objectives. We consider two classes
of such policy properties.

Reachability policy properties extend Eifler
et al.’s (2020a) plan properties as introduced above.

Definition 1 (Policy Reachability Property). A policy reach-
ability property φ consists of a variable assignment Gφ
and a lower bound αφ ∈ (0, 1]. A policy π satisfies φ iff
PGφ,π(s0) ≥ αφ.

Cost properties allow the user to explore trade-offs be-
tween different cost functions and reachability properties:

Definition 2 (Policy Cost Properties). A policy cost property
φ consists of a cost function cφ and an upper bound βφ ∈
R+

0 . A policy π satisfies φ iff Jcφ,π(s0) ≤ βφ.

As in Eifler et al.’s (2020a) framework, we assume the
user specifies the relevant policy properties Ω, where Ω =
ΩR ] ΩC is partitioned into reachability ΩR and cost prop-
erties ΩC . For a policy-property subset Φ ⊆ Ω, we simi-
larly use Φ = ΦR ] ΦC . We explain Π(s0) via the induced
property-subset exclusion relationships. To this end, we ex-
tend the concepts of solvable and unsolvable property sub-
sets, property-subset exclusions, and local and global expla-
nations to policy properties in the obvious manner.

Example 3. Reconsider the plan properties from Ex. 2. No-
tice that every proper policy has a chance, even just slight, to
dissatisfy Gφ = {〈thund , 1〉}. The maximal possible prob-
ability of any proper policy keeping Gφ satisfied is ≈ 0.78,
and is achieved by the red policy πr from Fig. 1. That pol-
icy however trades this for achieving Gψ = {〈traf , 1〉}
with a probability of only ~PGψ,πr (s0) = 0.168. The green
policy πg satisfies Gφ with a slightly lower probability,
~PGφ,πg (s0) = 0.752, but, in exchange, has ~PGψ,πg (s0) =
0.36. The trade-off between φ and ψ is summarized by ex-
clusion φ⇒Π ¬ψ, for any αφ > 0 and αψ > 0.36.

It can be desirable to have in Ω multiple policy prop-
erties φ1, . . . , φk with related base objectives (i.e., same
cost function cφi = cφj , or variable assignments such that
Gφi ⊆ Gφj ) and different threshold values. This is useful,
in particular, for exploring the effect of different property
relaxations on the solvability of other properties. For that
reason we slightly adapt the conditions of minimal unsolv-
able subset and exclusion dominance, taking into account
the policy properties’ flexibility in the threshold choice. We
say that a cost property φ ∈ ΩC is a relaxation of another
cost property ψ ∈ ΩC , written φ v ψ, if cφ = cψ and
βφ ≥ βψ; and a reachability property φ ∈ ΩR is a relax-
ation of another reachability property ψ ∈ ΩR (φ v ψ) if
Gφ ⊆ Gψ and αφ ≤ αψ . A relaxation φ v ψ where φ 6= ψ
is called strict (denoted φ @ ψ). A property subset Φ is a
relaxation of another property subset Ψ, written Φ v Ψ if
every φ ∈ Φ relaxes some ψ ∈ Ψ. Φ is a strict relaxation of
Ψ (Φ @ Ψ), if Φ v Ψ and Φ 6= Ψ. To define MUSes and
policy-property subset exclusion dominance, we substitute
the subset relation by relaxation:

Definition 3 (Minimal unsolvable policy-property subset).
Φ ⊆ Ω is a minimal unsolvable property subset (MUS) if
it is unsolvable but each of its strict relaxations Φ′ ⊆ Ω,
i.e., Φ′ @ Φ, is solvable. AllMUSes names the problem of
computing the set of all MUSes.

Definition 4 (Policy-property exclusion dominance). A
policy-property subset exclusion Φ ⇒Π ¬Ψ is non-
dominated if there is no other exclusion Φ′ ⇒Π ¬Ψ′ such
that Φ′ v Φ and Ψ′ v Ψ and at least one of the relaxations
is strict. Similarly, Φ⇒Π ¬Ψ is non-rhs-dominated if there
is no Ψ′ ⊆ Ω such that Ψ′ @ Ψ and Φ⇒Π ¬Ψ′.

Example 4. Reconsider the reachability properties φ and ψ
from Ex. 3, and let ϕ1, ϕ2, ϕ3 be three cost properties, all
on the travel time cost function, with βϕ1

= 3, βϕ2
= 5,

and βϕ3
= 8, i.e., ϕ3 @ ϕ2 @ ϕ1. Then, ϕ1 ⇒Π ¬φ is an

exclusion for any αφ > 0; ϕ2 ⇒Π ¬φ for any αφ > 0.752;
and ϕ3 ⇒Π ¬{φ, ψ} for any αφ > 0 and αψ > 0.36.
Moreover, as per the latter, ϕ1 ⇒Π ¬{φ, ψ} and ϕ2 ⇒Π

¬{φ, ψ} are valid exclusions as well, but both are dominated
according to the relaxation relationships.

Note that both definitions subsume their original coun-
terparts. This follows directly from the observation that if
Φ′ ⊆ Φ for any two policy-property subsets, then it also
holds that Φ′ v Φ. Vice versa, however, there can be non-
minimal unsolvable policy-property subsets Φ (respectively,



dominated exclusions Φ′ ⇒Π ¬Ψ′), although every sub-
set of Φ is solvable (respectively, no exclusion satisfies the
subset-based dominance criterion). Also note that it is still
the case that an exclusion Φ ⇒Π ¬Ψ is non-dominated
iff the combined property set Φ ∪ Ψ is a MUS, and that
Φ ⇒Π ¬Ψ is non-rhs-dominated iff, for every strict relax-
ation Ψ′ ⊆ Ω of Ψ, Φ ∪Ψ′ is solvable. Finally, observe that
for every non-dominated exclusion Φ ⇒Π ¬Ψ, both Φ and
Ψ must be unambiguous in that neither of them can contain
two properties φ and φ′ such that φ @ φ′.

3.2 Exclusion-Explanation Computation
With the ability to express the satisfaction of plan properties
as properties on states, AllMUSes in classical planning de-
generates to standard goal reachability questions for differ-
ent goal sets. Eifler et al. (2020b) showed that these different
questions can be solved with a single state-space search, re-
sulting in a method offering similar scalability than that of
optimal classical planners. Unfortunately, conditions on the
expected behavior of policies can no longer be expressed as
properties on states. This has two consequences. First, All-
MUSes can no longer be solved via methods similar to the
algorithm just sketched. Second, whereas in classical plan-
ning, a local Φ-explanation could be computed by solving
AllMUSes for a goal-extended task, this is no longer possi-
ble for SSPs.

Property-Subset Lattice Exploration Alg. 1 depicts our
general algorithm for computing local Φ-explanations, and
closely resembles previous algorithms for computing mini-
mal unsolvable goal/constraint subsets (Eifler et al. 2020a;
Liffiton et al. 2016) with the difference of using property-
subset relaxation in place of the subset relation. At its core,
Alg. 1 conducts an exhaustive exploration of the space of all
property subsets, testing the solvability of the combined set
Φ ∪ Ψ for each visited Ψ. As Φ ⇒Π ¬Ψ holds iff Φ ∪ Ψ
is unsolvable, Φ’s non-rhs-dominated exclusions are given
exactly by the non-relaxable Ψ for which the combined set
was found unsolvable (line 6). To avoid the complete enu-
meration of all the property subsets, Alg. 1 utilizes the re-
laxation relationships with already tested property subsets to
remove from consideration (line 4) (i) known to be solvable
as well as (ii) known to be unsolvable property subsets. Note
that (ii) only discards property subsets that are dominated by
an already found one, hence not affecting the correctness of
the overall algorithm. Additionally, (iii) discards ambiguous
property subsets, which as previously noted cannot be mem-
bers of any non-dominated exclusion. The specific choice of
Ψ is not important for the correctness. In our implementa-
tion, we use MARCO (Liffiton et al. 2016), which chooses
Ψ in a way guaranteeing that each Ψ added to Unsolvable
yields a non-rhs-dominated exclusion, resulting in an any-
time explanation enumeration procedure. Finally, note that
by setting Φ = ∅, the final result minv Unsolvable will be
exactly the set of all MUSes.
Theorem 1. Alg. 1 terminates with the Φ-explanation. If
Φ = ∅ it returns all MUSes.

The Property-Subset Solvability Problem Alg. 1 relies
on a sub-procedure deciding the property subsets’ solvabil-

Algorithm 1: Generic property-subset lattice exploration for
computing the Φ-explanation for a given property subset Φ.
Input: Probabilistic planning task τ , set of policy properties Ω,

property subset Φ ⊆ Ω
Output: All non-rhs-dominated exclusions of Φ
1: Solvable← ∅;
2: Unsolvable← ∅;
3: while true do
4: Pick some Ψ ⊆ Ω \ Φ such that

(i) ∀Ψ′ ∈ Solvable : Ψ 6v Ψ′, and
(ii) ∀Ψ′ ∈ Unsolvable : Ψ′ 6v Ψ, and
(iii) Ψ is unambiguous

5: if such a Ψ does not exist then
6: return minv Unsolvable
7: end if
8: if Φ ∪Ψ is solvable then
9: Solvable← Solvable ∪ {Ψ};

10: else
11: Unsolvable← Unsolvable ∪ {Ψ};
12: end if
13: end while

ity. Before discussing possible implementations, here we de-
fine and analyze the solvability problem formally.
Definition 5 (PSS). The property-subset solvability prob-
lem (PSS) is that of deciding, given a probabilistic planning
task τ and a non-empty set of policy properties Φ, whether
there exists an s0-proper policy π that satisfies Φ.

We distinguish decision problems along three lines: (1)
classical versus probabilistic planning, (2) the input being
the factored planning task description versus the flat state
space, and (3) in the probabilistic case, allowing stochas-
tic policies versus imposing the restriction to determin-
istic policies. It is well-known that with flat representa-
tions, the standard plan/policy existence problems can be
decided in polynomial time (e.g., Puterman 1994). The pol-
icy type does not make a difference. For factored repre-
sentations, classical planning is PSPACE-COMPLETE (By-
lander 1994) and probabilistic-planning EXP-COMPLETE
(Littman, Goldsmith, and Mundhenk 1998).

Moving to PSS, the additional constraints imposed by
the properties have an impact on the complexity in some
but not all cases. Consider classical planning. PSS for the
flat case becomes NP-COMPLETE, being a generalization of
the weight-limited shortest-path problem (Garey and John-
son 1979). For the factored representation, PSS stays in the
same complexity class as plan existence thanks to the abil-
ity to compile the properties into facts. For SSPs, PSS in
the flat and stochastic-policy case can still be solved in time
polynomial in the size of the SSP via an extension of the
standard SSP linear program (as we will see in the next
section). For deterministic policies, however, PSS becomes
NP-COMPLETE, given the classical planning result. PSS for
factored SSPs τ remains EXP-complete if stochastic poli-
cies are allowed; membership follows from applying the
“flat” polynomial-time algorithm to Θτ . However, as in the
flat case, the restriction to deterministic policies again raises
the complexity by the “non-deterministic” factor. Therefore,
and this is in contrast to classical planning, generating expla-



nations for SSPs becomes computationally more demanding
than solving the planning task itself (unless NEXP = EXP).

Theorem 2. For singleton property sets Φ, |Φ| = 1, PSS is
EXP-COMPLETE. For two properties or more, |Φ| ≥ 2, PSS
is NEXP-COMPLETE.

Proof. A single property |Φ| = 1 can be directly mapped
into the SSP’s optimization function. Φ is solvable iff the
corresponding optimal solution satisfies the threshold. This
shows the first part of the claim. For |Φ| = 2, one can adapt
the proof by (Feinberg 2000) showing NP-hardness in the
flat case based on a reduction from the Hamiltonian cycle
problem. We can apply the same proof idea, however con-
sidering a succinct circuit representation of the graph, i.e.,
yielding a reduction from the succinct Hamiltonian cycle
problem which is known to be NEXP-complete (Galperin
and Wigderson 1983). The circuit can be encoded as a proba-
bilistic planning task, whose size relates polynomially to the
size of the circuit, using binary variables to track the suc-
cinct representation of graph nodes, and implementing the
circuit’s transition test via actions. This shows that PSS is
NEXP-hard. Membership follows via guess and check, both
can be done in exponential time.

Despite that difference between stochastic and determin-
istic policies, the general preference of the latter in practical
applications raises the need for methods tackling PSS.

4 Solving PSS by Search in the Dual Space
Finding a policy that satisfies a given property subset Φ boils
down to solving the SSP under additional policy constraints.
This relates to the class of constrained SSPs (CSSPs) (Alt-
man 1999). This section develops an extension of I-DUAL
(Trevizan et al. 2016) – the so far only known heuristic-
search algorithm for solving SSPs supporting both expected
cost and reachability-probability constraints1 – to solving
PSS. To this end, we start with a brief recap of CSSPs and I-
DUAL, then introduce a mixed-integer linear program (MIP)
characterization of PSS, and finally show how to adapt I-
DUAL to solve this integer program efficiently.

4.1 Background: CSSPs and I-DUAL

CSSPs extend SSPs with a list of additional cost functions
c1, . . . , ck and accompanying bounds β1, . . . , βk on the poli-
cies’ corresponding expected costs. Unlike in the uncon-
strained version, optimally solving CSSPs in general re-
quires stochastic policies, i.e., ones mapping states to prob-
ability distributions over actions. The optimal solutions are
characterized exactly by the linear program (LP) depicted in
Fig. 2 (cf., e.g., Altman 1999).

The basis of the encoding are the occupation-measure
(OM) variables Xs,a which represent the expected number
of times action a is to be executed in state s. The expected
cost of the policy represented by the OM variables is given
by the linear combination with the cost function (cf. def.

1Hong and Williams (2023) introduced a heuristic search based
method solving CSSPs for deterministic policies, similar to PSS,
yet it does not support constraints on reachability probabilities.

Minimize cost[c]+ costv̂[c] (C1)
Subject to
Xs,a ≥ 0, s ∈ S \ SG , a ∈ A(s) (C2)
cost[ci]+ costv̂[ci] ≤ βi, 1 ≤ i ≤ k (C3)
out[s]− in[s] = [s = s0], s ∈ S \ SG (C4)∑

s∈SG in[s] = 1 (C5)
cost[c′] :=

∑
s∈S,a∈A(s) Xs,ac

′(a), c′ ∈ {c, c1, . . . , cn}
out[s] :=

∑
a∈A(s) Xs,a, s ∈ S

in[s] :=
∑

s′∈S,a∈A(s′) Xs′,aT (s′, a, s), s ∈ S
Xv

d,a ≥ 0, v ∈ V, d ∈ Dv, a ∈ A (C6)
v-projection OM constraints, v ∈ V (C7)
constraints tying Xv

·,a with Xv′
·,a, v, v′ ∈ V, v 6= v′, a ∈ A (C8)

Figure 2: LP encoding of a CSSP. [ϕ] denotes the Iverson
bracket and evaluates to 1 iff ϕ is satisfied and 0 otherwise.
cost[c′] is a shorthand for the OM variables’ induced ex-
pected cost under c′; out[s] and in[s] for the flow leaving
respectively entering state s. It is assumed that s0 /∈ SG .
Parts in blue are I2-DUAL extensions; v̂ ∈ V is arbitrary.

of cost[c′]). The objective function (C1) asks for minimiz-
ing the expected cost under the SSP’s primary cost function.
The bounds on secondary cost functions map into additional
constraints (C3). (C4) bounds the states’ flow, asserting the
expected numbers of times a non-goal state is entered (the
in-flow) and exited (the out-flow) to be the same. A flow sur-
plus of 1 is inserted at the initial state. (C5) implements the
s0-proper policy requirement by asserting that the entire in-
serted flow sinks at the SSP’s goal states eventually.

The LP necessitates building the entire state space Θτ .
I-DUAL (Trevizan et al. 2016) aims to avoid this by
iteratively solving progressively larger sub-SSPs Θ̂ =

〈Ŝ,A, T̂ , s0, ŜG〉 of Θτ . One iteration of I-DUAL consists
of solving the CSSP LP for the current sub-SSP and sub-
sequently expanding Θ̂ at the fringe states visited by the
found solution, where Θ̂’s fringe F ⊆ Ŝ is the set of non-
goal states whose transitions from Θτ are not present in
Θ̂ yet. An optimal CSSP solution is found when all flow
is sinking at goal states, which may happen before the en-
tire state space was built. To guide the exploration, I-DUAL
leverages heuristics to estimate the expected remaining cost-
to-goal, for each cost function, depending on the reached
fringe states. The estimates become additional summands in
the objective and the cost constraints. Solution optimality is
preserved if the heuristics are admissible.

Trevizan, Thiébaux, and Haslum (2017) presented an
extension of I-DUAL, baptized I2-DUAL, which integrates
the computation of a particular heuristic, the projection
occupation-measure (POM) heuristic hpom, directly in I-
DUAL’s LP. This has the advantage over using cost-function
individual heuristics in being able to jointly consider all
CSSP’s cost constraints inside the heuristic computation.
The blue parts in Fig. 2 summarize the integration. In brief,
hpom is based on the projections of τ onto the individual
state variables V , where the v-projection is the simplified
task obtained from τ by discarding all other variables. hpom



Minimize cost[c]+ costv̂[c] (C9)
Subject to
Xs,a ≥ 0, for all s ∈ S, a ∈ A(s) (C10)
cost[cφ]+ costv̂[cφ] ≤ βφ for each φ ∈ ΦC (C11)
out[s]− in[s] ≤ [s = s0], s ∈ S (C12)
res[SG ]+PG = 1− [s0 ∈ SG] (C13)
res[SGφ ]+PGφ ≥ αφ − [s0 ∈ SGφ ], φ ∈ ΦR (C14)
Ds,aK − Xs,a ≥ 0, s ∈ S, a ∈ A(s) (C15)∑
a∈A(s) Da,s + Ts ≤ 1, s ∈ S (C16)

out[s]− in[s] + Ts ≥ [s = s0], s ∈ S (C17)
Ds,a ∈ {0, 1}, s ∈ S, a ∈ A(s) (C18)
Ts ∈ {0, 1}, s ∈ S (C19)
res[S] :=

∑
s∈S (in[s]− out[s]), S ⊆ S

Xvd,a ≥ 0, v ∈ V, d ∈ Dv, a ∈ A (C20)
PG ≥ 0, G ∈ {Gφ | φ ∈ ΦR} ∪ {G} (C21)
v-projection OM constraints, excluding the proper-policy
constraint, v ∈ V

(C22)

constraints tying Xv·,a with Xv
′
·,a, v, v′ ∈ V, v 6= v′, a ∈ A (C23)

PG ≤ resv[G[v]], v ∈ V s.t. G[v] is defined (C24)

Figure 3: MIP encoding of PSS for the property subset
Φ = ΦR ] ΦC . Builds on Fig. 2; objective and constraints
are extended to also take into account occupation-measure
variables of goal states. res[S] is a shorthand for the flow
residing in the state set S. K ∈ R+

0 is a large constant. Parts
in blue are I2-DUAL extensions; v̂ is arbitrary.

combines in a single LP (represented by (C6) – (C8)) the
OM-based representation of the projections’ SSPs, tying to-
gether the OM variables between the projections by enforc-
ing that each projection executes every action overall exactly
the same number of times. By inserting flow into the pro-
jections’ states according to the probabilities sinking in the
fringe states, the projections’ OM variables yield the heuris-
tic summands for (C1) and (C3). Given (C8), it does not
matter whose projection’s OM variables are used to this end
exactly. Fig. 2 chooses those of an arbitrary but fixed v̂ ∈ V .

4.2 Characterizing PSS as a MIP
Fig. 3 builds on the LP from Fig. 2, modeling PSS as a MIP.
CSSPs differ from PSS in two regards: CSSPs (1) consider
solely constraints on secondary cost functions; and (2) as-
sume stochastic policies. In the presence of a single goal-
reachability objective, i.e., assumption (1), one can assume
w.l.o.g. that goal states are absorbing, forcing policies to
immediately terminate once reaching those states. This as-
sumption allows to exclude in the LP (a) the trivial special
case s0 ∈ SG , (b) omit goal-state leaving transitions, setting
out[sG ] = 0 implicitly for all goal states sG , and (c) ignore
flow constraints for the goal states.

In contrast, in the presence of multiple reachability con-
straints, continuing the execution in the SSP’s goal states
might be necessary for achieving the other reachability ob-
jectives. For illustration, consider the simple SSP with two
states s0 and sGφ and a single transition T (s0, a, sGφ) = 1.
s0 is the initial state, both states are goal states of the SSP,

but only sGφ satisfies the secondary reachability objective
Gφ. While the empty policy (not assigning an action to
any state) is s0-proper, π(s0) := a is necessary to obtain
PGφ,π(s0) = 1. Fig. 3 accounts for additional reachability
objectives by introducing occupation-measure variables also
for goal-leaving transitions. Thus, the flow constraints (C12)
need to be defined for all states, while to allow flow sinking
at some states, the equality needs to be changed to an upper-
bound constraint. As flow may now escape from goal states,
(C5) is no longer a sufficient proper policy condition. (C13)
in Fig. 3 instead ensures that all the flow enters and resides in
the SSP’s goal states eventually by additionally taking into
account their out-flow. Furthermore, (C13) handles the case
s0 ∈ SG by taking into account the initial flow inserted at s0

if s0 is a goal state. Reachability properties can now be en-
coded as flow-residual constraints (C14) in the same manner
as the SSP’s goal constraint (C13).

The second source of complication arises from the fact
that PSS talks about deterministic policies, which in the
presence of additional policy constraints are no longer
equally expressive as stochastic policies, as previously men-
tioned. We implement that requirement by binary integer de-
cision variables Ds,a for each state-action pair. (C15) en-
sures that Ds,a is set if the corresponding transition is as-
signed a positive occupation measure, while (C16) insists
on setting at most one Ds,a per state. The additional binary
integer variables Ts are explicit indicators of the policy ter-
minating in s. These are necessary because with the policy’s
termination being no longer determined by the satisfaction
of the SSP’s goal, termination becomes a deliberative policy
choice. (C16) makes sure that this choice remains determin-
istic. That this is indeed necessary can be seen in the previ-
ous SSP example. Suppose that αφ = 1

2 and that there is a
second reachability property ψ with αψ = 1

2 and Gψ is sat-
isfied in s0. Clearly, there is no s0-proper policy that satisfies
both φ and ψ. However, without the additional termination
variables, Xs0,a = 1

2 and Ds0,a = 1 would yield a solution
to the MIP. Finally, (C17) ensures that the termination in-
dicator Ts is set whenever some flow is sinking in state s.
Putting everything together, we conclude:

Theorem 3. Let τ be an SSP and Φ be some set of policy
properties. For a suitably large constant K, the MIP from
Fig. 2 has an optimal solution iff Φ is solvable.

4.3 Solving PSS with Heuristic Search
The principles of I-DUAL apply directly to PSS. The main
change required is, obviously, the substitution of the CSSP
LP by the MIP from Fig. 3. Some care must be taken to cor-
rectly handle the subtle differences between PSS and CSSPs.
First, given that goal states can no longer be assumed to be
absorbing, goal states must now be included in I-DUAL’s
fringe (and thus possibly expanded). Second, given that goal
states may now be contained in the fringe, we must change I-
DUAL’s termination condition testing explicitly that no flow
is sinking in the fringe. Lastly, the fringe states must be han-
dled appropriately in PSS’s reachability constraints. That is,
we must make sure to optimistically (hence upper) bound the
expected achievement of the individual reachability proper-



ties given the fringe states reached. This can be done, in the
same vein as for the cost constraints, with the help of ad-
missible goal-probability heuristics. After these changes, I-
DUAL’s original correctness arguments can be carried over
to show that our adapted variant correctly solves PSS.

To complete the adaptation of I2-DUAL, it only remains
to extend the hpom part to deliver the necessary opti-
mistic reachability-probability bounds. The blue parts in
Fig. 3 highlight the main changes. In summary, we dis-
card hpom’s proper-policy constraint. hpom’s reachability-
probability bounds are represented through additional vari-
ables PG for each relevant G, cf. (C21), which become
additional summands in the proper-policy (C13) and the
reachability-property constraints (C14) of the overall MIP.
The constraints (C24) synchronize the values of those reach-
ability variables with the actual probability of residing in
the projections’ G-achieving states. That this indeed yields
an upper bound on the probability of achieving G from the
fringe states follows similarly to the cost bounds from the
fact that projections are solution preserving.

Theorem 4. Run I2-DUAL or I-DUAL with admissible
heuristics. If at any point in time, the MIP for one of the
sub-SSPs Θ̂ becomes infeasible, then Φ is unsolvable. If they
return π, then π is s0-proper and π satisfies Φ.

Note that the hpom modifications sketched so far do not
ensure that the projection’s OM variables resemble a deter-
ministic policy. One might be tempted to enforce determin-
ism within every projection via additional integer variables
as in Fig. 3. This however breaks hpom’s admissibility prop-
erty, because due to the tying of the projections, different
actions might need to be applied in a single projection state.

5 AllMUSes via MO Optimization
Ignoring the properties’ thresholds, one is left with a set of
policy metrics whose simultaneous optimization becomes a
variant of multi-objective (MO) SSPs (Chen, Trevizan, and
Thiébaux 2023). In the following, we leverage this connec-
tion, showing that the solution to this MOSSP variant con-
tains all the relevant information to decide any PSS.

5.1 Background: MOSSPs
Multi-objective SSPs (Roijers and Whiteson 2017; Chen,
Trevizan, and Thiébaux 2023) differ from regular SSPs in
optimizing a cost-function vector ~c = [ c1 ... cn ] rather than
a single cost function. Optimality in the MO setting is de-
fined via a dominance order between real vectors, where
for two real vectors ~x = [ x1 ... xn ] and ~y = [ y1 ... yn ],
~x weakly dominates ~y (~x � ~y) if xi ≤ yi holds for all i.
~x dominates ~y (~x ≺ ~y) if ~x � ~y and ~x 6= ~y. Associat-
ing each policy π with the vector of expected-cost functions
~J~c,π := [ Jc1,π ... Jcn,π ], the optimal MOSSP policies are
those s0-proper policies π where ~J~c,π(s0) is not dominated
by ~J~c,π

′
(s0) for any other π′. Since� is not a total order, op-

timal policies can have different value vectors. The optimal
MO-value function J∗ assigns every state to the set of all
these optimal cost vectors. Like constrained SSPs, MOSSPs
assume stochastic policies, and there can exist ~J∗ ∈ J∗(s)

that is not achievable by any deterministic policy. |J∗(s)| is
in general infinite but can be represented as the convex hull
of a finite coverage set (Roijers and Whiteson 2017).

5.2 MOSSPs with Deterministic Policies, and
Connection to PSS

To be able to translate the policy property set Ω into a multi-
objective optimization problem, we introduce a slight varia-
tion of MOSSPs that supports multiple cost as well as goal
objectives. Concretely, let ~c = [ c1 ... cn ] be a cost-function
vector, as before, and let ~G = [G1 ... Gm ] be a vector
of variable assignments. For simplicity’s sake, we denote
for every policy π the combined policy value vector with
~V π = [ Jc1,π ... Jcn,π −PG1,π ... −PGm,π ] (note the nega-
tion of the reachability probabilities). A deterministic pol-
icy π ∈ Π(s0) is called deterministic optimal if ~V π is not
dominated by ~V π

′
of any π′ ∈ Π(s0). The deterministic-

optimal MO-value function is given by V∗d(s) := {~V π(s) |
π ∈ Π(s) s.t. @π′ ∈ Π(s) : ~V π

′
(s) ≺ ~V π(s)}. Note that

|V∗d(s)| is always guaranteed to be finite.
Let ~c = [ c0 ... cn ] and ~G = [G1 ... Gm ] where c0 denotes

the SSP’s main cost function, c1, . . . , cn are the cost func-
tions underlying the cost properties ΩC , and G1, . . . , Gm
are the goal sets underlying ΩR. Let Φ ⊆ Ω be an unam-
biguous property subset. We associate with βΦ(ci) := βφ
the cost threshold assigned by the property φ ∈ ΦC such
that cφ = ci, if it exists, and define βΦ(ci) :=∞ otherwise.
αΦ(Gi) is defined similarly. Suppose we are given V∗d(s0):
Theorem 5. Let Φ ⊆ Ω be an unambiguous property subset.
Let ~vΦ := [∞ βΦ(c1) ... βΦ(cn) −αΦ(G1) ... −αΦ(Gm) ]. ~vΦ is
dominated by one of the vectors in V∗d(s0) iff Φ is solvable.

Plugged into Alg. 1, this yields an alternative approach
to computing the exclusions, where all property-subset solv-
ability tests boil down to lookups; in particular no additional
MIPs need to be solved. For any Φ, the domination condition
on ~vΦ can obviously be checked in time linear in the num-
ber of entries in V∗d(s0). Therefore, if the size of V∗d(s0) is
small compared to the number of possible property subsets,
then this approach can be expected to be more effective than
solving the requested property subsets via individual planner
calls – provided that the overhead of the V∗d(s0) precompu-
tation does not outweigh this benefit.

The decision-problem formulation asking whether ~V π ∈
V∗d(s0), for a given ~V π , is equivalent to the definition of PSS
(Def. 5). Hence, as a corollary from Thm. 2, this decision
problem is NEXP-COMPLETE. Existing MOSSP techniques
cannot be used to solve our multi-objective SSP variant be-
cause they are limited to stochastic policies.

5.3 Enumerating Non-Dominated Solutions
Let ~c = [ c1 ... cn ] be a cost-function and ~G = [G1 ... Gm ]
be a goal vector. The non-dominated solution vectors V∗d(s0)
can be enumerated by solving |V∗d(s0)|MIPs. Fig. 4 depicts
the encoding for finding a single new non-dominated solu-
tion. The MIP is iteratively refined taking into account the
set Incumbent of policies computed so far. During the course



Minimize∑n
i=1 ωci cost[ci]−

∑m
j=1 ωGj res[SGj ]

+
∑n
i=1 ωci cost

v̂[ci]−
∑m
j=1 ωGjPGj

(C25)

Subject to
MIP from Fig. 3 without (C11) and (C14) (C26)
cost[ci]+ costv̂[ci]−Wπ

ciK ≤ Jci,π(s0)− ε,
π ∈ Incumbent, i ∈ {1, . . . , n}

res[SGj ]+PGj +Wπ
Gj
K ≥ PGj ,π(s0) + ε,
π ∈ Incumbent, j ∈ {1, . . . ,m},

(C27)

∑n
i=1 W

π
ci +

∑m
i=1 W

π
Gi
≤ n+m− 1, π ∈ Incumbent (C28)

Wπ
ci ∈ {0, 1}, π ∈ Incumbent, i ∈ {1, . . . , n}

Wπ
Gj
∈ {0, 1}, π ∈ Incumbent, j ∈ {1, . . . ,m} (C29)

Figure 4: MIP for enumerating the non-dominated solution
vectors V∗d(s0). Incumbent denotes the set of policies ex-
tracted thus far. ω is a predefined convex combination of all
objectives. ε ∈ (0,∞) is the precision parameter. Blue parts
show I2-DUAL modifications.

of all iterations, it is guaranteed that (1) only deterministic-
optimal policies are ever added to Incumbent, and (2) that
for each value vector ~V ∗ ∈ V∗d(s0), there is at most one
policy π ∈ Incumbent such that ~V π(s0) = ~V ∗. V∗d(s0) is
found when the MIP becomes infeasible. Since the number
of policies satisfying (1) and (2) is exactly |V∗d(s0)|, termi-
nation must happen after the claimed number of iterations.

The encoding is based on Fig. 3, dropping the policy-
property constraints. The optimization function is a linear
scalarization of all objectives, i.e., any choice of weights
ω > 0 such that

∑n
i=1 ωci +

∑m
j=1 ωGj = 1. This suf-

fices to guarantee (1), which can be shown straightforwardly
by contraposition. The bulk of the MIP deals with ensuring
progress in the sense of forbidding finding the same solu-
tions again. This is accomplished through constraints (C27),
which require improving over the previously computed pol-
icy in at least one objective. The selection of this improving
objective is implemented via binary integer wildcard vari-
ables Wπ

O, for each policy π ∈ Incumbent and objective O.
When set, Wπ

O = 1, the MIP solution may perform worse
than π wrt. O. However, due to (C28), it is not possible to
wildcard all objectives. In other words, each iteration finds
a non-dominated π̂ whose value vector ~V π̂(s0) differs from
all the previous ones; yielding property (2). There is a little
caveat, however. To model strict inequality constraints, en-
forcing strict improvement in at least one objective, (C27)
has to include a non-zero ε summand. Nevertheless:
Theorem 6. There always exists ε ∈ (0,∞) such that the
sketched algorithm terminates with V∗d(s0).

In practice, the exact value of ε is task specific and may
be difficult to find. The ε parameter can be used to control
the precision, and therewith size of the computed solution
set, at the cost of losing the formal correctness guarantee.

As before, it is possible to leverage the principles of I-
DUAL, solving each MIP in multiple iterations, while ex-
panding the state space incrementally. Along the lines, and
in addition to our adaptations from the previous section,

this requires taking into account the fringe states’ optimistic
heuristic estimates in the ensure-progress constraints (C27);
and, to foster finding non-dominated solutions, in the opti-
mization function (C25). Fig. 4 illustrates the changes for I2-
DUAL’s hpom representation. Correctness follows with simi-
lar arguments as before.

6 Experimental Evaluation
The focus of our experiments is evaluating the feasibility of
the proposed explanation architecture. Our implementation
is based on Probabilistic Fast Downward (Helmert 2006;
Steinmetz, Hoffmann, and Buffet 2016). The code is pub-
licly available (Steinmetz et al. 2024). All experiments were
run on a cluster with Intel Xeon E5-2695v4 CPUs, using
runtime and memory limits of 30 minutes and 4 GB.

Setup We implemented Alg. 1 via MARCO (Liffiton
et al. 2016), using MiniSAT 2.2 (Eén and Sörensson 2003)
as the SAT solver. The LPs/MIPs were solved using CPLEX
22.11. We compare 6 PSS methods: PSS-MIP via the MIP
encoding of PSS, either (F) building and solving the MIP
over the full (reachable) state space directly, or (I) solv-
ing the MIP incrementally via our I-DUAL variant using
as heuristic the state-of-the-art canonical PPDB heuristic
over all patterns of size 2 (Klößner and Hoffmann 2021;
Klößner et al. 2021), or (I2) solving the MIP with our I2-
DUAL variant. The other three configurations (MO) compute
up front the optimal MO value function, using either F, I, or
I2 for enumerating the non-dominated solution vectors. We
set ε = 0.05. As a base reference, we also experimented with
LP relaxations of the PSS-MIP methods, which compute the
non-dominated exclusions for the space of stochastic poli-
cies. Applying LP relaxations to the MO methods is not
possible as it would enumerate the optimal value vectors of
stochastic policies, whose number is in general not bounded.
Unfortunately, we cannot compare to other MOSSP solvers
(e.g., Chen, Trevizan, and Thiébaux 2023) either, which due
to the presence of 0-cost/reward cycles, do not support goal
reachability objectives (cf. Kolobov et al. 2011; Steinmetz,
Hoffmann, and Buffet 2016). As an additional reference, we
include the results of a state-of-the-art MaxProb planner,
based on heuristic search with iLAO* (Hansen and Zilber-
stein 2001) and FRET-π (Steinmetz, Hoffmann, and Buffet
2016) using a PPDB heuristic (Klößner et al. 2021).

Benchmarks Our benchmark set is based on existing and
new PPDDL benchmarks. A benchmark instance here con-
sists of a PPDDL task τ , a set of properties Ω, and a property
subset Φ ⊂ Ω for computing local explanations. The bench-
mark set is composed of three parts. We leave Φ empty, i.e.,
computing all MUSes, except in the first part:

• OSP Following Eifler et al. (2020a), we generate “OSP”
variants of existing benchmarks from the IPPCs and
other sources (Steinmetz, Hoffmann, and Buffet 2016;
Klößner et al. 2021) that have more than one goal fact.
We use Ω as the representation of “soft goals” and Φ
to enforce the cost bound. Specifically, for each PPDDL
base task τ , we generate for each combination of P ∈
{0.6, 0.75, 0.9} and C ∈ {0.25, 0.5, 0.75} a benchmark



instance (1) making the goal of the task empty, (2) each
original goal fact g becomes a reachability property φg
with Gφg = {g} and αφg = P · PG∗ where PG∗ is the
MaxProb of τ ; (3) Φ = {φ} where φ is the cost prop-
erty enforcing as bound βφ = C · h∗ on τ ’s cost function,
where h∗ is the minimal path cost required to reach τ ’s
goal (J∗ cannot be used as some benchmarks have no
proper policy).

• Search and Rescue An adaptation of Trevizan,
Thiébaux, and Haslum’s (2017) CSSP benchmark. m
cells of an n-by-n grid can possibly hold a victim. The
agent must navigate through the grid in order to find, and
as necessary, rescue the victims, while there are bounds
on the total time and fuel consumption. We created 75 in-
stances, randomly generating 5 instances for each com-
bination of n ∈ {6, . . . , 10} and m ∈ {2, 3, 4}. Ω in-
cludes the reachability properties φx requiring the vic-
tim from cell x being rescued with probability of 1; and
for the time and fuel cost functions, the cost proper-
ties φc,C with βφc,C = C · Jc,∗, where Jc,∗ is the min-
imal expected cost under c of rescuing all victims, and
C ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. Note that C > 1 makes
sense, because being optimal wrt. one cost function does
not mean being optimal wrt. the other cost function.

• Beluga A use-case of an actual company. Incoming prod-
uct components must be stashed in first-in-first-out stor-
age racks, and taken out of the racks as requested by the
production lines. There is uncertainty about the compo-
nent requested next. Components can be moved between
racks. Ideally, all production lines should be served while
using as few racks as possible and moving as few com-
ponents between the racks as possible. We generated
90 random instances with {3, 4, 5, 6} incoming compo-
nents, {2, 3} available racks, and {2, 3} production lines.
We encode the three different preferences as properties:
the probability P of successfully serving all production
lines, considering P ∈ {0.5, 0.6, . . . , 1.0}; a reachabil-
ity property φn where Gφn encodes that n racks have
not been used and αGφn = 1; and bounds on component
movements between racks, modeled as the cost property
φm where βφm = m and m ∈ {1, . . . , 5}.

Results The left-hand side of Table 1 displays the cover-
age results. Comparing the three MIP solving strategies, I2
has a clear advantage in both PSS-MIP and MO algorithm
variants. Although constructing the full MIP was actually
often possible, F can solve only the very smallest instances,
and typically timed out already during the first PSS call.
The comparison between I and I2 shows the advantage of I2-
DUAL’s heuristic being able to simultaneously reason across
all the property objectives. I2 considered on average only
half as many states as I. Exceptions are Elevators and Beluga
where I2-DUAL’s heuristic caused a runtime overhead over-
shadowing that advantage. The PSS-MIP and MO methods
perform overall similarly. However, in some domains (no-
tably Se&Re and Beluga) the enumeration of ~V ∗ turned out
infeasible due to too many non-dominated but almost indis-
tinguishable value vectors. Comparing the runtime of PSS-
MIP and MO using I2-DUAL, MO is considerably slower

Coverage Time (s)
Reference PSS-MIP MO MIP MO
PG∗ LP F I I2 F I I2 I2 I2

Blocksw (135) 108 66 26 46 50 25 31 49 14.7 86.8
Elevators (135) 135 82 48 72 69 43 46 47 2.9 46.5
ExpBlock (126) 126 63 2 40 50 4 36 41 17.6 11.4
NoMyst (45) 36 19 0 18 18 0 13 13 2.1 12.5
Random (108) 72 68 0 46 56 3 52 60 33.5 20.7
Rovers (90) 90 74 22 63 63 26 40 44 30.0 46.0
Schedule (90) 45 53 18 27 51 18 27 54 8.6 2.6
TPP (90) 90 35 0 26 26 0 8 12 13.0 58.0
Zenotrav (63) 54 28 0 27 28 0 25 25 3.2 16.0
Se&Re (75) 75 67 30 33 36 0 0 0
Beluga (90) 90 54 24 55 50 26 16 10 42.1 773.4

Table 1: Number of instances where the explanation was
computed within the limits. Abbreviations as described in
the text; reference values for solving MaxProb PG∗ for the
original goal G, and the LP relaxation of PSS-MIP via I2-
DUAL. Time averaged over commonly solved instances.

almost throughout. It should be noted, however, that MO
spends all this time on the computation of ~V ∗. Once com-
puted, the generation of the explanation only takes a split
second. This can become an advantage for computing mul-
tiple local explanations in a row, which we did not evaluate
here. Compared to the references, the theoretical complexity
results are partially reflected in the data. Overall, explana-
tions could be computed in only a fraction of the instances
feasible for MaxProb. However, PSS-MIP I2’s close perfor-
mance to its LP-relaxed counterpart suggests that the reason
of this discrepancy already lies in the secondary constraints
and objectives rather than the original source of the com-
plexity increase (deterministic policies).

7 Conclusion
In the presence of action-outcome uncertainty, characteris-
tics of solution policies are defined by the expectation over
the policies’ executions. We introduced accordingly pol-
icy reachability and cost variants of Eifler et al.’s (2020a)
plan properties. The analysis of mutual relationships be-
tween user-provided properties can comprehensibly summa-
rize trade-offs in the infeasibly large space of all (global)
or selected (local) policies. We showed that under the re-
striction to deterministic policies, this analysis is however
computationally more difficult than the computation of a sin-
gle solution policy. Our empirical results reflected to an ex-
tent this complexity, but also showed that proposed explana-
tion methodology can be feasible. We introduced two algo-
rithm variants identifying the properties’ exclusion relation-
ships. While analyzing property combinations individually
tends to be more efficient in computing a single explana-
tion, taking the detour via multi-objective optimization can
have strengths in an interactive setting where a user might re-
quest a series of local explanations. The adaptation of multi-
objective heuristics (Geißer et al. 2022) is a promising direc-
tion to improve scalability of the proposed methods.
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work was also supported by Australian Research Council
grant DP220103815.

References
Altman, E. 1999. Constrained Markov Decision Processes.
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Plan-Space Explanation via Plan-Property Dependencies: Faster
Algorithms & More Powerful Properties. In Proc. of IJCAI 2020,
4091–4097.
Feinberg, E. A. 2000. Constrained Discounted Markov Decision
Processes and Hamiltonian Cycles. Math. Oper. Res., 25(1): 130–
140.
Galperin, H.; and Wigderson, A. 1983. Succinct Representations
of Graphs. Inf. Control., 56(3): 183–198.
Garey, M. R.; and Johnson, D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman.
ISBN 0-7167-1044-7.
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Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupation
Measure Heuristics for Probabilistic Planning. In Proc. of ICAPS
2017, 306–315.
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