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Abstract

Although deep learning has proved its effectiveness in the analysis of medical images, its
great ability to extract complex features makes it susceptible to base its decision on spu-
rious confounders present in the images. However, especially for medical applications,
network decisions must be based on relevant elements. Numerous confounding factors have
been identified in the case of brain scans such as gender, age, MRI sites or scanners, etc.
Nevertheless, although skull stripping is a classic preprocessing step for brain scans, brain
shape has never been considered as a possible confounder. In this work, we show that brain
shape is used in the classification of brain MRI scans from different databases, even when
it should not be considered as a clinically relevant factor. To this purpose, we introduce
a rigorous two steps method to assess whether a factor is a confounder or not, and we
apply it to identify the brain shape as a confounding variable in brain images classification.
Lastly, we propose to use a deformable registration in the data preprocessing pipeline to
align the brain contours of the images in the datasets, whereas standard pipelines often do
nothing more than affine registration. Including this deformable registration step makes
the classification free from the brain shape confounding effect.

Keywords: Confounding factor, Classification, Brain shape, Deformable registration, In-
terpretability

1. Introduction

Deep learning has emerged as a powerful tool in the field of medical imaging. Its
ability to automatically learn and extract complex patterns from vast amounts of data has
revolutionized the way we analyze images. However, the great performances of deep learning
come with the price of the black-box nature of these methods: deep neural networks, with
their non-linearity and their large number of parameters, are difficult to explain. Training
explainable and interpretable networks is therefore a key issue for medical image analysis
as the lack of transparency can hide the fact that the network decision may be based on
wrong reasons: a bias in the training set can make a confounding factor plays an important
role in the decision. Classifiers are especially subject to this problem whether they are used
for pure classification problems or as guidance for adversarial networks or diffusion models.

Several tricks can be used to reduce or remove the influence of a known confounding
factor from a model. The simplest is to carefully collect the training dataset such that
the confounding variables are matched in the different classes as in (Leming et al., 2022).
However, this approach makes it tedious to create large datasets. If possible, normalization
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preprocessing can also be used to discard variations of this variable across the dataset. For
example, in (Wargnier-Dauchelle et al., 2021), the MRI signature is removed using brain
tissue probability maps instead of MRI scans as input of a deep classifier. Data augmenta-
tion can also be used to make the model invariant to a set of variables or transforms. In the
literature, works have also been proposed to train models free from the influence of a known
confounder. In (Zhao et al., 2020), the features of a network are trained for the prediction
of the objective task but also trained adversarially for the prediction of the gender, con-
sidered here as the confounding variable, making the features invariant to this confounder.
In (Wang et al., 2018), the model is first trained for the objective task and the top layer
is then fine-tuned to predict the confounding variable: the gender, the subject or the con-
trast material. During this fine-tuning step, weights sensitive to the confounding factor are
identified and discarded. For these methods to be used, the potential confounders need to
be identified first. Moreover, for the two latter methods, the potential confounding factor
should be available as a scalar of categorical data and the value of the confounding variable
should be known during training. To identify confounding factors in images, attribution
maps can be used to localize the information used by the network to make its decision.
For example, in (Sun et al., 2023), an attribution maps comparison protocol was proposed
by visualizing confounding factors artificially added to the images. In (Wargnier-Dauchelle
et al., 2021, 2023), these maps are used to validate and/or improve the interpretability of
the network by verifying that the decision is based on brain lesions.

In this work, we assess the importance of the brain shape as a confounding factor in the
classification of brain images. To do so, we propose a rigorous protocol to verify that the
brain shape is indeed a confounding factor used as a part of the network decision despite
the standard affine spatial normalization. The first step of our protocol is to verify if it
is possible to classify various datasets using the confounding factor only: for the concrete
case we investigate, we propose to use the brain mask as a brain shape representation and
our first non-intuitive result is that it is possible to classify the datasets using only this
mask. Then, we check that the brain shape is indeed part of the decision when original
grayscale images are used as input of the network. To this end, we modify the image such
that the identified factor could be from the opposite class and evaluate the impact on the
classification task. We come up with two solutions to change the brain shape from one class
to another: by trimming the borders of the brain or with deformable registration. Finally,
we show that by complementing the standard affine registration of the preprocessing with
a deformable registration to normalize the brain shape, we can classify brain images while
canceling out the confounding effect of brain shape in classification.

2. Method

2.1. A generic two steps confounding factor identification procedure

Our procedure to assess that a variable is indeed a confounding factor is in two steps. In
the first step, we verify that the suspicious variable is a potential confounding factor by
checking whether or not it is possible to classify the data using this variable only. To do so,
a classifier, having this variable only as input, is trained to classify the subjects using the
same class label as the original problem. If the classifier is random, with an accuracy close
to 0.5, the variable can be discarded from the potential confounders of the problem.
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If the classification is possible in the first step, we check in the second step whether this
factor is indeed used by a model trained with the original images as input. To do so, the
model is trained conventionally on the original images. Then, test data are transformed
such that the value of the suspicious factor lies within the distribution of this factor for the
opposite class, while modifying the image as little as possible. The difference in classification
performances between the original and the transformed test data is then measured. A lower
classification performance for transformed data would indicate that the identified factor is
used by the model to correctly classify and is indeed a confounder.

2.2. Identifying the brain shape as a confounding factor

For the concrete case of the brain shape, the first step is achieved by trying to classify
several brain datasets using the brain masks only as input of the network. This binary
mask, indicating whether a voxel is inside the brain (value of 1) or outside (value of 0), is
used as a representation of the brain shape. For the second step, we need a transform to
make the brain shape of a subject match the shape of subjects in the opposite class, while
changing the image content as little as possible. Two such transforms are investigated:
brain mask crop or brain mask registration.

Brain mask crop A brain mask is randomly drawn from the opposite class and used
to crop the grayscale image of the current subject: pixels outside the mask are set to the
background value. This cropped image is given as input to the classification model at test
time. The image remains the same inside the brain mask but it is changed at its border.
Note that this technique modifies only a part of the shape: the part outside the mask drawn
from the opposite class.

Brain mask registration A brain mask is also randomly drawn from the opposite class
but this time, it is used as a reference to realign the brain shape of the current subject.
To realign a moving brain mask Bm on a reference brain mask Br, we solve the following
optimization problem:

min
T s.t. J(x)≥t

∑
x∈∂Br

d(T (x), ∂Bm) + λ
∑
x

||∆T (x)||2, (1)

where T is the transformation we look for, ∂Bm and ∂Br are the border of the two brain
masks and d(., ∂Bm) is the Euclidean distance to the border of the moving brain mask. To
penalize strong deformations, a bending energy term with a coefficient λ is added and the
Jacobian of the transformation J(x) is constrained to be higher than a given threshold t for
all voxels. Any registration algorithm could be used with a null image as the fixed image,
the distance transform of ∂Bm as the moving image and a cost function masked with ∂Br.
The transformation T is then applied to the original grayscale image to obtain an image
with a brain shape of the opposite class.

2.3. Eliminating the brain shape confounding effect with normalization

Affine registration to a reference template is usually included in the data preprocessing
to spatially normalize the datasets. We advocate that this affine registration step is not
sufficient to avoid the brain shape confounding effect in deep learning. We propose to add
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Table 1: T1 MRI datasets. H refers to healthy, MS to multiple sclerosis, T to tumors and
AD to Alzheimer’s Disease.

Dataset IXI HCP MPI kirby IBC OFSEP BraTS ADNI
CN AD

Ntrain 400 500 64 22 8 383 280 183 150
Nval 130 100 15 5 2 97 40 23 19
Ntest 50 500 15 5 2 30 49 23 19
Status H H H H H MS T H AD
Age 50± 17 29± 4 31± 14 31± 7 34± 5 43± 12 60± 9 76± 5 75± 8

a deformable registration step to normalize the brain shape. To do so, we extract the brain
mask of all subjects as well as of the reference template, and realign each subject’s brain
mask to the reference template brain mask by solving the registration problem of Equation
1. The computed deformable transforms are then applied to the corresponding images to
create shape-normalized brain datasets that can be used to train any network.

3. Experiments

3.1. Data

Seven T1w MRI datasets are used in our experiments: the five public healthy databases
IXI1, HCP2 (Babayan et al., 2019), kirby (Landman et al., 2011), MPI (Babayan et al., 2019)
and IBC (Pinho et al., 2018), the OFSEP/EDMUS multiple sclerosis (MS) dataset3 from
the “Observatoire français de la sclérose en plaques”, the MS french registry (Vukusic et al.,
2020; Confavreux et al., 1992), the MICCAI BraTS 2020 glial tumors public dataset (Bakas
et al., 2017, 2018; Menze et al., 2014) that also includes the manual tumors segmentation,
and the Alzheimer’s disease (AD) ADNI-1 dataset4 (Weiner et al., 2010) which also includes
healthy subjects (CN). Division in training, validation and test sets is given in Table 1.

3.2. Experimental protocol

MR images are preprocessed using FSL FLIRT affine registration on the T1 MNI atlas
(Jenkinson and Smith, 2001; Jenkinson et al., 2002), HD-BET brain extraction (Isensee
et al., 2019) and N4 bias field correction (Tustison et al., 2010) except for the BraTS
dataset. As this dataset is provided preprocessed using the CaPTk pipeline5 that includes
the brain extraction (different from HD-BET), we only applied the affine registration and
the bias field correction. The final image size is 91 × 109 × 91 with a 2mm voxel size. Bi-
nary classifiers are trained to classify the brain MRI datasets (either healthy, with multiple
sclerosis or with tumor subjects). In the following, “shape normalized” datasets refer to
the datasets normalized using the procedure of Section 2.3. We also evaluated the impact
of elastic deformations data augmentation during training (denoted as “elastic DA”). The
deformations were chosen to be strong enough to hide the differences between brain shapes
of the different datasets. Classification performances are evaluated using the true posi-
tive/negative rate (TPR/TNR) and the balanced accuracy (BA). In Section 4.2, we analyze

1 brain-development.org/ixi-dataset 2 humanconnectome.org/study/hcp-young-adult 3 ofsep.org
4 adni.loni.usc.edu 5 cbica.github.io/CaPTk/preprocessing brats.html
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(a) IXI (b) BraTS (c) IXI norm. (d) BraTS norm.

Figure 1: IXI vs BraTS classification gradient attributions. From left to right: for an IXI
image, for a BraTS image, for a shape normalized IXI image and BraTS image.
The tumor is in yellow, negative attributions in blue and positive ones in red.

the feasibility of distinguishing the datasets using only the confounding factor that-is-to-say
using only the brain binary masks. In Section 4.3, we evaluate if the brain shape is indeed
a confounding factor for classification models trained with MRI input6.

3.3. Implementation details

The classifier, implemented in Pytorch, is a 3D PatchGan (Isola et al., 2017), trained with
the Adadelta optimizer (Zeiler, 2012), class balanced minibatches, an initial learning rate
set to 1 and the cross entropy loss. This CNN is defined as C64-C128-C256-C512 where Ck
denotes a Convolution-BatchNorm-LeakyReLU (slope 0.2) layer with k filters, except for
the first layer on which no BatchNorm is applied. At the end, a convolution is applied to
obtain a 1-dimensional output. In Section 4.1, attributions were computed using gradient
maps (Simonyan et al., 2013). The brain shape registration algorithm of Section 2.2 is
based on the algorithm described in (Sdika, 2008). We set t = 0.85, λ = 10−3 and the
transformation is represented by a B-Spline vector field with a node spacing of 4 voxels.

4. Results

4.1. Attributions highlight brain borders

To visualize the confounding factors, we use attribution maps which indicate the relevance
of each voxel in the network decision. Figure 1 shows some attribution examples for the IXI
vs BraTS classification. In Figures 1(a) and 1(b), attributions are focused at the top and
bottom of the brain, near the borders. Especially, high attributions (in absolute value) are
in the brain stem. Yet, we might expect the areas inside the brain to be the most useful for
decision-making. Although these attributions indicate that the brain shape can be involved
in the network decision, they are not sufficient alone to draw a definitive conclusion.

4.2. Brain masks can be used to classify datasets

We apply the first step of our method as described in Section 2.2: binary classifiers are
trained to classify several datasets using the brain masks only as input. As shown in Table
2, the first startling result is that, except for the intra-dataset ADNI task, it is possible to
distinguish all pairs of datasets based on the brain shape only, without using any tissue or

6 Healthy vs healthy datasets results are in the supplementary material for space consideration
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Table 2: Classification accuracy on brain masks. The left dataset is the negative class.
Classification task TNR TPR BA

IXI vs BraTS 1.00 1.00 1.00
IXI vs OFSEP 0.54 0.70 0.62
IXI vs HCP 1.00 1.00 1.00
IXI vs IBC/kirby/MPI 1.00 0.86 0.93
HCP vs IBC/kirby/MPI 0.99 0.95 0.97

ADNI-CN vs ADNI-AD 0.35 0.74 0.55

texture information. Brain masks from the tumors dataset BraTS can be classified from
the healthy dataset IXI with a perfect classification score. Note that this classification
performance could be partly explained by the difference between the BraTS preprocessing
pipeline and the pipeline used for the other datasets. Classifying MS brain masks from the
healthy ones is more difficult but it is still possible with a balanced accuracy of 62%. Thus,
it is possible to classify healthy vs pathological subjects using only the brain shape. One
might wonder to what extent the difference in brain shape is due to the pathology itself or to
some differences due to the way datasets are built. To investigate the dataset construction
effect, we consider the brain mask classification task between several healthy datasets and
within the ADNI dataset. For example, we obtain a perfect accuracy for the IXI vs HCP
problem. Even when several databases are aggregated in one class, the distinction is always
possible with an accuracy higher than 85% for IXI vs IBC/kirby/MPI. Population age in
the databases is another element that can influence brain shapes (with normal aging brain
atrophy). However, despite the subjects of HCP and IBC/kirby/MPI match in age, it is
possible to classify these datasets almost perfectly. In the intra-ADNI experiment, classes
are from the same dataset and match in age but one is healthy and the other pathological.
One can see that, despite the possible atrophy due to AD, brain masks are more difficult
to distinguish with a balanced accuracy as low as 55%. This reinforces the idea that in
general, the way datasets are built is a stronger factor than the disease itself for the brain
mask classification. Thus, it is possible to distinguish various databases based on the brain
shape only and the difference seems to be linked to a dataset construction effect that is not
eliminated when disease or age factors are not present.

4.3. Brain shape is part of the decision

In this part, we applied the second step of the process described in Section 2.2: for each
subject, a brain mask is randomly drawn from the opposite class and used to crop the
current image (“Cropped images”) or realigned its brain shape with a deformable registra-
tion (“Registered images”). An image for which the crop or the registration changes the
predicted class, as well as the corresponding modified images, are shown in Figure 2. We
can see that the brain shapes of the two classes are different. With the crop, the shape
is partially modified: for example, the area around the stem or the frontal lobe do not
change, whereas the registration allows to better fit the shape. Most of the tumor area is
left untouched with the crop and it is probably not this loss of information that changes
the classification. Indeed, on average in the test set (without shape normalization), only
3.6%± 5.0% of the tumor is cropped (3.3%± 5.5% for the images still classified as patho-
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(a) Original (b) Cropped (c) Registered

(d) Original norm. (e) Cropped norm. (f) Registered norm.

Figure 2: Example of BraTS image (with tumor in yellow) with a random IXI brain mask
(in red) and the corresponding modified images (cropped or registered). First
(resp. second) line is without (resp. with) shape normalization. On this case, the
original image without shape normalization is classified as pathological, modified
images are classified as healthy.

logical and 5.6% ± 3.3% for the others). The classification results are presented in Figure
3. For tumors, without elastic data augmentation, the classification performances on the
original images are perfect. Conversely, when the shape is modified the accuracy of both
classes falls. The TNR is lower than 50% for the cropped images and it falls to 16% for the
registered images. Thus, the brain shape seems to be a key factor learned by the network
to classify the images. For MS, the impact is not as strong but still present with a mean
loss of accuracy of 3 points for cropped images and 16 points for registered images. This
is consistent with the fact that brain masks are harder to distinguish for the MS dataset
as shown in Section 4.2. When elastic data augmentation is used, the classification is more
difficult on the original images for the tumors dataset but the decision seems less based on
the brain shape as the accuracy decreases less when the modified images are tested: the
accuracy is in average 27 points lower for cropped images and 7 points lower for registered
images. This data augmentation improves the robustness, especially for MS as the classi-
fication is slightly better on the original images. In this case, the brain deformation seems
to have hardly any impact with only 3-point accuracy difference on the registered images.

4.4. Deformable registration removes the confounding factor

The previous experiments validate that the brain shape is a part of the decision for MRI
classification. We advocate that if the images are realigned not only with an affine registra-
tion but also such that the brain shapes are realigned to the reference template, the network
decision can be free from the brain shape confounder. Figures 2 and 3 present the results
of the same experiments as in Section 4.3 but using images with the shape normalization of
Section 2.3. Visually, with the shape normalization, there is virtually no longer difference
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(a) IXI vs BraTS (b) IXI vs OFSEP

Figure 3: True positive/negative rate (TPR/TNR) for IXI vs BraTS (left) or OFSEP (right)
classification. Bar plots are grouped depending on whether brain shape normal-
ization and elastic data augmentation are used or not. Colors refer to whether
original images (light blue), cropped images (middle blue) or registered images
(dark blue) are used at test time.

between the shapes. In terms of classification, we obtain similar or better performances
than without normalization for both tumors and MS. When the modified images are used
at the inference, the impact is minor, with an accuracy loss of around 5 points for tumors
cropped images and around 1 point for tumors registered images. This is inferior to the
model using images without shape normalization, even with elastic data augmentation. For
MS, the results are equivalent or slightly better than without shape normalization and with
elastic data augmentation. With the shape normalization, elastic data augmentation seems
less useful. Moreover, in Figures 1(c) and 1(d), attributions are no longer localized on the
borders but all over the brain. Therefore, the shape normalization seems to be enough to
eliminate the confounding effect of the brain shape.

5. Conclusion

In this work, we propose a generic method to assess whether a variable is a confounding
factor or not. We apply the proposed protocol to several public MRI datasets to identify
the brain shape as a non-intuitive confounder for brain scans classification. In addition,
we proposed to add a non-rigid brain shape realignment in the preprocessing pipeline to
eliminate the confounding effect of the brain shape. As this step does not degrade the
classification performances, our recommendation is to systematically use it (even when the
brain shape is not a confounder) in addition to the affine registration conventionally used
in standard pipelines. The elements highlighted in this paper could also be used in state-
of-the-art methods like (Zhao et al., 2020; Wang et al., 2018), which so far have only been
applied to solve the problem for scalar confounding variables. For this, the confounding
variable predicted in these methods would be the brain mask through a segmentation loss.
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Appendix A. Visual results on MS

(a) IXI (b) OFSEP (c) IXI norm. (d) OFSEP norm.

Figure 4: IXI vs OFSEP classification gradient attributions. From left to right: for an
IXI image, for an OFSEP image, for a shape normalized IXI image and OFSEP
image. Negative attributions are in blue and positive ones in red.

(a) Original (b) Cropped (c) Registered

(d) Original norm. (e) Cropped norm. (f) Registered norm.

Figure 5: Example of OFSEP image with a random IXI brain mask (in red) and the cor-
responding modified images (cropped or registered). First (resp. second) line is
without (resp. with) shape normalization. In this case, the original and cropped
images without shape normalization are classified as pathological, registered im-
ages are classified as healthy.

In Figures 4 and 5, we display attributions maps and shape modifications as in Figures 1
and 2, but for multiple sclerosis. The brain shape influence is less visible on attributions for
multiple sclerosis than for tumors which is in accordance with numerical results of Sections
4.2 and 4.3. Indeed, high attributions are localized all over the brain. Using the brain shape
normalized dataset changes the attributions localization: the decision seems less focused on
the occipital lobe and the cerebellum, and more around the ventricles. The brain shape
difference between the two datasets appears located at the back of the skull which is in line
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with the attributions without shape normalization. The shape normalization is as efficient
than on the tumors dataset, as the shapes of the two databases match better.

Appendix B. Quantitative results on brain shape normalization

Table 3: Average brain volume (in voxels) with and without shape normalization.
Dataset Without normalization With normalization

IXI 226695 ± 15393 233847 ± 3816
OFSEP 223919 ± 15816 233553 ± 4745
BraTS 232094 ± 5792 234053 ± 527
HCP 226818 ± 14623 234016 ± 4116
IBC 234565 ± 11071 235009 ± 624
kirby 223192 ± 10383 234477 ± 483
MPI 219067 ± 3165 234044 ± 470

In Table 3, we compared the mean brain volume between the datasets with and with-
out the shape normalization proposed in Section 2.3. We can see that there is much less
variability between the datasets and within the same database with the normalization, as
desired.

Appendix C. Second step on the healthy databases classification

In Figure 6, the classification results on the grayscale images for several healthy vs
healthy databases classification are presented. The results show that, for the IXI vs HCP
and the HCP vs IBC/kirby/MPI classifications, the brain is a confounder used by the
network to make its decision. Indeed, when a shape transform is applied at test time,
the classification performances fall. For the IXI vs HCP classification, the brain shape is
no longer a confounder with either elastic data augmentation or the proposed shape nor-
malization. For the HCP vs IBC/kirby/MPI classification, our brain shape normalization
eliminates the brain shape confounder more efficiently than the data augmentation with a
5-point accuracy gain for the Cropped images. For the IXI vs IBC/kirby/MPI classification,
the brain shape does not seem to be part of the network decision as the accuracy falls only
slightly when the shape transformations are applied. Note however that even then, the
shape normalization removes this slight accuracy decrease. As even when the brain shape is
not (or barely) used as a confounder, the normalization does not degrade the performances
and as the brain shape could be used to distinguish the databases (as shown with the first
step in Section 4.2) in a different setup, the brain shape normalization seems to be a be a
good step to add in a preprocessing pipeline.
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(a) IXI vs HCP (b) HCP vs IBC/kirby/MPI

(c) IXI vs IBC/kirby/MPI

Figure 6: True positive/negative rate (TPR/TNR) for three healthy vs healthy classifica-
tion. Bar plots are grouped depending on whether brain shape normalization and
elastic data augmentation are used or not. Colors refer to whether original images
(light blue), cropped images (middle blue) or registered images (dark blue) are
used at test time.
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