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Abstract

Interpretability and explainability of deep networks are essential for medical image analysis.
Easily explainable networks with intrinsic properties and decisions based on radiological
signs and not spurious confounders are highly desirable. The guaranteed monotonic relation
between the input and the output of monotonic networks could be used to design such
intrinsically explainable networks, but they are rarely used for images: state-of-the-art
architectures are often very shallow due to convergence problems. Identifying the critical
importance of weights initialization, we propose a recipe to transform any architecture into
a trainable monotonic network. By using the monotonic property, adding a calibration and
constraining the training in an unsupervised way, we propose a network more explainable
with human-readable counterfactual examples but also more interpretable with a decision
more based on the radiological signs of the pathology. Especially, we outperform state-of-
the-art methods for weakly supervised anomaly detection.
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1. Introduction

Deep learning has proved its efficiency for medical image analysis but its lack of trans-
parency compromises its use in critical areas such as medicine. A more human-readable
explanation and interpretable deep networks with, ideally, guaranteed properties is there-
fore welcomed. For a healthy vs pathological classification, we also expect the decision to
be based on the radiological signs of the pathology. Attributions (Selvaraju et al., 2017)
or counterfactual examples (Wachter et al., 2017) methods can be used to explain the net-
work decision indicating the more important areas for the decision in the input image.
Nevertheless, they can be difficult to interpret as they indicate both positive and negative
contributions in the decision. In terms of interpretability, adding constraints when training
a classifier can help focus the decision on relevant factors (Ross et al., 2017; Wargnier-
Dauchelle et al., 2023) and perform weakly-supervised segmentation. In terms of explain-
ability, monotonic networks benefit from interesting intrinsic properties but they are rarely
used for images as they are harder to train and small architectures with fewer capacities
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Figure 1: (a) The image x is passed to the encoder E which outputs features f with the
same spatial dimension as x. They are passed to a calibrated monotonic classifier
M which outputs the classification logits y. (b) To explain the network decision,
we search the counterfactual difference « such that f — « is classified as healthy
(class 0) from the features f of a pathological (class 1) sample.

are often used to achieve convergence (Daniels and Velikova, 2010; Liu et al., 2020). In this
work, we: 1/ identify weight initialization as a key issue for monotonic networks conver-
gence and propose an initialization that solves this problem, 2/ leverage monotonic network
properties to design a constrained and calibrated framework to improve both the explain-
ability and the interpretability of a healthy vs pathological images classifier, 3/ outperform
state-of-the-art for weakly-supervised anomaly segmentation.

2. Method

We design the architecture described in Figure 1(a) for an explainable and interpretable
healthy vs pathological images classification. It is composed of an encoder E that outputs
the interpretable features f, followed by a calibrated monotonic network M that computes
the logits y of the binary classification. In our case, M is monotonically increasing w.r.
to its input: %—M > 0. The interpretable features space thus benefits from several intrinsic
explicability properties: it is ordered, with a known bound between healthy and pathological
samples and counterfactual examples are more readable as we can find a positive « such that
M(f—«) is "healthy” for a pathological feature tensor f (see Figure 1(b)). By thresholding
the counterfactual difference «, we can segment the pathology in a weakly supervised way.

To guarantee that the network M is monotonic, the weights are parameterized to be non-
negative, normalization layers are removed and activation functions are convex increasing
on half of the channels and concave increasing on the other half. We showed that removing
biases enforces the following calibration: if f < 0 (resp. f > 0) then y < 0 (resp y > 0).

We can prove that using non-negative weights increases the correlation between the
features: state-of-the-art random initialisation methods are then unsuitable for large non-
negative networks and when the network depth is too large, the training is impossible. So,
we proposed a new weights initialization, rescaling each linear layer, one after another, by
its standard deviation, that maintains a unit-variance of all the features.

Finally, we constrain the network during training for a more interpretable classification
without adding more annotation than the image’s class. For that, we trained our network
with 4 losses: one for the classification, one to constrain the interpretable features f to be
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Figure 2: Segmentation map and metrics (computed on the whole test database). Ground
truth is in green. Blue represents healthy relevance and red pathological relevance
for classification attribution methods. High attributions are in red for Silva-
Rodriguez. For counterfactual examples, negative values of « are in blue, positive
values are in red. The reconstruction error for AE ranges from black to yellow.

negative for healthy images, one to enforce similar distribution of the negative interpretables
features f for the both classes and a regularization of VM for healthy images.

3. Experiments and Results

Experiments are conducted using IBC, kirby21 and MPI healthy brain MRI datasets and
Brats2020 glioma dataset. We compared our weakly-supervised segmentation method to
anomaly detection methods (AE (Baur et al., 2018), Silva-R (Silva-Rodriguez et al., 2021))
and other classification based methods (Ross (Ross et al., 2017), Wargnier-D (Wargnier-
Dauchelle et al., 2023)). We also used two baselines: the same architecture as our propo-
sition but non-monotonic and unconstrained (Baseline), and a non-monotonic architecture
but constrained as proposed (BaselineC). The results are shown in Figure 2.

Visually, the decision of the proposed network seems more focused on the tumor as this
is the area to be modified to change the decision from pathological to healthy. The coun-
terfactual difference is also more readable than the baselines as it is positive. In terms of
segmentation, we outperform the state-of-the-art methods with at least a 5-point improve-
ment of the Dice. The image classification is perfect.

4. Conclusion

In this work, we propose a more interpretable network for healthy vs pathological clas-
sification with a decision more based on radiological signs of the pathology outperforming
state-of-the-art methods for weakly-supervised segmentation. With the proposed calibrated
non-negative network, we also benefit from intrinsic properties that increase the explain-
ability. In particular, the counterfactual examples are more human-readable.
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