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ABSTRACT

The use of object detection algorithms for the analysis of
satellite imagery is increasing in various fields, including en-
vironment and defense, as they enable the automatic detec-
tion, recognition and localization of targets. Satellite images
often exhibit significant variations, including differences in
resolution and noise levels between different satellites. Ad-
ditional distortions can be caused by factors such as the po-
sition of the satellite and the specific area being scanned, re-
sulting in changes in tangential distortion, brightness and sat-
uration. Depending on the severity, these variations can af-
fect the visual clarity of objects in the images and thus impair
the effectiveness of object detection algorithms. This study
therefore investigates the effects of such fluctuations on the
performance of 3 categories of object recognition algorithms
- YOLO, FASTER-RCNN and RT-DETR - by applying the
principle of adversarial attacks to the inference phase of the
algorithms. This experiment makes it possible to uncover the
weaknesses of the algorithms and then provides information
on how these models could be improved to be more robust
to variations in satellite imagery. The case study presented is
based on the automatic detection of 3 types of oil and gas in-
frastructure: compressor, tank and well in the Permian Basin
(USA).

Index Terms— Object Detection, Deep learning, Remote
Sensing, Adversarial Attacks, Oil & Gas

1. INTRODUCTION

Object detection algorithms are pivotal in enabling the au-
tomated detection and recognition of specific objects within
images. These algorithms are particularly useful for tasks
such as automatic counting and the tracking of objects over
time. In the realm of remote sensing, they have a broad spec-
trum of applications, ranging from environmental monitor-
ing [1, 2, 3] to defense purposes [4, 5, 6]. Object detection
algorithms can be broadly classified into 3 main categories:
one-stage, two-stage, and transformer encoder-decoder archi-
tectures. Additionally, they are versatile in their application,

being compatible with various learning methods, including
supervised, semi-supervised, and self-supervised learning ap-
proaches. In this study, we focus on supervised learning, with
particular emphasis on the algorithms YOLO (one-stage) [7],
FASTER-RCNN (two-stage) [8] and RT-DETR (transformer)
[9]. In supervised learning, a database of images labeled with
objects is created so that these algorithms can learn to rec-
ognize and to retrieve specific objects. However, a notable
challenge with this approach, especially in the context of re-
mote sensing, is the limited representational diversity of the
objects in the training database. For example, satellite images
exhibit a wide range of variations due to different satellite sen-
sor types (e.g. resolution, noise) and environmental factors re-
lated to the position of the satellite and the sampled area (e.g.
tangential distortion, brightness and saturation) [10]. These
variations can significantly affect the algorithm’s ability to
generalize across different representations of the same object
[11, 12].

The aim of this study is to evaluate the robustness of
YOLO, FASTER-RCNN, and RT-DETR against five spe-
cific types of variations commonly found in satellite imagery.
To achieve this, we used the concept of adversarial attack
during the inference phase as described in previous studies
[13, 14, 15, 16]. In this method, the accuracy of both the
pre-trained and fine-tuned algorithms is evaluated when they
are presented with modified images (counterexamples) con-
taining different types of induced perturbations. For each
of the five types of variations, we systematically generated
stepwise negative examples and then tested the performance
of the algorithms for each sub-variation. The case study pre-
sented in this paper focuses on the automatic detection of 3
types of oil and gas infrastructure in the Permian Basin, USA
— compressor, tank, and well — as shown in Figure 1.

In the first part, the selected object detection algorithms
and their pre-training/fine-tuning are presented. Then the
satellite variations and their adversarial example are defined
and described in details. Finally, the results of the experi-
ments are discussed.
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Fig. 1. Base test images of O&G infrastructures.

2. OBJECT DETECTION ALGORITHMS

Object recognition algorithms are used to automatically iden-
tify and to localize multiple instances of specific object
classes in images and videos. For effective training, su-
pervised models require a database of labeled images. Label-
ing in this context involves marking objects of interest with
bounding boxes and assigning appropriate labels to them.
During the training phase, the algorithm learns both the local-
ization and the recognition of the target objects. This learning
process can be implemented with different algorithm archi-
tectures, including single-stage, two-stage and transformer
models (encoder-decoder).

Models architectures: The You Only Look Once (YOLO)
architecture, a one-stage object recognition model, was orig-
inally introduced by Redmon et al. [7]. Among the various
iterations, YOLO version 8 (v8) is notable for its advanced
precision and recent development [17]. YOLO v8 includes
five pre-trained models (denoted as n, s, m, [, x), each trained
on the COCO 2017 dataset [18]. Remarkable results from
previous research [19], which are particularly relevant to this
study, show that the model m shows superior performances
compared to its counterparts.

FASTER-RCNN, which is categorized as a two-stage al-
gorithm, is presented in [8]. This algorithm provides 3 differ-
ent backbone architectures, all trained with the COCO 2017
database: the Feature Pyramid Network (FPN), the ResNet
conv4 backbone with a conv5 head (C4), and the ResNet
conv5 backbone with dilations in conv5 (DCS5). Previous
work by [19] - in a similar environment to our study - shows
that the FPN architecture in combination with ResNet101 is
the most effective configuration.

RT-DETR [9], an extended version of DETR [20], dif-
fers from one- and two-stage detectors by considering ob-
ject recognition as a direct set prediction problem within a
unified architecture. RT-DETR is based on a transformer-
encoder-decoder framework and provides two pre-trained
models based on the COCO 2017 database: large and extra-
large. Empirical studies have shown that the large model
outperforms the extra-large model in terms of performance.
Fine-tuning: In this study, we compare 3 categories of
object detection models: single-stage (YOLO v8, model
”m”), two-stage (FASTER-RCNN, model "R101-FPN”’) and

transformer-encoder-decoder (RT-DETR, model ”1”). Each
model was fine-tuned for specific object detection in oil
and gas infrastructure after initial pre-training in the COCO
database, with a focus on compressors, wells and tanks.
The study utilized the specially curated OG database, which
includes 930 of high-resolution aerial imagery from the Per-
mian Basin, USA, with a total of 1951 annotated instances.
Fine-tuning was performed using an NVIDIA GeForce RTX
3090 GPU. For the implementation, YOLO v8 and RT-DETR
used Ultralytics, while FASTER-RCNN used Detectron2.
Consistent learning rates and epochs were set for all models,
with batch sizes adjusted accordingly. The performance met-
rics showed that YOLO v8 led with a mean average precision
(mAP) of 92.6, RT-DETR with 86.4 and FASTER-RCNN
with 48.8.

3. SATELLITE-BASED ADVERSARIAL ATTACKS

While the 3 models fine-tuned with satellite imagery from
the OG database — in particular YOLO v8 and RT-DETR —
show promising accuracy, it is crucial to assess their robust-
ness for practical remote sensing. Our study primarily targets
the detection and recognition of three oil and gas infrastruc-
tures: Compressors, wells and tanks in a variety of satellite
images. However, these images are subject to a number of
variations that affect their visual representation. Technologi-
cal differences between satellite sensors can lead to variations
in spatial resolution and noise levels. In addition, systematic
errors can occur due to the Earth’s rotation, geometric distor-
tions caused by topography shifts, variations in satellite al-
titude and attitude, and instrument anomalies. Furthermore,
environmental factors such as the nature of the terrain (e.g.
deserts) can influence image attributes such as luminosity and
saturation.

To assess the robustness of our algorithms against varia-
tions in the satellite images, we implemented adversarial at-
tacks [13, 14, 15, 16]. In this method, the precision of the 3
pre-trained and fine-tuned algorithms is evaluated in response
to various perturbations generated as negative examples on
the input images. Such a process is crucial to identify weak-
nesses in the models and suggest areas for refinement. For
example, a notable drop in precision or a complete failure to
recognise an object when confronted with certain adversar-
ial examples could indicate a lack of resilience to that specific
variation. We generated adversarial examples for each type of
”base” image that mimic variations in satellite imagery, such
as changes in resolution, tangential distortion, noise, bright-
ness, and saturation.

Spatial resolution variations. Different satellites, equipped
with different imaging systems and specifications, have dif-
ferent spatial resolutions. These differences result from fac-
tors such as sensor types, technological advances and the
intended functions of the satellites. To mimic these resolution
differences, as shown in Figure 2a, we applied average pool-
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Fig. 2. Adversarial examples.

ing with a square window (kernel size of 5 and stride of 3). In
this way, ten images with resolutions ranging from 0.5m to
5m were generated, which are shown in Figure 1. This range
mirrors the resolution spectrum of actual satellite images and
thus allows a thorough evaluation of the performance of the
object detection algorithms at different spatial resolutions.
Tangential Distortion. Tangential scale distortions, common
in satellite imagery, result from the compression of image
features, especially those further from the nadir point. Fac-
tors contributing to this distortion include sensor optics, the
scanning system’s motion, Earth’s curvature and rotation, and
terrain relief variations. To emulate varying levels of this dis-
tortion as depicted in Figure 2b, we employed a left affine
perspective transformation using the OPENCV library. This
technique involved a transformation matrix that maps 3 points
from the original image to their new positions in the distorted
image. We progressively adjusted the value of the left ele-
ment in the matrix’s third line from 50 down to 0, in steps
of 5. This method enabled a controlled increase in leftward
distortion across the images, providing a framework to eval-
uate the algorithms’ effectiveness under different degrees of
tangential scale distortions.

Noise.

As shown in Figure 2c, the different on-board sensors of
each satellite can cause a range of noise types. These include
additive (Gaussian), multiplicative (speckle) and impulsive
(salt and pepper) noise. To replicate Gaussian noise, we added
a normally distributed random value to each pixel. For Salt
and Pepper noise, we randomly altered pixels to extreme val-
ues (0 for dark, 1 for bright). Speckle noise, being multiplica-
tive, was created using the formula out = image + n x image,
with NV as uniform noise defined by a specific mean and vari-
ance. In this study, we simulated these 3 noise types, as well

as the isolated effects of salt (bright) and pepper (dark) values.
Such a methodology enables a thorough assessment of the
object detection algorithms’ resilience against various noise
types commonly found in satellite images.

Brightness & Saturation. Satellite images are influenced
by various factors, including atmospheric conditions, optical
properties, sensor characteristics and data processing tech-
niques. For example, atmospheric scattering can reduce color
intensity, resulting in lower saturation. Min addition, certain
geographical areas, such as deserts and polar regions, can in-
fluence the image properties due to the high solar reflectance,
which leads to increased brightness [21](Figure 2d ). To repli-
cate different brightness levels, we used a function from the
OPENCY Python library parameterized with o € [0, 1] and
B € [—127,127]. We set « to 1 and varied S from 0 to 100
in steps of ten, with lower 3 values corresponding to lower
brightness. To simulate different degrees of saturation, we
used a function from the Pillow Python library with a single
parameter. This saturation parameter ranged from 0 (colour-
less image) to 1.5 and was increased in steps of 0.15. These
methodologies enabled us to evaluate the object detection al-
gorithms’ robustness against a spectrum of brightness and sat-
uration levels, reflecting the diverse conditions encountered in
real-world satellite imagery.

Results:
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Fig. 3. Impact of tangential resolution variations (from 0.5m
to 5m).

Figure 3 illustrates the variations in mean Average Pre-
cision (mAP) for each object detection model as a function
of spatial resolution changes, focusing on 3 types of infras-
tructures (compressors, tanks, and wells). We set the mAP to
zero in instances where the models fail to detect and recog-
nize the infrastructures. The effectiveness of the algorithms
in recognising these objects varies with the resolution. YOLO
v8 in particular can detect compressors at resolutions of up
to 1.5m, whereas FASTER-RCNN extends this capability up
to 4m. For tanks and wells, YOLO v8 successfully detects
and recognizes them at resolutions as high as 5m, with mAPs
fluctuating between 40% and 60%. It’s important to mention
that FASTER-RCNN consistently fails to detect wells, even
in the base image. Furthermore, we observe that compressors
are more challenging to detect at lower resolutions (detected
up to 4m), in contrast to tanks and wells, which are detectable
up to 5m. Figure 4 shows that FASTER-RCNN exhibits re-
markable consistency in its performance, with minimal sen-
sitivity to tangential distortions; the mean Average Precision
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Fig. 4. Impact of tangential distortion variations (left gradual
stretching from level 1 to 11).

(mAP) for compressors and tanks remains relatively stable
across the different distortion levels. In contrast, YOLO v8
exhibits more significant fluctuations in mAP in response to
these distortions. Both YOLO and RT-DETR show a notable
decrease in performance at the 5th level of distortion when
detecting and recognizing compressors. In the case of tank
detection, YOLO is more adversely impacted than RT-DETR,
particularly from the 7th level of distortion onward. Interest-
ingly, both YOLO and RT-DETR maintain almost consistent
performance in the tank case, unaffected by the levels of
distortion presented. Figure 5 shows the varying impact of
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Fig. 5. Impact of noises (gaussian, salt&pepper, salt, pepper
and speckle).

different noise types on the detection of compressors. No-
tably, YOLO is significantly affected by salt noise, while
RT-DETR is more susceptible to pepper noise. Intriguingly,
YOLO demonstrates improved performance with speckle
noise in detecting compressors, compared to its performance
on the base image. For wells and tanks, RT-DETR exhibits
greater resilience to the five types of noise than YOLO, with
the notable exception of salt and pepper noise in well detec-
tion. On the other hand, FASTER-RCNN generally maintains
stable performance, although it shows a heightened sensitiv-
ity to salt and pepper noise in the detection of tanks. In Figure
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Fig. 6. Impact of brightness.

6, we observe that increasing brightness levels (from 1 to 10)
generally leads to a decline in the mean Average Precision
(mAP) of the models. This effect is particularly evident in

the case of compressors, where YOLO’s performance begins
to diminish from level 2. However, YOLO is less affected
than RT-DETR when detecting wells. For compressors, both
FASTER-RCNN and RT-DETR maintain a relatively steady
mAP across the range of brightness levels. When detecting
and recognising tanks, the performance of FASTER-RCNN
drops significantly from level 9, which means that it can no
longer perform detection.
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Fig. 7. Impact of saturation.

Figure 7 shows, for the compressor case, that YOLO
presents a higher mAP for images with low saturation,
which decreases for higher levels of saturation. Conversely,
FASTER-RCNN exhibits the opposite trend. Concerning
RT-DETR, its mAP value remains almost constant over satu-
ration variations for the compressor case. For the tank case,
all 3 models seem to react similarly, with an increasing mAP
over saturation augmentation. This observation holds true for
the well case between YOLO and RT-DETR.

4. CONCLUSION

This study conducted a systematic assessment of the impact
of several satellite image variations—including resolution
changes, tangential distortion, noise, brightness, and satura-
tion—on 3 object detection algorithms: YOLO, RT-DETR,
and FASTER-RCNN. Our findings indicate that FASTER-
RCNN was the least affected by these simulated variations,
although it failed to detect any wells. Conversely, YOLO,
despite achieving the highest mean Average Precision (mAP)
post-training, exhibited the greatest sensitivity. The study
underscores that the influence of satellite image variations
on algorithm mAPs is highly dependent on the specific ob-
ject being detected, highlighting the necessity of tailoring
algorithm performance to the targeted objects. We identi-
fied a hierarchy in the impact of these variations on mAPs:
resolution, noise, distortion, brightness, and saturation, in
descending order of influence. This ranking offers valuable
insights into their relative significance in affecting algorithm
performance. By incorporating these impactful variations
into the training dataset, our experimental approach seeks to
bolster algorithm robustness in practical applications. The
comparative analysis of the 3 algorithms sheds light on their
individual strengths and weaknesses, providing crucial guid-
ance for choosing the appropriate algorithm for specific tasks
under varying satellite imaging conditions.
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