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Abstract

In 1951, Kuroda defined an embedding of classical first-order logic into intuitionistic logic,

such that a formula and its translation are equivalent in classical logic. Recently, Brown

and Rizkallah extended this translation to higher-order logic, but did not prove the classical

equivalence, and showed that the embedding fails in the presence of functional extensionality.

We prove that functional extensionality and propositional extensionality are sufficient to derive

the classical equivalence between a higher-order formula and its translation. We emphasize a

condition under which Kuroda’s translation works with functional extensionality.

1 Introduction

The principle of excluded middle A∨¬A, or equivalently the double-negation elimination ¬¬A⇒A,
are classical logic postulates which are not derivable in intuitionistic logic. Glivenko [Gli28] proved
that, for any provable formula A in classical propositional logic, there exists an intuitionistic proof of
its double negation ¬¬A. Kolmogorov [Kol25], Gödel [Gö33], Gentzen [Gen36], and Kuroda [Kur51]
developed translations A 7→ A⋆ that insert double negations inside formulas. For any formula A in
first-order logic, such translations satisfy two properties:

(i) if A is provable in classical logic then A⋆ is provable in intuitionistic logic,

(ii) A⋆ and A are equivalent in classical logic.

Brown and Rizkallah [BR14] recently showed that, unlike Kolmogorov’s and Gödel-Gentzen’s trans-
lations, Kuroda’s one can be extended to higher-order logic so that it satisfies Property (i), but
they did not prove Property (ii). Moreover, they showed that such translation fails in the presence
of functional extensionality.

In this paper, we propose to fill these two gaps. First, we investigate cases in which it is possible
to prove the classical equivalence between a higher-order formula and its Kuroda’s translation.
Second, we prove that Kuroda’s translation works in the presence of functional extensionality,
assuming the double-negation elimination on equality predicates.
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2 Higher-Order Logic

In higher-order logic, functions, predicates and propositions are all terms of Church’s simple type
theory [Chu40]. Types are defined inductively: ι is the type of individuals, o is the type of proposi-
tions, and if τ and σ are types then τ → σ is a type. For every type τ , let Vτ be the set of variables
of type τ and Cτ be a set of constants of type τ . The set of variables V :=

⋃

τ Vτ and the set of
constants C :=

⋃

τ Cτ are assumed to be disjoint. For any set of constants C, the sets ΛC
τ of terms

of type τ are defined by induction:

• For every x ∈ Vτ , x ∈ ΛC
τ .

• For every c ∈ Cτ , c ∈ ΛC
τ .

• For every x ∈ Vτ and t ∈ ΛC
σ, then (λx.t) ∈ ΛC

τ→σ.

• For every t ∈ ΛC
τ→σ and u ∈ ΛC

τ , then (tu) ∈ ΛC
σ.

λx.t is a λ-abstraction and tu is an application. Formulas are terms of type o. There are particular
constants defining the logical connectives and quantifiers: tautology ⊤ and contradiction ⊥ of type
o, negation ¬ of type o → o, implication ⇒, conjunction ∧ and disjunction ∨ of type o → o → o,
and quantifiers ∀τ and ∃τ of type (τ → o) → o. For convenience, terms of the form ∀τ (λx.A)
and ∃τ (λx.A) are simply abbreviated as ∀x.A and ∃x.A. The logical biconditional ⇔ is defined
by A ⇔ B := (A⇒ B) ∧ (B ⇒ A). For every type τ , we define an equality symbol =τ of type
τ → τ → o. The symbols are infix, and we write t = u when there is no ambiguity on the type τ .

Computation is introduced in this λ-calculus thanks to the β-reduction rule (λx.t)u →֒ t[x← u],
where t[x ← u] corresponds to the term t in which x has been substituted by u. We denote ≡β

the congruence generated by β-reduction. A context Γ is a finite sequence of formulas. We write
FV (t1, . . . , tn) for the set of free variables that occur in the terms t1, . . . , tn. The natural deduction
rules for classical logic are given in Figure 1. The principle of excluded middle is equivalent to
the double-negation elimination ¬¬A⇒ A. The double-negation equivalence ¬¬A ⇔ A holds in
classical logic. The natural deduction rules for intuitionistic logic are those of classical logic,
except the principle of excluded middle PEM. The standard weakening inference rule is admissible
in intuitionistic logic. The natural deduction rules for equality are given in Figure 2.

We write Γ ⊢i A when Γ ⊢ A is derivable in intuitionistic logic, and Γ ⊢c A when it is derivable
in classical logic. For any k ∈ {c, i}, we write Γ ⊢∗

k A with ∗ ∈ {e, ep, ef, efp} when Γ ⊢k A is
derivable with possibly additional inference rules: with Eq-I and Eq-E if e is in ∗, with PropExt

if p is in ∗, and with FunExt if f is in ∗.
Let us recall some well-known results about intuitionistic logic.

Proposition 1. Let A and B be formulas, P be a predicate, and u and v be two terms.

1. ⊢i ¬¬⊥⇒⊥

2. ⊢i ¬¬⊤⇒⊤

3. ⊢i ¬¬(A ∨ ¬A)

4. ⊢i A⇒¬¬A

5. ⊢i ¬¬¬A⇔ ¬A

6. ⊢i ¬¬(A⇒ B)⇔ (¬¬A⇒¬¬B)

7. ⊢i ¬¬(A ∧B)⇔ (¬¬A ∧ ¬¬B)

8. ⊢i ¬(A ∨B)⇔ (¬A ∧ ¬B)

9. ⊢i ¬¬∀x.A⇒∀x.¬¬A

10. ⊢i ¬∃x.A⇔ ∀x.¬A
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Γ, A ⊢ B

Γ ⊢ A⇒ B
Imp-I

Γ ⊢ A⇒B Γ ⊢ A

Γ ⊢ B
Imp-E

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
And-I

Γ ⊢ A ∧B

Γ ⊢ A
And-EL

Γ ⊢ A ∧B

Γ ⊢ B
And-ER

Γ ⊢ A

Γ ⊢ A ∨B
Or-IL

Γ ⊢ B

Γ ⊢ A ∨B
Or-IR

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C

Γ ⊢ C
Or-E

Γ, A ⊢ ⊥

Γ ⊢ ¬A
Not-I

Γ ⊢ ¬A Γ ⊢ A

Γ ⊢ ⊥
Not-E

Γ ⊢ ⊥

Γ ⊢ A
Bot-E

Γ ⊢ ⊤
Top-I

Γ ⊢ A x /∈ FV (Γ)

Γ ⊢ ∀x.A
All-I

Γ ⊢ ∀x.A

Γ ⊢ A[x← t]
All-E

Γ ⊢ A[x← t]

Γ ⊢ ∃x.A
Ex-I

Γ ⊢ ∃x.A Γ, A ⊢ C x /∈ FV (Γ, C)

Γ ⊢ C
Ex-E

Γ, A, ∆ ⊢ A
Ax

Γ ⊢ A A ≡β B

Γ ⊢ B
Conv

Γ ⊢ A ∨ ¬A
PEM

Figure 1: Natural deduction rules for higher-order logic.

Γ ⊢ u = u
Eq-I

Γ ⊢ A[x← u] Γ ⊢ u = v

Γ ⊢ A[x← v]
Eq-E

Γ ⊢ fx = gx x /∈ FV (Γ, f, g)

Γ ⊢ f = g
FunExt

Γ ⊢ A⇒B Γ ⊢ B⇒A

Γ ⊢ A = B
PropExt

Figure 2: Natural deduction rules for equality.
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11. ⊢ei ¬¬(u = v)⇒¬¬(P u)⇒¬¬(P v) 12. ⊢epi ¬¬(A⇒B)⇒¬¬(B⇒A)⇒¬¬(A = B)

Proof. Item 3 to Item 10 are well-known, see for example [TvD88, Chapter 2]. Item 11 follows from
Not-I, Not-E and Eq-E. Item 12 derives from the tautology ⊢epi (A⇒B)⇒ (B⇒A)⇒ (A = B),
Item 4 and Item 6.

3 Kuroda’s Translation for Higher-Order Logic

Kuroda’s translation for first-order logic [Kur51] inserts a double negation in front of formulas and
a double negation after every universal quantifier. More formally, we first define AKu by induction
on A:

(A⇒B)Ku := AKu⇒BKu (¬A)Ku := ¬AKu PKu := P if P atomic
(A ∧B)Ku := AKu ∧BKu ⊤Ku := ⊤ (∀x.A)Ku := ∀x.¬¬AKu

(A ∨B)Ku := AKu ∨BKu ⊥Ku := ⊥ (∃x.A)Ku := ∃x.AKu

and then we set AKu := ¬¬AKu. For every first-order formula A, we have Γ ⊢c A if and only if
ΓKu ⊢i AKu. The reverse implication derives from ⊢c A⇔ AKu. We extend Kuroda’s translation
to the terms of higher-order logic.

Definition 1 (Kuroda’s translation for higher-order logic). Let A be a formula in higher-order

logic. Its Kuroda’s translation is AKu := ¬¬AKu, where AKu is inductively defined by:

xKu := x

cKu :=

{

λp.∀x.¬¬(px) if c = ∀
c otherwise

(λx.t)Ku := λx.tKu

(tu)Ku := tKuuKu

While in first-order logic we have (A[z ← w])Ku = AKu[z ← w], this result cannot hold anymore
in higher-order logic, since w is modified when it contains ∀. Instead, we have (A[z ← w])Ku =
AKu[z ← wKu].

Proposition 2. For any term t, we have (t[z ← w])Ku = tKu[z ← wKu].

Proof. By induction on the term t.

Corollary 1. For any higher-order formula A, we have (A[z ← w])Ku = AKu[z ← wKu].

Higher-order logic is defined using simple type theory, so β-conversions may be used in the
derivations. As Kuroda’s proof relies on the fact that we can translate each step of the derivation,
each time we have A ≡β B in the classical derivation, we want to use AKu ≡β BKu in the
intuitionistic derivation.

Proposition 3. For any terms t and u, if t ≡β u then tKu ≡β uKu.

Proof. We have ((λx.t)u)Ku = (λx.tKu)uKu →֒ tKu[x ← uKu], so that ((λx.t)u)Ku ≡β (t[x ←
u])Ku using Proposition 2. Closure by context, reflexivity, symmetry, and transitivity are immedi-
ate.

Corollary 2. For any higher-order formulas A and B, if A ≡β B then AKu ≡β BKu.
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4 From Classical Logic to Intuitionistic Logic

To prove that Γ ⊢c A implies ΓKu ⊢i AKu, we do not follow Brown and Rizkallah proof [BR14],
which proceeds in two steps—transforming A into a formula A′ that does not contain any universal
quantifier and applying to A′ an extension of Glivenko’s theorem to higher-order logic without
universal quantifiers. We proceed to a more direct proof that follows the intuition of the first-order
case.

Moreover, we want to prove that Γ ⊢∗
c A implies ΓKu ⊢∗

i AKu whatever ∗ ∈ {e, ep, ef, efp}.
Brown and Rizkallah showed that Kuroda’s translation fails for higher-order logic in the presence
of functional extensionality. To get around this problem, it is sufficient to assume the axiom
∀x∀y.¬¬(x = y)⇒ x = y, written ∆eq, that corresponds to the double-negation elimination on
equality.

Theorem 1. Let A be a formula and Γ be a context in higher-order logic.

1. If Γ ⊢c A then ΓKu ⊢i AKu.

2. For ∗ ∈ {e, ep}, if Γ ⊢∗
c A then ΓKu ⊢∗

i AKu.

3. For ∗ ∈ {ef, efp}, if Γ ⊢∗
c A then ∆eq, ΓKu ⊢∗

i AKu.

Proof. We proceed by induction on the derivation. For the first item, most of the cases are direct
applications of Proposition 1. Conv derives from Proposition 2. We only show the most interesting
cases:

• All-I: By induction, we have ΓKu ⊢ ¬¬AKu. Using All-I, we derive ΓKu ⊢ ∀x.¬¬AKu. By
Proposition 1(4), we get ΓKu ⊢ ¬¬∀x.¬¬AKu.

• All-E: By induction, we have ΓKu ⊢ ¬¬∀x.¬¬AKu. Using Proposition 1(9), we derive
ΓKu ⊢ ∀x.¬¬¬¬AKu. Using All-E, we obtain ΓKu ⊢ ¬¬¬¬AKu[x ← tKu]. We get ΓKu ⊢
¬¬AKu[x← tKu] using Proposition 1(5). By Proposition 1, we conclude that ΓKu ⊢ (A[x←
t])Ku.

• Ex-I: By induction and Proposition 1, we have ΓKu ⊢ ¬¬AKu[x ← tKu]. The proof of
ΓKu ⊢ ¬¬∃x.AKu, where ∆ denotes ΓKu, ∀x.¬AKu, is

Hypothesis
Weakening

∆ ⊢ ¬¬AKu[x← tKu]

Ax
∆ ⊢ ∀x.¬AKu

All-E
∆ ⊢ ¬AKu[x← tKu]

Not-E
∆ ⊢ ⊥

Not-I
ΓKu ⊢ ¬∀x.¬AKu Proposition 1(10)
ΓKu ⊢ ¬¬∃x.AKu

• Ex-E: By induction, we have ΓKu ⊢ ¬¬∃x.AKu and ΓKu, AKu ⊢ CKu. We want to prove
ΓKu ⊢ ¬¬CKu. We use Not-I on ¬CKu and Not-E with ¬∀x.¬AKu. The proof of the first
subgoal, where ∆ denotes ΓKu,¬CKu, is
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Hypothesis
Weakening

∆,¬¬AKu ⊢ ¬¬CKu
Ax

∆,¬¬AKu ⊢ ¬CKu
Not-E

∆,¬¬AKu ⊢ ⊥
Not-I

∆ ⊢ ¬¬¬AKu Proposition 1(5)
∆ ⊢ ¬AKu

All-I
∆ ⊢ ∀x.¬AKu Proposition 1(4)

∆ ⊢ ¬¬∀x.¬AKu

and the second subgoal derives from Proposition 1(10), weakening and the hypothesis ΓKu ⊢
¬¬∃x.AKu.

For the second item, we complete the first item: Eq-I derives from Proposition 1(4), Eq-E from
Proposition 1(11), and PropExt from Proposition 1(12). For the third item, we use the cases of the
second item and weakening. The case FunExt derives from ∆eq, FunExt and Proposition 1(4).

5 Back to Classical Logic

We have shown that, for any provable formula A, there exists an intuitionistic proof of AKu. We
now want to prove that A and AKu are classically equivalent. Such a result is straightforward
in first-order logic, but it is not generally true in higher-order logic. For instance, when C is a
constant of type o→ o and P is a proposition, we have ⊢c (CP )Ku ⇔ CPKu, but we cannot derive
⊢c (CP )Ku ⇔ CP without further assumptions. Under functional extensionality and propositional
extensionality, A and AKu are classically equivalent.

Lemma 1. For any term t, we have ⊢efpc tKu = t.

Proof. We proceed by induction on the term t. We show ⊢efpc xKu = x and ⊢efpc cKu = c with c 6= ∀
using Eq-I. We derive ⊢efpc ∀Ku = ∀ from PropExt, FunExt, Eq-E and the double-negation
equivalence. We have ⊢efpc (tu)Ku = tu using the induction hypotheses and Eq-E. We derive
⊢efpc (λx.t)Ku = λx.t using the induction hypothesis and FunExt.

Lemma 2. For any higher-order formula A, we have ⊢efpc AKu ⇔ A.

Proof. By Lemma 1, ⊢efpc AKu = A. Using A ⇔ A and Eq-E, we derive ⊢efpc AKu ⇔ A. We
conclude using the double-negation equivalence.

Theorem 2. Let A be a formula and Γ be a context in higher-order logic.

1. If ΓKu ⊢i AKu then Γ ⊢efpc A.

2. For ∗ ∈ {e, ep}, if ΓKu ⊢∗
i AKu then Γ ⊢efpc A.

3. For ∗ ∈ {ef, efp}, if ∆eq , ΓKu ⊢∗
i AKu then Γ ⊢efpc A.

Proof. For the first and second item, we naturally have ΓKu ⊢efpc AKu, and we derive Γ ⊢efpc A
using Lemma 2. Similarly, for the third item we get ∆eq, Γ ⊢efpc A, and we use the fact that ∆eq is
derivable in classical logic.
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6 Conclusion

Brown and Rizkallah [BR14] extended Kuroda’s translation so that it embeds classical higher-order
logic into intuitionistic logic. In this paper, we have shown that the classical equivalence between
a higher-order formula and its translation holds under functional extensionality and propositional
extensionality. While Brown and Rizkallah showed that Kuroda’s translation fails in the presence
of functional extensionality, we have proved that it works when we assume the double-negation
elimination on equality predicates.

The role of functional extensionality and propositional extensionality is predominant when ex-
tending Kuroda’s translation to higher-order logic. One has to be careful when using both principles
in an intuitionistic context: the Diaconescu-Goodman-Myhill theorem [Dia75, GM78] states that,
together with the axiom of choice, they entail the principle of excluded middle.
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32:646–667, 1925.

[Kur51] Sigekatu Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya

Mathematical Journal, 2:35–47, 1951.

7



[TvD88] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics: An Intro-

duction, Volume 1, volume 121 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing, Amsterdam, 1988.

8


	Introduction
	Higher-Order Logic
	Kuroda's Translation for Higher-Order Logic
	From Classical Logic to Intuitionistic Logic
	Back to Classical Logic
	Conclusion

