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Feature Independence from the Point of View of Formal
Concept Analysis

Paper #2419

Abstract. Measuring the dependence of two features/variables in
a dataset is a problem that finds applications in most sciences. It is
generally either based on the probability theoretic definition of inde-
pendence or done by evaluating how much a feature is a particular
function of the other. In this paper, we introduce a definition of inde-
pendence in formal concept analysis, a lattice theoretic framework,
and we investigate whether it can be leveraged to measure the inde-
pendence of numerical features. We exploit the connections between
binary relations and algebraic and logical structures at the heart of
formal concept analysis to propose three measures and we evaluate
their potential using synthetic feature selection problems.1

1 Introduction2

Deciding whether features, or variables, are independent is one of3

the most important problem in science as it appears in most sci-4

ences that work with data. Many approaches have been proposed over5

the years to measure independence or association/correlation. They6

all either compare the observed data with what would be observed7

if the probability-theoretic definition of independence (P (A,B) =8

P (A)P (B)) applied or they try to evaluate whether one feature is9

a particular function (or class of function) of the other. However,10

many different approaches exist based on joint cumulative distribu-11

tion functions and ranks [1, 3], pairwise distances [6, 9], kernels [8],12

copulas [4] and information theory [11, 15].13

In this paper, we introduce a new definition of independence in for-14

mal concept analysis (FCA), a mathematical framework that aims at15

structuring the concepts and regularities in binary relations, and use16

it to build independence measures. Our proposed independence mea-17

sures are distances between the co-occurrence relation of the values18

of features in the dataset and the FCA definition of independence.19

Our goal is not to outperform existing independence measures but20

to show that our measures sometimes recognise patterns others do21

not. In turn, we aim to show that this new definition of independence22

based on conceptual and logical structures instead of probabilities23

and functions is promising. We evaluate our proposition on numeri-24

cal features from synthetic nonlinear regression datasets.25

In Section 2, we provide the required FCA definitions. In Sec-26

tion 3, we present our definition of independence in the FCA frame-27

work under factual, conceptual and logical points of view. In Sec-28

tion 4, we briefly discuss how to apply our proposed definition to29

measuring the independence of numerical features. In Section 5, we30

present experimental results showing the our measures are usable.31

Finally, in the conclusion, we discuss the potential of our proposal32

and future work.33

2 Formal Concept Analysis: Definitions 34

In this section, we present the necessary definitions of formal con- 35

cept analysis [7]. Formal concept analysis (FCA) is a mathematical 36

framework based on lattice theory that aims at structuring the infor- 37

mation found in data. The data is assumed to take the form of a binary 38

relation called a formal context. 39

Definition 1 (Formal context). A (formal) context is a triple 40

(O,A,R) in which O is a set of objects, A is a set of attributes 41

and R ⊆ O × A is an incidence relation between objects and at- 42

tributes. When (o, a) ∈ R we say that the object o is described by 43

the attribute a. 44

Formal contexts can be represented by crosstables, as illustrated in 45

Fig. 1. 46

a1 a2 a3 a4

o1 × × ×
o2 × ×
o3 ×
o4 × ×

Figure 1. A formal context with four objects and four attributes.

A context gives rise to two derivation operators, both denoted by 47

·′. The first maps an object set to the set of attributes they have in 48

common, i.e. O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}, and the second 49

maps an attribute set to the set of objects they all describe, i.e. A′ = 50

{o ∈ O | ∀a ∈ A, (o, a) ∈ R}. The compositions of both derivation 51

operators form closure operators, denoted by ·′′. These derivation and 52

closure operators are then used in the definition of the patterns that 53

give the framework its name: concepts. 54

Definition 2 (Formal concept). A formal concept is a pair (E, I) 55

where E is an object set and I is an attribute set such that E = I ′ 56

and I = E′. Hence, E = E′′ and I = I ′′. We call E the extent and 57

I the intent of the concept. 58

Formal concepts correspond to maximal rectangles of crosses, up 59

to permutation of rows and columns, in the crosstable representa- 60

tion of the context. For instance, in the Fig. 1 example, the pair 61

({o2, o4}, {a1, a3}) is a concept while ({o3}, {a3}) is not because 62

o1 could be added to the first component. 63

The inclusion relation on the extents (or intents) of concepts in- 64

duces a partial order ≤: (E1, I1) ≤ (E2, I2) iff E1 ⊆ E2 (or 65

I2 ⊆ I1). This corresponds to the subsumption relation between 66

concepts. As per the basic theorem of FCA, the set of all concepts 67

in a context ordered in such a way forms a complete lattice called a 68



(∅, {a1, a2, a3, a4})

({o1}, {a1, a3, a4}) ({o2, o4}, {a1, a2})

({o1, o3}, {a3}) ({o1, o2, o4}, {a1})

({o1, o2, o3, o4}, ∅)

Figure 2. The concept lattice of the Fig. 1 context.

concept lattice. The concept lattice of the Fig. 1 example is depicted69

in Fig 2.70

There is no loss of information between a context and its concept71

lattice. Indeed, one can reconstruct the context using the lattice.72

Through the closure operator on attributes, one can also obtain73

regularities between the descriptions of objects called implications.74

Definition 3 (Implication). An implication is a rule of the form A →75

B, where A and B are attribute sets. It is said to hold in a context76

when all objects described by the objects in A are also described by77

the objects in B. In other words, A → B holds when B ⊆ A′′.78

The support of an implication A → B is A′. For instance, the79

following implications hold in the Fig 1 example: {a2} → {a1, a2}80

(support o2, o4), {a3, a4} → {a1, a3, a4} (support o1). The follow-81

ing implication, however, does not hold: {a2} → {a4}.82

The set of all implications that hold in a context can be used to83

retrieve the intents of the associated concept lattice. This makes im-84

plications a close representation of the information in the context,85

with the identity of the objects as the only loss.86

A formal context, its concept lattice and its corresponding set of87

implications are three points of views on the same phenomenon. The88

context is the factual point of view as it only contains observations.89

The concept lattice is the conceptual point of view as it is the or-90

dered/algebraic structure of all “concepts” that exist in the observa-91

tions. The set of implications is the logical point of view as it en-92

capsulates the regularities in the observations in logical implications93

through which one can make inferences. Note that, here, we equate94

the closure to an inference.95

3 Measuring Independence in Formal Concept96

Analysis97

Formal concept analysis lends itself to an intuitive notion of inde-98

pendence between the sets of objects and attributes. In this section,99

we define this independence and propose three ways to measure it,100

corresponding to the three main structures in FCA.101

3.1 Factual Independence102

Let us consider the three formal contexts depicted in Fig. 3.103

a1 a2 a3

o1 ×
o2 ×
o3 ×

a1 a2 a3

o1 × ×
o2 × × ×
o3 × ×

a1 a2 a3

o1 × × ×
o2 × × ×
o3 × × ×

Figure 3. Three formal contexts.

In the first one, the three objects each have a different attribute. As104

such, the presence of an attribute in a description completely depends105

on which object is considered. Dually, the presence of an object in 106

the derivation of an attribute also depends on the attribute. In the sec- 107

ond one, all the objects share the attribute a2 and all the attributes 108

describe the object o2. However, the presence of a1 and a3 in a de- 109

scription still depends on which object is considered: one describes 110

o1 but not o3 while the other describes o3 but not o1! The only case 111

in which the presence of an object (resp. attribute) is independent of 112

the attributes (resp. objects) is when all objects are described by all 113

attributes. This corresponds to the third context, which represents our 114

definition of independence in FCA. 115

Definition 4 (Independent context). In a formal context (O,A,R) 116

the sets of objects and attributes are independent when R = O×A. 117

We then quantify the independence of the object and attribute sets 118

of a given context C with a distance measure between C and the inde- 119

pendent context. As a measure of distance between contexts, we use 120

a distance between the incidence relations as sets. 121

Definition 5 (Factual independence). In a formal context (O,A,R),
the factual independence of the object set O and the attribute set A
is defined as

If (O,A) = 1− |R|
|O ×A| .

The factual independence takes its values in [0, 1). It is 0 when ob- 122

jects and attributes are independent (R = O ×A) and it is maximal 123

when the incidence relation is a bijection. 124

3.2 Conceptual Independence 125

The concept lattice of the independent context consists of only one 126

concept (O,A). By contrast, the first two formal contexts in Fig. 3 127

produce the following two concept lattices: 128

129

(∅, {a1, a2, a3})

({o1}, {a3}) ({o2}, {a2}) ({o3}, {a1})

({o1, o2, o3}, ∅)

({o2}, {a1, a2, a3})

({o1, o2}, {a2, a3}) ({o2, o3}, {a1, a2})

({o1, o2, o3}, {a2})

130

Definition 6 (Independent concept lattice). In the concept lattice L 131

of a formal context (O,A,R) the sets of objects and attributes are 132

independent when L = ({(O,A)}, ∅). 133

Independence, from a conceptual point of view, is achieved 134

when the world described by the context contains a single all- 135

encompassing concept. The existence of other concepts is the mark 136

of dependence, with more dependence resulting in more specific con- 137

cepts. To quantify this dependence, we use a measure of distance 138

between concept lattices. We consider concept lattices as representa- 139

tions of the derivation operators ·′ that map each object set O (resp. 140

attribute set A) to an attribute set O′ (resp. object set A′). The in- 141

dependent lattice then maps all O to the set of all the attributes. To 142

compute the independence measure, for each object o, we compare 143

the number of attribute sets that have o in their derivations in the ac- 144

tual lattice (|{o}′|) and the independent lattice (2|A|). We then do the 145

same for the attributes and keep the minimum distance. 146

Definition 7 (Conceptual independence). In a formal context
(O,A,R), the conceptual independence of the object set O and the
attribute set A is defined as Ic(O,A) =

max(

√∑
o∈O(2|A| − 2|{o}′|)2

√
O

,

√∑
a∈A(2|O| − 2|{a}′|)2

√
A

).
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The conceptual independence takes its values in [0, 1). It is 0 when147

all the objects are described by all the attributes, i.e. there is only one148

concept (O,A), and it is maximal when |{o}′| = |{a}′| = 1 for all149

object o and attribute a, i.e. when the incidence relation is a bijection.150

The conceptual independence can be visualised as a signal s on the151

powerset lattice of objects, such that s(O) = |{O}′|
A . For instance,152

for our three example contexts in Fig 3, we would obtain the draw-153

ings in Fig 4 by representing each object set by a dot and coloring it154

according to the strength of the signal (white is 0 and black is 1). The155

blacker the lattice, the more independent the dimensions.156

Figure 4. Conceptual independence visualised as a signal on a Boolean
lattice.

3.3 Logical Independence157

In the independent formal context, all the implications hold and have158

non-empty supports. By contrast, in the first context, the implications159

{a1} → {a2, a3}, {a2} → {a1, a3} and {a3} → {a1, a2} do160

not hold and the implication {a1, a2} → {a3} has the empty set as161

support.162

Definition 8 (Independent implication set). In the set of implications163

with non-empty supports I of a formal context (O,A,R) the sets of164

objects and attributes are independent when I = {A → A | A ⊆165

A}.166

Independence, from a logical point of view, is achieved when all167

implications hold. As such, dependence is marked by those implica-168

tions that do not hold. We consider implications as representations of169

the closure operator ·′′ that maps each attribute set A to the attribute170

set A′′. The independent implication set then maps all attribute sets171

to A. To compute the independence measure, for each attribute a, we172

compare the number of attribute sets that imply a in the actual impli-173

cation set I (|Ia|) and in the independent implication set (|2A|).174

Definition 9 (Logical independence). In a formal context
(O,A,R), let Ia denote the set of attributes sets X such that
X → {a} and define analogously Io in the context in which objects
and attributes are swapped. The logical independence of the object
set O and the attribute set A is then defined as Il(O,A) =

max(

√∑
a∈A(2|A| − |Ia|)2

√
A

,

√∑
o∈O(2|O| − |Io|)2

√
O

).

The logical independence takes its values in [0, 1). It is 0 when all175

the attributes imply all the attributes and it is maximal when |{o}′| =176

|{a}′| = 1 for all object o and attribute a, i.e. when the incidence177

relation is a bijection.178

4 Application to the Independence of Numerical179

Features180

We now want to apply the FCA definition of independence to the181

measurement of the independence of numerical dataset features.182

Let X and Y be two numerical features. We construct a formal 183

context such that the values X takes in the dataset are the objects, 184

the values Y takes are the attributes and a pair of values is in the 185

incidence relation if and only if they co-occur. Fig. 5 depicts a small 186

example with two features X and Y and the corresponding context. 187

If we were to compute one of the previously defined independence 188

measures in this context, X and Y would be deemed completely de- 189

pendent. 190

X Y

1.32 17.9
1.31 8.0
2.08 17.4
2.09 7.9

17.9 8.0 17.4 7.9

1.32 ×
1.31 ×
2.08 ×
2.09 ×

Figure 5. Toy dataset with two numerical features X and Y , and the
formal context of their co-occurence relation.

Another option would be to first discretise the features, for in- 191

stance as depicted in Fig 6. In this case, X and Y would be deemed 192

completely independent. Thus, the partitioning of the values of the 193

features is crucial as it completely changes the result. 194

X Y

≤ 1.32 ≥ 17.4
≤ 1.32 ≤ 8.0
≥ 2.08 ≥ 17.4
≥ 2.08 ≤ 8.0

≤ 8.0 ≥ 17.4

≤ 1.32 × ×
≥ 2.08 × ×

Figure 6. Toy dataset with the two discretised features X and Y , and the
formal context of their co-occurence relation.

5 Experimental Evaluation 195

In order to evaluate whether the FCA definition of independence can 196

be leveraged to measure the independence of numerical features, we 197

compared our proposed measures to existing independence and cor- 198

relation measures on the problem of recognising relevant features in 199

synthetic regression datasets. 200

5.1 Measures 201

As discussed in Section 4, our proposed measure behave differently 202

depending on the partitioning of the values of the features. To eval- 203

uate this difference, we use three versions of our three measures in 204

which the values are partitioned into 15, 20 and 25 clusters using 205

a k-means algorithm. We respectively call these measures I15f , I20f , 206

I25f , I15c , I20c , I25c , I15l , I20l and I25l . 207

On the side of existing measures, we selected the classic pear- 208

son’s and spearman’s coefficients, the mutual information [10], the 209

f_regression measure implemented in the scikit-learn Python library 210

and the recently introduced ξ coefficient [2]. 211

5.2 Synthetic Datasets and Recognition Problem 212

We generated three kinds of synthetic datasets for Friedman’s nonlin- 213

ear regression problems [5]. In those datasets, the input features Xi 214

are independent and uniformly distributed on [0, 1] and the output y 215

is a function of some of the input features plus some Gaussian noise 216

N (µ = 0, σ = 1), the other features being irrelevant. In the three 217

kinds of datasets, respectively called Friedman1, Friedman2 and 218

Friedman3, the outputs are such that 219
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• Friedman1:

y = 10sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 +N

• Friedman2:

y = (X2
1 + (X2X3 − 1/(X2X4))

2)0.5 +N

• Friedman3:

y = arctan((X2 ∗X3 − 1/(X2 ∗X4))/X1) +N

A good independence measure should be able to recognise the in-220

put features that were involved in the creation of the output. We con-221

structed each dataset with 4k input features, where k is the number222

of relevant features in the dataset (5 in Friedman1 and 4 in the oth-223

ers). Our experiments also compare the measures on their resistance224

to the number of samples and to noise. To do this, we generated three225

versions of each dataset containing 200, 2000 and 10000 samples226

and, for each one, multiplied the noise by 0, 2, 10 and 100.227

For each dataset and each measure, we ranked the input features228

according to the dependence of the output to them and kept the top-k.229

The measures are evaluated using two metrics:230

• the precision, defined by the number of relevant features in the
top-k over the total number of relevant features:

|relevant features identified|
k

• a ranking distance, produced by the measure and the ideal ranking
in which the relevant features are scored above the irrelevant ones:

|{(Xi, Xj) | j ≤ k, score(Xi) ≥ score(Xj)}|
3k2

5.3 Experimental Results231

5.3.1 Precision232

Table 1 presents the precision values obtained by each measure on233

each version of each dataset. Higher precisions (in bold) are better.234

We observe that our measures perform well on the Friedman1 and235

Friedman3 datasets regardless of noise and number of samples.236

However, on the Friedman2 dataset, the performances are much237

lower. Classical measures are more regularly efficient but these re-238

sults show that our measures can be used and sometimes discover de-239

pendence relations that elude existing approaches. For instance, the240

logical independence using 20 clusters perfectly recognised the four241

relevant features in the most noisy Friedman3 with 10000 samples242

where the second best measures only found one.243

5.3.2 Ranking Distance244

Table 2 presents the ranking distances obtained by each measure245

on each version of each dataset. Lower distances (in bold) are bet-246

ter. The results are similar to the results on the precision, with the247

Friedman2 dataset being harder for measures. However, we ob-248

serve that our measures produce worse rankings on the Friedman3.249

Our interpretation is that, when our measure fail to recognise depen-250

dence, they fail harder than classical measures. The distances 1 found251

in the Friedman3 datasets mean that all features have been ranked252

the same, i.e. they have all been deemed completely independent of253

the output.254

6 Discussion and Conclusion 255

We proposed new independence measures based on the definition 256

of independence in formal concept analysis that respect Rényi’s B, 257

C and D axioms [14]. Our aim was not to outperform other mea- 258

sures in any way but to propose an alternative to existing approaches. 259

The experimental results show that there are cases in which our mea- 260

sures are just as good, and sometimes slightly better, at recognising 261

dependent numerical features in a regression dataset. This suggests 262

that there is a place for these measures as they are able to detect re- 263

lations that may elude others approaches. As such, we believe that 264

they should be used in complement to more traditional independence 265

measures and correlation coefficients in the analysis of data. In addi- 266

tion, it is potentially interpretable, as examplified in Fig 4. As with 267

much of artificial intelligence and data science, the interpretability of 268

dependence measures is a pressing topic [13]. 269

More importantly, our measures offer a new point of view on in- 270

dependence based not on probability distributions and functions but 271

on the co-occurrence relation of values, and the concepts and logi- 272

cal rules that it contains. These results show that this relation alone 273

can be leveraged to detect independence and, thus, the question of 274

the contribution of this co-occurrence relation compared to that of 275

the frequencies of values arises. Future work shall be done on taking 276

the frequency of each co-occurring pair of values into account in the 277

FCA structures in order to both improve the measures and study the 278

impact of both visions. Other future work will include a study of the 279

interpretation of the values taken by the measures so as to propose 280

a threshold to decide independence and a evaluation of the trust one 281

can have in this decision, analogous to p-values. 282

Lastly, we intend to generalise our measures using to polyadic con- 283

cept analysis [16], a generalisation of FCA in which there are more 284

than two dimensions in the context. This will allow us to detect n- 285

ary and conditional independencies, opening the way to a study of 286

the use of these measures in the construction of symbolic “Bayesian 287

networks” and causal inference [12]. 288
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Dataset Noise Samples I15f I20f I25f I15c I20c I25c I15l I20l I25l pearson spearman mutual info ξ freg

Friedman1

0
200 0.6 0.8 0.4 0.4 0.4 0.2 0.4 0.4 0.6 0.8 0.8 0.8 0.6 0.8
2000 1 1 1 0.8 1 0.8 0.8 0.6 0.6 0.8 0.8 0.8 0.6 0.8
10000 1 1 1 1 1 1 1 1 0.6 0.8 0.8 1 1 0.8

2
200 0.8 0.4 0.4 0.6 0.6 0 0.2 0.2 0.6 0.8 0.8 0.8 0.4 0.2
2000 1 1 0.8 1 1 0.6 0.4 0.4 0.4 0.8 0.8 0.8 0.6 0.8
10000 1 1 1 1 1 1 1 1 0.6 0.8 0.8 1 1 0.8

10
200 0.4 0.4 0.2 0.2 0 0.4 0.4 0.2 0.6 0.6 0.6 0.4 0.6 0.6
2000 0.6 0.2 0.6 0.8 0.2 0.4 0.4 0.4 0.4 0.8 0.8 0.6 0.4 0.8
10000 0.2 0.8 0.8 0.2 0.8 0.4 0.2 0.4 0.8 0.8 0.8 1 0.6 0.8

100
200 0.4 0.4 0 0.2 0.4 0.2 0.2 0.2 0.6 0.4 0.2 0.2 0.2 0.4
2000 0 0.4 0.6 0.2 0.2 0.4 0.2 0.2 0.2 0.4 0.4 0.2 0.4 0.4
10000 0.2 0.2 0.2 0.2 0 0 0.2 0.8 0.4 0.6 0.6 0.4 0.2 0.6

Friedman2

0
200 0.75 0.5 0.5 0.5 0 0 0.25 0.25 0.5 0.5 0.5 0.5 0.5 0.5
2000 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.25 0.5 1 1 0.75 0.5 1
10000 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1 0.75 0.75 1 1 0.75 0.75

2
200 0.5 0.5 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0.5 0.75 0.5 0.5
2000 0.75 0.75 0.5 0.75 0.75 0.75 0.5 0.25 0.5 1 1 0.75 0.5 1
10000 0.5 0.75 0.75 0.5 0.75 0.75 0.5 1 0.75 0.75 1 0.75 0.75 0.75

10
200 0.75 0.5 0.5 0.5 0.25 0.25 0.5 0 0.75 0.5 0.5 0.75 0.5 0.5
2000 0.75 0.75 0.75 0.5 0.5 0.5 0.75 0.5 0.5 1 1 0.75 0.5 1
10000 0.5 0.5 0.75 0.5 0.5 0.75 0.5 1 0.5 0.75 1 0.75 0.75 0.75

10
200 0.75 1 0.5 0.5 0.25 0 0.25 0 0.75 0.5 0.5 0.75 0.75 0.5
2000 0.5 0.75 0.5 0.5 0.5 0.5 0.75 0.25 0.25 1 1 0.75 0.5 1
10000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.5 0.75 0.5 0.5 0.5

Friedman3

0
200 0.25 0.5 0.25 0.25 0.25 0.5 0.25 0.25 0.5 0.5 0.5 0.5 0.25 0.5
2000 0.25 0.5 0.75 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.25 0.75
10000 0.5 0.5 0.75 0 0.25 0.25 0 0.75 0.5 0.75 0.75 0.5 0.5 0.75

2
200 0.25 0.5 0.75 0.25 0.5 0.25 0.25 0.25 0.75 0 0 0.25 0.25 0
2000 0.5 0.25 0.25 0.25 0.5 0.25 0.5 0.25 0.25 0.5 0.5 0.75 0.5 0.5
10000 0 0.25 0.25 0 0.25 0.25 0 0.5 0.5 1 1 0.75 0.25 1

10
200 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0.25
2000 0.25 0.25 0.25 0.25 0 0.25 0 0.5 0.5 0.5 0.5 0.5 0.25 0.5
10000 0 0.75 0.25 0 0.75 0.25 0 0.75 0.25 0.75 0.75 0 0.5 0.75

100
200 0 0.25 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0 0 0.25 0
2000 0.5 0.25 0.5 0.25 0.25 0.5 0.25 0 0.75 0 0 0.25 0.25 0
10000 0 0.25 0.25 0 0 0.25 0 1 0 0 0.25 0 0 0

Table 1. Precision values obtained by each measure for each dataset.
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Dataset Noise Samples I15f I20f I25f I15c I20c I25c I15l I20l I25l pearson spearman mutual info ξ freg

Friedman1

0
200 0.18 0.22 0.29 0.25 0.28 0.56 0.32 0.22 0.10 0.09 0.09 0.53 0.30 0.09
2000 0 0 0 0.02 0 0.01 0.06 0.12 0.16 0.17 0.18 0.02 0.09 0.17
10000 0 0 0 0 0 0 0 0 0.17 0.08 0.13 0 0 0.08

2
200 0.12 0.42 0.58 0.30 0.29 0.42 0.24 0.33 0.16 0.12 0.13 0.01 0.17 0.12
2000 0 0 0.06 0 0.01 0.09 0.14 0.54 0.26 0.17 0.18 0.13 0.09 0.17
10000 0 0 0 0 0 0 0 0.13 0.24 0.13 0.12 0 0 0.13

10
200 0.36 0.36 0.60 0.57 0.72 0.45 0.18 0.54 0.14 0.18 0.22 0.38 0.32 0.18
2000 0.32 0.60 0.28 0.18 0.54 0.36 0.45 0.30 0.49 0.05 0.02 0.12 0.36 0.05
10000 0.80 0.18 0.13 0.80 0.13 0.26 0.80 0.62 0.12 0.09 0.09 0 0.13 0.09

100
200 0.52 0.50 0.76 0.33 0.37 0.52 0.57 0.62 0.29 0.49 0.52 0.82 0.48 0.49
2000 0.52 0.42 0.25 0.52 0.46 0.30 0.62 0.38 0.62 0.26 0.22 0.41 0.33 0.26
10000 0.82 0.85 0.52 0.82 0.8 0.61 0.82 0.84 0.41 0.21 0.22 0.48 0.73 0.21

Friedman2

0
200 0.22 0.08 0.29 0.35 0.72 0.64 0.37 0.54 0.27 0.37 0.29 0.12 0.31 0.37
2000 0.25 0.20 0.08 0.25 0.06 0.18 0.41 0.60 0.35 0 0 0.06 0.14 0
10000 0.25 0.18 0.18 0.25 0.18 0.18 0.25 0.37 0.29 0.04 0 0 0.10 0.41

2
200 0.25 0.25 0.37 0.20 0.70 0.35 0.27 0.75 0.35 0.37 0.29 0.10 0.31 0.37
2000 0.22 0.25 0.25 0.22 0.25 0.08 0.31 0.70 0.45 0 0 0.10 0.12 0
10000 0.50 0.14 0.18 0.50 0.14 0.18 0.50 0.14 0.29 0.41 0 0.41 0.10 0.41

10
200 0.10 0.20 0.29 0.18 0.33 0.56 0.12 0.58 0.20 0.37 0.35 0.25 0.33 0.37
2000 0.16 0.29 0.27 0.20 0.29 0.33 0.25 0.35 0.37 0 0 0.04 0.12 0
10000 0.50 0.33 0.20 0.50 0.33 0.20 0.50 0.33 0.31 0.41 0 0.25 0.14 0.41

100
200 0.08 0.04 0.10 0.14 0.35 0.70 0.58 0.54 0.08 0.45 0.37 0.14 0.14 0.45
2000 0.33 0.14 0.31 0.29 0.22 0.37 0.39 0.56 0 0 0 0.27 0.08 0
10000 0.50 0.50 0.43 0.50 0.50 0.41 0.50 0.50 0.64 0.08 0.41 0.37 0.12 0.08

Friedman3

0
200 0.58 0.27 0.43 0.27 0.27 0.33 0.39 0.66 0.27 0.45 0.41 0.37 0.33 0.45
2000 0.58 0.22 0.20 0.50 0.25 0.33 0.54 0.35 0.18 0.18 0.18 0.25 0.35 0.18
10000 0.50 0.43 0.27 0.50 0.47 0.33 0.50 0.45 0.47 0.14 0.14 0.33 0.20 0.14

2
200 0.54 0.45 0.20 0.39 0.56 0.52 0.56 0.56 0.06 0.54 0.56 0.81 0.41 0.54
2000 0.64 0.56 0.37 0.75 0.50 0.35 0.50 0.43 0.56 0.27 0.35 0.31 0.54 0.27
10000 1 0.50 0.58 1 0.45 0.54 1 0.68 0.37 0 0 0.25 0.60 0

10
200 0.45 0.54 0.60 0.60 0.47 0.60 0.54 0.60 0.43 0.72 0.70 0.58 0.37 0.72
2000 0.77 0.62 0.58 0.75 0.64 0.37 0.72 0.29 0.27 0.31 0.29 0.39 0.58 0.31
10000 1 0.22 0.77 1 0.16 0.68 1 0.62 0.64 0.08 0.08 0.79 0.33 0.08

100
200 0.68 0.66 0.47 0.43 0.47 0.64 0.62 0.68 0.39 0.79 0.77 0.68 0.50 0.79
2000 0.43 0.39 0.41 0.39 0.33 0.31 0.58 0.54 0.27 0.70 0.64 0.39 0.47 0.70
10000 1 0.54 0.62 1 0.60 0.54 1 0.37 0.75 0.54 0.62 0.75 0.62 0.54

Table 2. Ranking distances obtained by each measure for each dataset.
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