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SM1. Comparison of solutions of AISS, LARS, SPGL1, SeDuMi and5

algorithm 2.1 in terms of `1 norm. We wish to compare the `1-based methods6

considered in this paper, i.e., AISS [SM7], LARS [SM18], SPGL1 [SM40, SM41],7

SeDuMi [SM38] and algorithm 2.1 beyond the “probability of success” (4.1). Since8

the minimizer(s) to (P`1) may not be unique we compare the `1 norms of the solutions9

produced by the above algorithms. To so do, let bi denote the i-th observed vector10

and let ui
k denote the i-th output of the algorithm k. We compare the algorithms11

by computing the solution with the smallest `1-norm among feasible solutions. This12

yields to the following formula to compute the score Sk of algorithm k with13

(SM1.1) Sk :“
1

# of tests

ÿ

i

1t}Aui
k´b}`2ďεupiq1t}ui

k}`1“mink }ui
k}`1u

piq,14

where, as usual, ε :“ 1e´ 10. The results of (SM1.1) applied to the above algorithms15

are depicted in Figure SM1. From this figure, we observed that algorithm 2.1 the one16

with highest score.17

SM2. Extension for the noisy case. For applications where the observed18

data b is corrupted by a random Gaussian perturbation one is often interested in the19

following optimization problem20

#

inf
uPRn

}u}`1

s.t. }Au´ b}`2 ď ε
21

that can equivalently be formulated as follows for all ε ě 022

#

inf
ePRm

Gpeq

s.t. }e}`2 ď ε,
(SM2.1)23

24

where25

(SM2.2) Gpeq :“ inf
uPRn

Au´b“e

}u}`1 .26

A Lagragrian-based approach can be used for solving SM2.1. Consider the Lagrangian
LG : Rm ˆ r0,`8q Ñ RY t`8u defined as

LGpe, µq “ Gpeq ` µp}e}`2 ´ εq.
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Prob. of l1 min Lars -- feas. thresh :1e-10
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Prob. of l1 min Spgl1 -- feas. thresh :1e-10
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Prob. of l1 min Sedumi (HP) -- feas. thresh :1e-10
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Prob. of l1 min Algo1 -- feas. thresh :1e-10
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Prob. of l1 min Sedumi (HP) -- feas. thresh :1e-10
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Fig. SM1. Algorithms ranking: `1-minimization. This figures compares the quality of produced
solutions by the considered algorithms using (SM1.1). A white color means a high score and a black
color a low score. Panel (a): AISS [SM7], panel (b): LARS [SM18], panel (c): SPGL1 [SM40,
SM41], panel (d): SeDuMi (SP) [SM38] panel (e): algorithm 2.1, panel (f): SeDuMi (HP) [SM38].

Existence of a saddle point of this Lagrangian easily follows from the mini-max the-27

orem [SM3, chap. 6] combined with our assumptions. We can proceed as follows28

to find a saddle-point of the Lagrangian LG. We can minimize LGp¨, µq when µ is29

fixed using a black-box method as described in [SM1, section 8.3.1] (see below for30

a justification that the black-box can be computed using our algorithm). Then, we31
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can perform a bitonic-search on LGpe, ¨q to find the optimal Lagrange multiplier. We32

intend to program and test this approach and to provide details in our next paper.33

We now briefly justify how to implement the black-box for G using our proposed34

algorithm. Following [SM1, section 8.3.1], a black-box for G, given e P Rm, consists35

of computing Gpeq and s P BGpeq. We now explain how to compute s using our36

proposed algorithm. Define the Lagrangian Le : Rn ˆ Rm Ñ R given by37

(SM2.3) Lepu,λq :“ Jpuq ` xλ, Auy ` xλ,´by ` xλ,´ey ,38

we immediately obtain for all e P Rm39

Gpeq “ ´ inf
λPRm

"

´ inf
uPRn

Lepu,λq

*

“ ´ inf
λPRm

tgpλq ´ xλ,´eyu “ g˚p´eq.(SM2.4)40
41

Consequently, combining (SM2.3)-(SM2.4) and [SM4, prop. 11.3 p. 476] we have42

(SM2.5) BGpeq “ Bg˚p´eq “ arg min
λPRm

tgpλq ´ xλ,´eyu .43

We immediately notice that the problem in (SM2.5) has the same form as the dual44

problem (D`1) that we considered in this paper. Our algorithm allows us to efficiently45

compute an optimal λ̄ up to the machine precision by running our algorithm on the46

input vector b` e.47

SM3. Extension to inequality constraints. Note that our proposed ap-48

proach can be extended to handle inequality constraints. This is easily achieved49

using well-known equivalent reformulation of optimization problems (see e.g., [SM2,50

section 4.1.3]). Let us first consider the case of an inequality constraint that reads51

xa, uy ´ b ď ε where ε P r0,`8q. The above inequality is equivalent to the following52

equality constraint xa, uy ´ b ` γ “ ε where γ ě 0. Therefore any affine inequal-53

ity constraints of the form can be mapped to an equality constraints using an extra54

variable. The above procedure trivially extends to any finite number of constraints55

that read xai, uy ´ b ď ε with i “ 1, . . . ,M where M P N. As an application of the56

above procedure, we can for instance deal with constraints that read }Au´ b}`8 ď ε57

or }Au´ b}`1 ď ε. Note that } ¨ }8 or } ¨ }1 norms can be replaced by any polyhedral58

norms (that can include weights) using the same procedure.59

SM4. Additional Experiments. This section proposes an empirical evalua-60

tion of: OMP [SM35], CoSamp [SM33], GISS [SM32]. Note that OMP, CoSamp and61

GISS are greedy-based numerical algorithms while LARS, SPGL1, AISS and Algo-62

rithm 2.1 developed in the paper corresponding to this supplementary material are63

`1-based numerical algorithms. (Comparisons between LARS, SPGL1, AISS and Al-64

gorithm 2.1 are in section 4).65

These methods are compared in terms of a “probability of success”, as in section 4.66

The experimental setup is the same as in section 4. The implementation of CoSamp67

and OMP we used are due to S. Becker (code updated on Dec 12th, 2012) and can68

be found on Mathworks file exchange1. The implementation of GISS we used are69

the ones given by the authors of [SM7, SM32]. Note that the implementation of70

CoSamp requires an estimate of the sparsity. In all the experiments we used an71

oracle for CoSamp, i.e., provided the exact sparsity of the source element. Default72

parameters have been used for all methods. We now give the criteria used for the73

1 https://fr.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery
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SM4 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

numerical comparisons of these numerical algorithms. We recall that a reconstruction74

is a success if the relative error satisfies
}u´uest}`2

}u}`2
ă ε, where ε “ 10´10 or ε “ 10´475

as in section 4. As in section 4 equation (4.1), the empirical probability of success is76

given by77

Ppm,sq :“
1

# of tests

ÿ

i

1"

}ui´ui
est}`2

}ui}
`2

ăε

*piq.78

Each method is tested on the same data by using the same random seed. We first79

consider ε “ 10´10. Figure SM2 depicts the empirical probability of success (4.1) for80

OMP, CoSamp, and GISS algorithms. As in section 4, we consider the difference of81

probability of success between Algorithm 2.1 and all other methods82

Dpm,sq :“ PAlgorithm 2.1
pm,sq ´ Ppm,sq,83

where m PM, s P S, PAlgorithm 2.1
pm,sq (resp. Ppm,sq) denotes the quantity (4.1) obtained84

with Algorithm 2.1 (resp. OMP, CoSamp or GISS). Note that a positive (negative)85

value in (4.2) means that Algorithm 2.1 achieves a higher (lower) probability of success86

than the compared algorithm. These differences of probability of success are depicted87

in figure SM3. It is easily seen that OMP and CoSamp succeed at retrieving the source88

signal with a probability of approximately 80% for a larger set of parameters than89

any other method. However, they produce correct results with a probability of nearly90

100% for a much smaller set of parameters than AISS, GISS, and Algorithm 2.191

(see section 4). We also deduce from figure SM3 that Algorithm 2.1 always achieves92

a higher probability of success than GISS. An overview of the main similarities and93

differences between OMP [SM35], CoSamp [SM33], GISS [SM32] and Algorithm 2.194

are given in table SM1. In table SM1, we give the empirical probability that at least95

x% of signals are successfully reconstructed for all methods. This statistical indicator96

is defined as in section 497

(SM4.1) Pěx “
#
 

pm, sq PM ˆ S : Ppm,sq ě x
(

#M ¨#S
,98

where Ppm,sq is defined by (4.1) and # denotes the cardinality of a set. We now report99

results concerning the number of iterations needed to achieve convergence.100

Figure SM4 gives the average number of iterations needed by the considered algo-101

rithms. OMP and GISS are much faster than Algorithm 2.1 with a maximal average102

number of iterations of (about) 250 and 300 respectively. The maximal average num-103

ber of iterations needed by CoSamp fluctuates more depending on the sparsity. For104

CoSamp it remains below 300 for most experiments though and the maximal average105

number of iterations is bounded from above by 1, 000.106

Figure SM5 depicts the empirical probability of success (4.1) for OMP, CoSamp,107

and GISS algorithms. Figure SM6 depicts the differences of probability of success.108
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Empirical probability of success: OMP thresh :1e-10
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Empirical probability of success: CoSamp thresh :1e-10
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Empirical probability of success: GISS thresh :1e-10
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Fig. SM2. Empirical probability of success (4.1), with ε “ 10´10. Panel (a): OMP [SM35],
panel (b): CoSamp [SM33] and panel (c): GISS [SM32]. The non-zero entries of the source ele-
ment u are drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution.

Table SM1
Main assumption and statistical indicator of “success” for OMP, CoSamp and GISS methods.

The numbers without parentheses correspond to ε “ 10´10 and those between parentheses correspond
to ε “ 10´4. Below, E.R.C. stands for exact recovery condition see, e.g., [SM35], R.I.C. stands for
restricted isometry constant see, e.g., [SM33].

Algorithm OMP [SM35] CoSamp [SM33] GISS [SM32]
Assumption(s): A/b E.R.C. R.I.C. E.R.C.
Pě0.9 (SM4.1) 0.5104 (0.5417) 0.5521 (0.5625) 0.4063 (0.4167)
Pě0.95 (SM4.1) 0.3854 (0.4479) 0.4583 (0.5208) 0.3333 (0.3542)
Pě0.99 (SM4.1) 0.1042 (0.1354) 0.1250 (0.1458) 0.1042 (0.1354)
Pě0.999 (SM4.1) 0 (0) 0 (0) 0 (0)
Pě1 (SM4.1) 0 (0) 0 (0) 0 (0)

[SM3] I. Ekeland and R. Temam, Convex analysis and variational problems, SIAM, 1999.115
[SM4] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren der mathema-116

tischen Wissenschaften, Springer Berlin Heidelberg, 2009.117
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OMP v.s. Algo1 thresh :1e-10
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CoSamp v.s. Algo1 thresh :1e-10
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GISS v.s. Algo1 thresh :1e-10

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pseudo l0 norm in percent

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

Fig. SM3. Differences of probability of success (4.2), with ε “ 10´10. Panel (a): Algorithm 2.1-
OMP [SM35], panel (b): Algorithm 2.1-CoSamp [SM33] and panel (c): Algorithm 2.1-GISS [SM32].
A positive value indicates that Algorithm 2.1 achieves a higher probability of success than the con-
sidered method, a negative value the contrary.
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Fig. SM4. Average number of iterations. Panel (a): OMP [SM35], panel (b): CoSamp [SM33]
and panel (c): GISS [SM32].

This manuscript is for review purposes only.



SM8 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

Empirical probability of success: OMP tresh :0.0001
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Empirical probability of success: CoSamp tresh :0.0001
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Empirical probability of success: GISS tresh :0.0001
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Fig. SM5. Empirical probability of success (4.1), with ε “ 10´4. Panel (a): OMP [SM35], panel
(b): CoSamp [SM33] and panel (c): GISS [SM32]. The non-zero entries of the source element u are
drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d. realizations
of a Gaussian distribution.
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OMP v.s. Algo1 thresh :0.0001
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CoSamp v.s. Algo1 thresh :0.0001
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GISS v.s. Algo1 thresh :0.0001
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Fig. SM6. Differences of probability of success (4.2), with ε “ 10´4. Panel (a): Algorithm 2.1-
OMP [SM35], panel (b): Algorithm 2.1-CoSamp [SM33] and panel (c): Algorithm 2.1-GISS [SM32].
A positive value indicates that Algorithm 2.1 achieves a higher probability of success than the con-
sidered method, a negative value the contrary.
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