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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEMS1

BASED ON MAXIMAL MONOTONE OPERATORS˚2

YOHANN TENDEROT, IGOR CIRIL; , JÉRÔME DARBON§ , AND SUSANA SERNA¶3

Abstract. The need to solve `1 regularized linear problems can be motivated by various com-4
pressive sensing and sparsity related techniques for data analysis and signal or image processing.5
These problems lead to non-smooth convex optimization in high dimensions. Theoretical works pre-6
dict a sharp phase transition for the exact recovery of compressive sensing problems. Our numerical7
experiments show that state-of-the-art algorithms are not effective enough to observe this phase tran-8
sition accurately. This paper proposes a simple formalism that enables us to produce an algorithm9
that computes an `1 minimizer under the constraints Au “ b up to the machine precision. In addi-10
tion, a numerical comparison with standard algorithms available in the literature is exhibited. The11
comparison shows that our algorithm compares advantageously with other state-of-the-art methods,12
both in terms of accuracy and efficiency. With our algorithm, the aforementioned phase transition13
is observed at high precision.14

Key words. Sparse solution recovery, Compressive sensing, Inverse scale space, `1 minimization,15
Non-smooth optimization, Maximal monotone operator, Phase transition.16

AMS subject classifications. 34A60 ,49M29 ,90C06 ,90C25.17

1. Introduction. Compressive sensing and sparsity-related paradigms have gai-18

ned enormous interest in the last decade and can be used for, e.g., data analysis, signal19

and image processing, inverse problems or acquisition devices. Indeed, in many cases20

the unknowns of an under-determined system can be obtained by finding the sparsest21

(or simplest) solution to a linear system22

(1.1) Au “ b.23

With this formulation b is the observed data, A PMmˆnpRq, m ! n and the columns24

of A represent a suitable frame or dictionary able to sparsely encode or observe u P Rn.25

However, finding a minimizer of the `0 pseudo-norm under the constraints (1.1) is a26

highly non-convex and non-smooth optimization problem. Hence, methods [19, 25,27

30, 35, 39, 3, 14, 28] that aim at tackling `0 pseudo norm minimization guarantee28

an optimal solution only with high probability and for a specific class of matrices A.29

Another class of methods consists in using an `1 relaxation. The problem therefore30

becomes31

(P`1)

#

inf
uPRn

}u}`1

s.t. Au “ b.
32

It turns out that under various assumptions, the minimizers remain the same if one33

replaces the `0 pseudo-norm by the `1 norm (see, e.g., [11, 12, 16, 17] and the references34
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2 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

therein). Problem (P`1) is a convex albeit non-smooth optimization problem in high35

dimension (n can be thought as the number of pixels of an image for instance). For36

these reasons developing efficient algorithmic solutions is still a challenge in many37

cases. For instance, the CVX system “is not meant for very large problems” [20,38

Sec. 1.3, p.3] that arise from signal/image processing applications [24, 37]. Hence,39

many algorithms have been proposed to solve `1 minimization problems, see, e.g., [34,40

21, 2, 8, 9, 44, 45, 43, 42, 18, 40]. In this paper, we propose a simple algorithm41

that can be employed to solve these `1 minimization problems up to the machine42

precision. Indeed, it is only assumed that the matrix A has full row rank. This43

paper also exhibits a numerical comparison with several classic algorithms in the44

literature. These comparisons illustrate that our algorithm compares advantageously:45

the theoretically predicted phase transition, see e.g. [29, 10], is empirically observed46

with a higher accuracy.47

To design our algorithm, we required that: i) the method computes a solution48

to (P`1) up to the machine precision, and that ii) the method requires few computa-49

tions involving vectors of length n.50

The first requirement can be thought as guaranteeing the quality of the solution51

or the fidelity to the problem. The second requirement can be thought as promoting52

the numerical efficiency. Indeed, computations with vectors of length m ! n require53

less memory than the memory needed for vectors of the primal. (We recall that the54

unknown u lives in a high dimensional space, while the observed data b lives in a55

space of dimension m ! n). It seems unrealistic to find a minimizer to (P`1) up to56

the machine precision with a direct method. Consequently, the approach we employ57

is iterative and can be summarized as follows.58

To the best of our knowledge, the most similar approach to the one developed59

in this paper is the AISS [7] method. AISS iterates over two variables: a primal one60

that belongs to Rn and a dual one in Rm. Instead, we compute one finite discrete61

sequence λk for k “ 1, . . . ,K in Rm. The last iterate, namely λK , is an solution to62

the dual problem of (P`1) up to the machine precision. Given λK a simple formula63

allows us to compute a solution ū to (P`1) up to the machine precision. This last64

computation is the only one that requires vectors of the high dimensional space. Our65

main assumption throughout this paper is that Du such that Au “ b, i.e., (P`1) has at66

least one solution. This can be guaranteed if one assumes, as we shall do hereinafter,67

that A has full rank.68

69

Outline of the paper. The paper is organized as follows. Section 2 gives a very70

compact, yet self-contained, presentation of the numerical computations needed to71

implement the algorithm proposed in this paper (see algorithm 2.1 on page 4). Sec-72

tion 3 on page 5 proves the mathematical validity of this algorithm. In other words,73

we shall prove that the solution computed by algorithm 2.1 is exact (and numerically,74

up to the machine precision). The convergence (in finite time) of algorithm 2.1 to a75

solution to (P`1) is mathematically guaranteed. Section 4 on page 9 proposes a numer-76

ical evaluation and comparison of algorithm 2.1 with some state-of-the-art solutions77

solving (P`1). We show in this section that our method has a higher probability of78

success to reconstruct solutions with high precision compared to other state-of-the-art79

methods, i.e., the phase transition is observed with a high precision. Discussions and80

conclusions are summarized in section 5 on page 14. The appendix 6 on page 16 con-81

tains several proofs used throughout this paper. A glossary containing the notations82

and basic definitions is in appendix 7 on page 24. In the sequel, Latin numerals refer83

to the glossary of notations on page 24. Appendix 8 on page 25 contains general84
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 3

results on convex analysis used in this paper.85

2. An Algorithm Solving (P`1). This section presents the algorithm proposed86

in this paper. As usual in the literature on compressive sensing, we shall assume that87

A P Mm,npRq with m ! n. The algorithm we shall develop in this paper begins by88

computing a solution to the dual problem associated to (P`1) then computes a solution89

to the primal. The first step involves the computation of a finite and piecewise affine90

trajectory, or more precisely the positions λk where the trajectory changes of slope.91

The second step relies on the computation of a solution to a constrained least square92

problem. The construction leads to algorithm 2.1 (page 4).93

Consider the Lagrangian L : Rn ˆ Rm Ñ R of (P`1) namely94

(2.1) Lpu,λq :“ Jpuq ` xλ, Auy ` xλ,´by ,95

where Jp¨q “ } ¨ }`1 . Consider also the function g : Rm Ñ RY t`8u defined by96

gpλq :“ ´ inf
uPRn

Lpu,λq “ ´ inf
uPRn

 

Jpuq ´
@

´ATλ,u
D(

´ xλ,´by97

“ J˚
`

´ATλ
˘

` xλ, by “ χB8

`

´ATλ
˘

` xλ, by ,(2.2)98

where J˚ denotes the Lengendre-Fenchel transform of J (see (xvi)) and χB8 denotes99

the convex characteristic function of `8 (see (vii)) unit ball B8 Ă Rn (see (xi)). (We100

recall that hereinafter Latin numerals refer to the glossary of notations on page 24.)101

Consider further the optimization problem102

(D`1) inf
λPRm

gpλq,103

where g is given by (2.2). As we shall see, under classic assumptions problems (P`1)104

and (D`1) have at least one solution (see proposition 3.4 on page 5). We now give a105

strategy to solve (D`1). The trajectory r0,`8q Q t ÞÑ λptq explicitly given, for every106

t ě 0, by107

(2.3)

$

&

%

d`λ

dt
ptq “ ´ΠBgpλptqqp0q

λp0q “ λ0

108

converges for some finite time tK P r0,`8q to a solution to (D`1). The main idea109

of (2.3) is that it generalizes the usual steepest Euclidean descent for non-smooth con-110

vex functions. When the function is not differentiable, then (2.3) selects the smallest111

velocity in the `2 sense among all possible velocities that corresponds to the subdif-112

ferential of the function at a non-differentiable point. Note that the subdifferential113

always only contains one element, which is the gradient, when the function is differen-114

tiable. Formula (2.3) formalizes an evolution equation governed by the (multi-valued)115

maximal monotone operator Bg (see, for instance, [1, Eq. 2, p. 158]). In (2.3),116

ΠBgpλptqq denotes the Euclidean projection (xviii) on Bgpλptqq and λ0 P dom g is117

some initial state. We always set λ0 “ 0 in our experiments. For any λ P dom g the118

multi-valued monotone operator Bg is given by the non-empty convex cone119

(2.4) Bgpλq “

$

&

%

b`
ÿ

iPSpλq

ηiAẽi : ηi ě 0, i P Spλq

,

.

-

,120
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4 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

where the set Spλq is defined by121

Spλq :“ti P t1, . . . , 2nu :xλ, Aẽiy“1u and ẽi“

#

ei for i“t1, . . . , nu

´ei´n for i“tn` 1, . . . , 2nu .
(2.5)122

In (2.5) and everywhere else, ei denotes the i-th canonical vector of Rn.123

In addition, the trajectory given by (2.3) is piecewise affine. This means that the124

next iterate λk`1 produced by the algorithm is computed from the current iterate125

λk, the scalar ptk`1 ´ tkq and the direction dk “ ´ΠBgpλkqp0q. We now detail the126

computation of the scalar ptk`1 ´ tkq. For any k P N, we define127

S`pdkq :“ ti P t1, . . . , 2nu : xdk, Aẽiy ą 0u(2.6)128

and we have Ď∆tk :“ ptk`1 ´ tkq “min

"

1´ xAẽi,λky

xAẽi,dky
, i P S`pdkq

*

.(2.7)129

Note that (2.6) and (2.7) are easy to compute since these quantities are given130

explicitly and only involves computations of inner products. Therefore, from (2.3) we131

observe that it remains to compute the direction dk “ ´ΠBgpλkqp0q which corresponds132

to computing the projection on a non-empty closed convex cone given by Bgpλkq.133

Note that this subdifferential has an explicit formula given by (2.4). One can use a134

constrained least square solver, available in Matlab, to compute the solution. (See also135

remark 2.1 below.) To sum up, to compute a solution to (D`1) one can compute the136

limit of the trajectory λptq given by (2.3) using the update rules (2.6) and (2.7). This137

limit is attained after finitely many updates (see also proposition 3.15). It remains to138

compute a solution to (P`1) given λ̄ solution to (D`1).139

Given λ̄ solution to (D`1), one can compute a solution ū to (P`1) by solving the140

constrained least square problem141

(2.8)

#

min
uPRn

}Au´ b}`2

s.t. ui ě 0 if xλ̄, Aeiy “ ´1, ui ď 0 if xλ̄, Aeiy “ 1 and ui “ 0 otherwise.
142

We are now in position to state the entire algorithm.143

144

Algorithm 2.1 Algorithm computing ū solution to (P`1).

Input: Matrix A, b
Output: ū solution to (P`1)
Set k :“ 0 and λk :“ 0 P Rm repeat

1. Compute Spλkq (see (2.5));
2. Compute dk as dk :“ ´ΠBgpλkqp0q (see remark 2.1)

3. Compute S`pdkq (see (2.6)) then Ď∆tk (see (2.7))
4. Set λk`1 :“ λk ` Ď∆tk dk;
5. Set k “ k ` 1 and set λ :“ λ

}ATλ}`8
if }ATλ}`8 ą 1;

until dk “ 0 (see remark 2.1);
Compute ū using (2.8).

Remark 2.1. To compute dk we define G :“
!

ř

iPSpλkq
ηiAẽi :ηiě0, iPSpλkq

)

. We145

have that dk :“´ΠBgpλkqp0q“´ΠGp´bq ´ b (see lemma 6.5 on page 21) can be com-146

puted from a constrained least square problem similar to (2.8). We refer to [15,147

This manuscript is for review purposes only.



AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 5

Section 3.2] and the references therein for a detailed review of exact (up to machine148

precision) numerical algorithms solving the above constrained least square problem.149

For instance, one can use the lsqnonneg Matlab routine albeit we used an implementa-150

tion based on [31] that is supposedly faster than the Matlab routine. The termination151

condition, namely dk “ 0, was replaced by }dk}`2 _ }Ď∆tkdk}`2 ă 10´10 in all of our152

experiments. The projection in step 5 is unnecessary if the precision of numbers is153

high enough. However, we empirically observed that it increased the performance of154

the method for the Matlab implementation.155

3. From Maximal Monotone Operator to `1 Solutions of Linear Prob-156

lems. This section justifies the mathematical validity of algorithm 2.1 presented in157

section 2.158

We recall that to solve (P`1), we first solve the dual (D`1) then compute a solution159

to the primal problem (P`1). Hence, we first give the assumptions that justify the160

existence of solutions to problems (P`1) and (D`1) and give a closed formula that161

allows us to compute the solution to (P`1) from a solution to (D`1). This is done in162

proposition 3.4. We then briefly justify the fact that the trajectory we used in the163

previous section converges to a solution to the dual. This is done in proposition 3.6.164

This proposition translates into algorithm 2.1 on page 4 and is illustrated numerically165

in section 4 on page 9.166

Proposition 3.1 (and definition). We assume that A PMm,npRq has full row167

rank and that Jp¨q “ } ¨ }`1 . We consider the functions168

@u P Rn, fpuq :“ Jpuq ` χtbu pAuq ;(3.1)169

@λ P Rm, gpλq :“ J˚
`

´ATλ
˘

` xλ, by “ χB8

`

´ATλ
˘

` xλ, by .(3.2)170

We have f P Γ0pRnq and g P Γ0pRmq (see (x)).171

Proof. See appendix 16 on page 18.172

Remark 3.2. The assumptions of proposition 3.1 allow to cover the case of com-173

pressive sensing problems. Note that one can relax the assumption that A is full row174

rank, we just need that b P span A. For instance if, for some specific application, the175

observed b’s belong to a subspace B then we just need span A Ą B.176

We recall that we wish to solve (P`1) using a solution to (D`1). To this aim the177

following definition and proposition are needed.178

Definition 3.3 (Active set). For any λ P dom g we define179

S pλq :“ti P t1, . . . , 2nu :xλ, Aẽiy“1u and ẽi“

#

ei for i“t1, . . . , nu

´ei´n for i“tn` 1, . . . , 2nu ,
(3.3)180

and ei denotes the i-th canonical vector of Rn.181

Proposition 3.4 (Existence of solutions and computation of a solution to (P`1)).182

We posit the same assumptions as in proposition 3.1. We have183

1. Problems (P`1) and (D`1) have at least one solution.184

2. Let λ̄ be a solution to (D`1). Consider the coefficients rui such that rui “ 0 @i P185

t1, . . . , 2nuzS
`

´λ̄
˘

and rui ě 0 for i P S
`

´λ̄
˘

, of the Euclidean projection of186

This manuscript is for review purposes only.



6 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

b onto187

(3.4)

$

’

’

&

’

’

%

y : y “
ÿ

ruiě0 @iPSp´λ̄q
rui“0 @iPt1,...,2nuzSp´λ̄q

ruiAẽi

,

/

/

.

/

/

-

,188

where Sp´λ̄q and ẽi are defined by (3.3).189

We have that the vector ū obtained from the above coefficients rui190

(3.5) ū :“
n
ÿ

i“1

uiei, with ui :“ rui ´ rui`n191

is a solution to (P`1).192

Note that (3.4) is equivalent to formula (2.8) given in section 2. Indeed, in (3.4) at193

least one of the coefficients rui or rui`n is zero.194

Proof. See appendix 17 on page 18.195

Remark 3.5. The reconstruction formula given by (2.8) is different from the re-196

construction methods that can sometimes be found in the literature (see, e.g., [32, al-197

gorithm 6, p. 11]). However, for matrices satisfying compressive sensing assumptions198

(see, e.g., [12, 16]), the signal can be obtained from an unconstrained least-squares199

solution to Au “ b. Indeed, the support constraint issued form λ̄ boils down to200

solving, in the least squares sense, Bu “ b, where B is a sub-matrix formed from A201

by removing appropriate columns. Note that in this case, there is no sign constraint202

on ui contrarily to (2.8). In addition, in many cases, the unconstrained least squares203

solution can be computed using a Moore-Penrose pseudo inverse formula. However,204

the least squares solution and (2.8) will, in general, differ: they have same `0 pseudo205

norms but different `1 norms.206

To solve (D`1) we rely on a specific trajectory of feasible points for (D`1) governed207

by the maximal monotone operator Bg (see, e.g., [1]). The main properties of this208

trajectory are summarized in the next proposition.209

Proposition 3.6 (Properties of the trajectory λptq [1, 5]). We posit the same210

assumptions as in proposition 3.1. Consider the evolution equation explicitly given,211

for every t P r0,`8q, by212

(3.6)

$

&

%

d`λptq

dt
“ ´ΠBgpλptqqp0q

λp0q “ λ0,

213

where λ0 P dom Bg. We have that the solution λ : r0,`8q Q t ÞÑ λptq P Rm to (3.6)214

satisfies:215

1. for every t P r0,`8q, λp¨q is continuous, right-differentiable and belongs to216

dom Bg;217

2. the limits of gpλptqq and λptq when tÑ `8 exist;218

3. limtÑ`8 gpλptqq “ minλPRm gpλq and limtÑ`8 λptq P arg minλPRm gpλq.219

Proof. See appendix 18 on page 18.220

The proposition above means that the limit of the trajectory λptq is a solution to (D`1).221

In the sequel, we shall prove that the limit is attained for a finite time t ě 0. It is222

This manuscript is for review purposes only.



AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 7

worth noticing the similarity between (3.6) and inverse scale space methods (see,223

e.g., [7, 32]). To compute λptq one could rely on an Euler scheme to approximate the224

trajectory for instance. However, a numerical computation of the trajectory λptq up225

to the machine precision is doable. This is the goal of the next paragraph.226

Computation of the trajectory λptq given by (3.6). We recall that to obtain227

an algorithm we need to compute a solution λ̄ to (D`1). To do so, we recall that we228

compute the positions where λptkq changes of slope. Since dom g ‰ Rm we cannot229

recur to classic textbooks such as, e.g., [22, Chap. VIII]. Thus, some work is needed.230

Proposition 3.13 (on page 8) proves that λptq defined by (3.6) is piecewise affine.231

In other words, λptq is made of pieces of straight lines. Hence, the computation of232

λptq boils down to the detection of “kicks”, i.e., positions where λptq changes slope233

and the computation of these slopes. The computation of these slopes is obtained234

from (3.6) and lemma 3.8. Propositions 3.10 and 3.14 yield a direct and optimal235

numerical method to detect kick times, i.e., times t such that λptq and λpt` εq don’t236

have the same slope for some ε ą 0. Propositions 3.11 and 3.15 give the termination237

condition and proves that λptq converges to a solution to (D`1) after finitely many238

kicks. We recall that proposition 3.4 (page 5) directly gives an explicit formula that239

allows us to compute a solution to (P`1) given a solution to (D`1) obtained as the240

limit of the trajectory λptq.241

We recall that one of the two main ingredients to compute the trajectory λptq is242

the computation of slopes given by a projection onto the closed convex cone Bg pλptqq243

(see proposition 3.6 on page 6). Hence, a closed formula for Bg is needed. This is the244

goal of the next proposition that leads to lemma 3.8.245

Proposition 3.7 (The function g defined by (3.2) is polyhedral). We posit the246

same assumptions as in proposition 3.1. The function g defined in (3.2) is a polyhedral247

proper and convex function that satisfies dom g “ C ‰ H and we have248

gpλq “ xλ, by ` χC pλq , where C :“ tλ P Rm : xλ, Aẽiyď 1, i P t1, . . . , 2nuu(3.7)249

and ẽi is defined in (3.3).250

Proof. See appendix 6.5 on page 19.251

We now give a formula for the subdifferential of g.252

Lemma 3.8 (Subdifferential formula for g). We posit the same assumptions as253

in proposition 3.1. We have dom Bg “ dom g “ C ‰ H and, for any λ P C,254

(3.8) Bgpλq “ tbu ` co tAẽi : i P S pλqu ,255

where ẽi, S pλq are given by (3.3) and co by (v).256

Proof. See appendix 6.6 on page 19.257

With the above formula it is easily seen that one can compute the slope of λptq for258

any t ě 0. It remains to compute the kick times, i.e., times t when the slope of the259

trajectory λptq changes. This is the goal of the next three propositions and lemma.260

Proposition 3.9 (and definition: descent direction). We posit the same setup261

as in proposition 3.1. We say that a direction d P Rmzt0u is a descent direction for g262

at λ P dom g iff pλ ` tdq P dom g and gpλ ` tdq ă gpλq for some t ą 0. Moreover,263

we have that a direction d ‰ 0 is a descent direction for g at λ iff d satisfies264

xd, Aẽiy ď 0 @i P S pλq and(3.9)265

g1 pλ,dq “ xd, by ă 0, where ẽi is given by (3.3).(3.10)266
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8 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

Proof. See appendix 21 on page 19.267

Proposition 3.10 (Kick time computation). We posit the same assumptions268

as in proposition 3.1 and further assume that λ P dom g and that d is a direction that269

satisfies (3.9). Consider ẽi given by (3.3), the set S`pdq defined by270

(3.11) S`pdq :“ ti P t1, . . . , 2nu : xAẽi,dy ą 0u271

and the scalar Ď∆t by272

(3.12)

#

Ď∆t :“ min
!

1´xAẽi,λy
xAẽi,dy

: i P S`pdq
)

if S`pdq ‰ H;

Ď∆t :“ `8 otherwise.
273

We have that Ď∆t satisfies Ď∆t ą 0. In addition, S`pdq “ H iff pλ` tdq P dom g for274

every t ě 0. Furthermore, we have275

pλ` tdq P dom g iff t P
“

0,Ď∆t
‰

;(3.13)276

@t P
“

0,Ď∆t
˘

S pλ` tdq Ă S pλq and Bg pλ` tdq Ă Bg pλq .(3.14)277

Proof. See appendix 23 on page 20.278

Lemma 3.11 (Well possedness of d :“ ´ΠBgpλqp0q, optimality conditions). We279

posit the same assumptions as in proposition 3.1. For any λ P dom g, the vector given280

by281

(3.15) d :“ ´ΠBgpλqp0q.282

is well defined. Consider d defined by (3.15) and Ď∆t, S`pdq defined in proposi-283

tion 3.10. We have that the three following conditions are equivalent284

(3.16) d “ 0 ô Ď∆t “ `8 ô S`pdq “ H.285

In addition, λ P dom g is a solution to (D`1) iff the conditions in (3.16) hold true.286

Proof. See appendix 24 on page 8287

Proposition 3.12 (ΠBgpλqp0q is constant on time intervals). We posit the same288

assumptions as in proposition 3.1. Consider any λ P dom g, d defined by (3.15) and289
Ď∆t defined in corollary 3.10. We have290

@t P
“

0,Ď∆t
˘

ΠBgpλqp0q P Bgpλ` tdq;(3.17)291

@t P
“

0,Ď∆t
˘

ΠBgpλqp0q “ ΠBgpλ`tdqp0q.(3.18)292

Proof. See appendix 25 on page 21.293

We are now in position to give a mathematical definition of the trajectory computed294

by the algorithm.295

Proposition 3.13 (and definition: piecewise affine trajectory λptq). We posit296

the same assumptions as in proposition 3.1. Consider λ0 P dom g and the sequences297

ptkqk Ă r0,`8s, pdkqk and pλptkqqk recursively defined by298

$

’

&

’

%

t0 :“ 0; dk :“ ´ΠBgpλptkqqp0q; tk`1 :“ tk ` Ď∆tk;

λptk`1q :“ λptkq ` ptk`1 ´ tkqdk if tk`1 ă `8

λptk`1q :“ λptkq otherwise,

(3.19)299

This manuscript is for review purposes only.
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where Ď∆tk is obtained from proposition 3.10 (applied with λ :“ λptkq and d :“ dk).300

Consider also the affine interpolate (continuous) trajectory λ : r0,`8s Q t ÞÑ Rm301

defined by302

(3.20) λptq :“ λptkq ` pt´ tkqdk for any t P rtk, tk`1q, λpt0q :“ λ0.303

We have that the trajectory λptq given in (3.20) coincides for every t ě 0 with the304

solution to the evolution equation (3.6). In addition, for every t ě 0 we have λptq P305

dom g.306

Proof. See appendix 29 on page 23.307

To compute λptq the algorithm relies on the computation of the sequence pdk, tkqk308

defined by (3.19). The next two propositions prove that λptq changes of slope at every309

tk and that the sequences in (3.19) are finite.310

Proposition 3.14 (Optimality of the sampling of the trajectory λptq). We posit311

the same assumptions as in proposition 3.1 and further assume that λptkq P dom g is312

not a solution to (D`1). For λptk`1q given by proposition 3.13 we have313

ΠBgpλptkqqp0q ‰ ΠBgpλptk`1qqp0q and
›

›ΠBgpλptk`1qqp0q
›

›

`2
ă
›

›ΠBgpλptkqqp0q
›

›

`2
.(3.21)314

Proof. See appendix 30 on page 23.315

Proposition 3.15 (λptq converges to a minimizer of (D`1) after finitely many316

kicks). We posit the same assumptions as in proposition 3.1. Consider the sequences317

ptkqk, pdkqk and the trajectory λptq defined in proposition 3.13. We have that DK P N318

such that λptq “ λptKq for every t ě tK . In addition, λptKq is a solution to (D`1)319

and dK satisfies dK “ 0.320

Proof. See appendix 31 on page 24.321

We now briefly justify that the computations in algorithm 2.1 (page 4) end with a322

solution to (P`1) after finitely many iterations. We obtained that for any λ0 P dom g323

(see proposition 3.13) the sequence defined in (3.19) converges (see proposition 3.15)324

after finitely many kicks to a solution to (D`1). In algorithm 2.1, the initialization step325

namely λ0 “ 0 is valid since 0 P dom g. In addition, it is easily seen that steps 1-5326

implement (3.19). From proposition 3.15, we deduce the validity of the termination327

condition. Proposition 3.15 justifies that this termination condition is reached after328

finitely many iterations. Hence, the while loop ends with some λ̄ solution to (D`1).329

Therefore, the computation of ū solution to (P`1) is justified by proposition 3.4.330

Therefore, the validity of algorithm 2.1 is proved.331

Remark 3.16. Supplementary material shows that our proposed approach can be332

extended to handle affine inequality constraints. In addition, supplementary material333

presents how our proposed algorithm 2.1 can be used to solve the optimization problem334

with constraints of the form }Au´ b}`2 ď ε, i.e., when there is Gaussian noise. This335

approach will be presented in another paper.336

4. Experiments. This section proposes an empirical evaluation of the following337

methods to solve (P`1): AISS [7], LARS [18], SPGL1 [40, 41], SeDuMI [38] and algo-338

rithm 2.1. Two parameters settings are consdered for SeDuMI: the first version version339

which is called “standard precision” (SP) uses the standard parameters provided in340

the CVX package, while the second version which is called “high precision” (HP) uses341

the option “cvx precision best”. Supplementary material gives the same comparisons342

This manuscript is for review purposes only.
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between OMP [35], CoSamp [33] and GISS [32]. Note that OMP, CoSamp and GISS343

are greedy-based numerical algorithms. LARS, SPGL1, AISS and algorithm 2.1 are344

`1-based numerical algorithms. SeDuMi [38] is a toolbox for linear, second order and345

semi-definite problems. These methods are compared in terms of a “probability of346

success” (defined below) and average number of iterations needed. The criterion will347

be used to observe a so called phase transition that separates cases where algorithms348

successfully recover the sparsest solution and when they fail. Note that solutions with349

high precision are required to observe an accurate phase transition because, if the pre-350

cision of the computed solutions is too poor, then any estimation can be considered351

as a solution (i.e., a “success” in our experiments). Numerically, it seems to be hard352

to know a priori the desired precision on the solutions to observe phase transitions.353

Therefore, it is of interest to have numerical methods that can achieve reconstructions354

with high precision, i.e., up to the machine precision.355

First we describe the experimental setup. In these experiments the sensing matrix356

A always has 1000 columns. The entries of A are drawn from i.i.d. realizations of357

a centered Gaussian distribution. Without loss of generality we may normalize the358

columns of A to unit Euclidean norm. The number of rows of A, i.e., the dimension359

of the ambient space m, vary in M :“ t50, . . . , 325u with increments of 25. For each360

number of rows, we vary the sparsity level s between 5% and 40% with increments361

of 5% and therefore consider the discrete set S :“ t0.05, . . . , 0.4u. The sparsity level362

is related to the `0 norm of u by “}u}`0 “ round psˆmq” following [10]. The posi-363

tions of the non-zero entries of u are chosen randomly, with uniform probability. The364

non-zero entries of u are drawn from a uniform distribution on r´1, 1s. To do so, for365

each parameter (i.e., sparsity level s and dimension of ambient space m) we repeated366

the experiments 1, 000 times. The implementations of AISS and SPGL1 we used are367

the ones given by the authors of [7, 32, 41]. For LARS [18], we used the SPAMS368

toolbox [26]. The implementation of SeDuMi [38] we used can be found at https:369

//sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi 1 3.zip. Default pa-370

rameters have been used for all methods. We now give the criteria used for the371

numerical comparisons of these numerical algorithms.372

We need to define the “success” of an algorithm. We choose to define “success”373

as “the output of an algorithm is equal to the source element u”. This choice can374

be justified by several theoretical works, see, e.g., [11, 12, 16, 17]. This criterion,375

namely the output is equal to the source element, is chosen for the numerical experi-376

ments proposed thereafter. Note that this criterion seems slightly in favor of methods377

specifically designed for the compressive sensing method compared to methods that378

propose to solve (P`1). Here, this means that the comparisons are slightly biased in379

favor of [33, 35]. We also need to deal with the finite numerical precision of computa-380

tions. Thus, we define that a reconstruction is a success if the relative error satisfies381
}u´uest}`2

}u}`2
ă ε, where ε “ 10´10 or ε “ 10´4. Hence, for any pm, sq P M ˆ S, the382

empirical probability of success is given by383

(4.1) Ppm,sq :“
1

# of tests

ÿ

i

1"

}ui´ui
est}`2

}ui}
`2

ăε

*piq,384

where uiest (resp. ui) is the estimated signal (resp. source signal). Each method385

is tested on the same data by using the same random seed. Note that this type of386

experimental setup has been used before, for instance in [25].387

Remark that another choice for defining “success” could be stated as “the output388

of an algorithm is a solution to (P`1)”. However, this criterion would be verified389

This manuscript is for review purposes only.

https://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_1_3.zip
https://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_1_3.zip
https://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_1_3.zip


AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 11

for every output of algorithm 2.1. Indeed, algorithm 2.1 ends with some ū that390

numerically verifies an optimality condition associated with (P`1). Thus, this choice391

seems uninformative. Therefore, we have decided to not consider this definition of392

“success” in this paper. We first consider ε “ 10´10. Figure 4.1 depicts the empirical393

probability of success (4.1) for AISS, LARS, SPGL1, SeDuMi and algorithm 2.1.394

We also consider the difference of probability of success between algorithm 2.1 and395

all other methods that is defined as follows396

(4.2) Dpm,sq :“ P algorithm 2.1
pm,sq ´ Ppm,sq,397

where m PM, s P S, P algo 2.1
pm,sq (resp. Ppm,sq) denotes the quantity (4.1) obtained with398

algorithm 2.1 (resp. AISS, LARS and SPGL1). Note that a positive (negative) value399

in (4.2) means that algorithm 2.1 achieves a higher (lower) probability of success than400

the compared algorithm. These differences of probability of success are depicted in401

figure 4.2. We deduce from figure 4.2 that algorithm 2.1 always achieves a higher402

probability of success than AISS and GISS. We observe that LARS, SeDuMi (stan-403

dard precision) and SPGL1 algorithms do not perform well for ε “ 10´10 since the404

probability of success tends to be low, even for problems with very sparse signals. We405

also observe that both SeDuMi (high precision) and our proposed algorithm produce406

the best results. Table 4.1 gives the main assumptions on A and b for LARS [18],407

SPGL1 [40, 41], AISS [7], SeDuMI [38] and algorithm 2.1 In this table, we also give408

the empirical probability that at least x% of signals are successfully reconstructed for409

each method. This statistical indicator is defined as follows410

(4.3) Pěx “
#
 

pm, sq PM ˆ S : Ppm,sq ě x
(

#M ¨#S
,411

where Ppm,sq is defined by (4.1) and # denotes the cardinality of a set. Supplemen-412

tary material presents numerical results in terms of `1-norm for `1-based methods413

namely AISS, LARS, SPGL1, SeDuMi and algorithm 2.1. Up to a probability of 0.95414

AISS, SeDuMi (HP) and our algorithm give the same best results. For probability415

0.99 SeDuMi and our algorithm give the same best results. For higher probabilities416

Algorithm 2.1 gives the best results.417

Table 4.2 presents the time results for AISS, LARS, SPGL1, SeDuMi and Al-418

gorithm 2.1. All experiments are done using a single core of an Intel Core 10600k.419

We observe that our proposed algorithm is very competitive compared to the state-420

of-the art competitors. Indeed, our proposed algorithm outperforms the competitors421

for sparsity 5/10% and 50/175 rows while the second best algorithm is AISS. The422

computational time of our proposed algorithm is similar to AISS for sparsity 15/20%423

and 175/300 rows. For sparsity 25/30% and 175/300 rows AISS performs better that424

our proposed algorithm. We observe that the runtime of LARS [18], SPGL1 [40, 41],425

SeDuMi (SP) [38] remains close to constant when the sparsity is greater or equals426

20%: this suggests that for these levels of sparsity LARS [18], SPGL1 [40, 41], Se-427

DuMi [38] computed poor solutions as it has been numerically exhibited previously.428

Recall that SeDuMi (HP) [38] computes very good results as previously shown but429

the computational time is significantly larger that our proposed algorithm 2.1 and430

AISS except for the case of 30% sparsity with 300 rows.431

As noted above the numerical results for LARS and SPGL1 show that these432

two numerical methods are not able to produce good results for the above set of433

experiments with ε “ 10´10. We now present numerical experiments for a higher434

threshold in (4.1) where we set ε “ 10´4. Figure 4.3 depicts the empirical probability435

This manuscript is for review purposes only.
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Empirical probability of success: AISS thresh :1e-10
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Empirical probability of success: Lars thresh :1e-10
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Empirical probability of success: spgl1 thresh :1e-10
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Empirical probability of success: Sedumi thresh :1e-10
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Empirical probability of success: Algo1 thresh :1e-10
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Empirical probability of success: Sedumi thresh :1e-10
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Fig. 4.1. Empirical probability of success (4.1), with ε “ 10´10. Panel (a): AISS [7], panel
(b): LARS [18], panel (c): SPGL1 [40, 41], panel (d) : SeDuMi (standard precision) [38], panel
(e): algorithm 2.1 and panel (f): SeDuMi (high precision) [38]. The non-zero entries of the source
element u are drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution. With their default parameters LARS, SPGL1 and SeDuMi
(standard precision) are not able to produce good result for the above set of experiments. However,
SeDuMi (high precision) produces good results. We also present results for an higher threshold
ε “ 10´4, see figure 4.3.
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LARS v.s. Algo1 thresh :1e-10
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SPGL1 v.s. Algo1 thresh :1e-10
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Sedumi v.s. Algo1 thresh :1e-10
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Sedumi v.s. Algo1 thresh :1e-10
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Fig. 4.2. Differences of probability of success (4.2), with ε “ 10´10. panel (a): algorithm 2.1-
AISS [7] panel panel (b): algorithm 2.1-LARS [18] panel (c): algorithm 2.1-SPGL1 [40, 41], panel
(d) algorithm 2.1-SeDuMi (standard precision) [38] and panel (e) algorithm 2.1-SeDuMi (high pre-
cision) [38]. A positive value indicates that algorithm 2.1 achieves a higher probability of success
than the considered method, a negative value the contrary.

of success (4.1) for AISS, LARS, SPGL1, SeDuMi and algorithm 2.1. Figure 4.4436

depicts the differences of probability of success. These results for ε “ 10´4 show437

that all numerical algorithms have a higher empirical probability of success compared438

to the results for ε “ 10´10. In particular, we note that SPGL1 and LARS that439

were performing poorly for ε “ 10´10 have dramatically improved their performance.440
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Table 4.1
Main assumption and statistical indicator of “success” for LARS, SPGL1, AISS, SeDuMi

and algorithm 2.1. The numbers without parentheses correspond to ε “ 10´10 and those between
parentheses correspond to ε “ 10´4. Below, R.I.C. stands for restricted isometry constant see,
e.g., [33] and S.F.P.D. stands for strong feasibility of primal and dual program.

Algorithm LARS [18] SPGL1 [40, 41] AISS [7] SeDuMi (SP) [38] SeDuMi (HP) [38] Algorithm 2.1
Assumption R.I.C. Du : Au “ b Du : Au “ b S.F.P.D. S.F.P.D. full row rank
Pě0.9 (4.3) 0 (0.4688) 0 (0.0833) 0.4688 (0.4688) 0.104 (0.4688) 0.4688 (0.4688) 0.4688 (0.4688)
Pě0.95 (4.3) 0 (0.4375) 0 (0.0625) 0.4375 ( 0.4375) 0 (0.4583) 0.4375 (0.4375) 0.4375 (0.4375)
Pě0.99 (4.3) 0 (0.4167) 0 (0.0104) 0.3438 (0.4167) 0 (0.4167) 0.4167 (0.4167) 0.4167 (0.4167)
Pě0.999 (4.3) 0 (0.3750) 0 (0) 0.1250 (0.3646) 0 (0.3333) 0.3229 (0.3437) 0.3646 (0.3750)
Pě1 (4.3) 0 (0.3646) 0 (0) 0.0521 (0.3646) 0 (0.1875) 0.1562 (0.1979) 0.3333 (0.3646)

Also, from figure 4.4, we observe that LARS and our proposed algorithm produce441

very similar results. It seems that LARS works for the considered experiments (see442

figure 4.4) although it was proved in [6] that LARS may not converge.443
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Empirical probability of success: Lars tresh :0.0001
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Empirical probability of success: spgl1 tresh :0.0001
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Empirical probability of success: Sedumi thresh :0.0001
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Empirical probability of success: Algo1 tresh :0.0001
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Empirical probability of success: Sedumi thresh :0.0001
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Fig. 4.3. Empirical probability of success (4.1), with ε “ 10´4. Panel (a): AISS [7], panel
(b): LARS [18], panel (c): SPGL1 [40, 41], panel (d) : SeDuMi (standard precision) [38], panel
(e): algorithm 2.1 and panel (f): SeDuMi (high precision) [38]. The non-zero entries of the source
element u are drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution.

5. Conclusion. In this paper, a new algorithm to solve `1 regularized linear444

problems up to the machine precision has been proposed. The method is based on i)445

the numerical computation of a finite sequence that converges to a solution the dual446

problem and ii) an explicit recovery formula -based on a non-negative least squares-447

to compute a solution to the primal problem. The sequence we employed is driven448

by an evolution equation ruled by a maximal monotone operator. The numerical449

computations of this algorithm involve: the computation of a projection onto a closed450

convex cone and the evaluation of inner products. The sequence in the dual space451

lives in a low dimensional space compared to the unknown. Hence, most of the452

numerical efforts require fewer memory usage than primal-based method. Numerical453
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Table 4.2
Computational time results for the following methods: algorithm 2.1, AISS [7] and SeDuMi

(SP) [38], SPGL1 [40, 41], LARS [18], SeDuMi (HP) [38], the number of columns is set to 1,000
as everywhere else in this paper and various number of rows (NR) and several level of sparsity.
Time results are given in seconds and corresponds to the average time of 200 experiments. The
variance is also given in parenthesis.

NR algorithm sparsity
5% 10% 15%

50 Algorithm 2.1 6.2437e-04 (1.1274e-08) 9.9688e-04 (4.6010e-07) 0.0056 (1.2178e-05)
AISS [7] 0.0046 (6.2449e-04) 0.0053 (5.8065e-04) 0.0135 (5.9706e-04)

SeDuMi (SP) [38] 0.0326 (2.9972e-04) 0.0369 (2.7969e-04) 0.0497 (3.4206e-04)
SPGL1 [40, 41] 0.0115 (3.5370e-05) 0.0240 (2.2200e-04) 0.0693 (4.0352e-04)

LARS [18] 0.0059 (1.2202e-06) 0.0069 (3.5498e-06) 0.0100 (7.6192e-06)
SeDuMi (HP) [38] 0.2029 (5.4966e-04) 0.2130 (5.9799e-04) 0.2330 (0.0010)

175 Algorithm 2.1 0.0033 (1.1617e-07) 0.0061 (5.7905e-07) 0.0161 (2.6142e-05)
AISS [7] 0.0052 (5.6492e-04) 0.0071 (6.6601e-04) 0.0153 (7.7310e-04)

SeDuMi (SP) [38] 0.1497 (3.6402e-04) 0.1714 (3.4310e-04) 0.1729 (4.1359e-04)
SPGL1 [40, 41] 0.0105 (2.3802e-05) 0.0192 (3.6582e-05) 0.0372 (2.3437e-04)

LARS [18] 0.0097 (7.4096e-06) 0.0159 (2.9454e-05) 0.0198 (2.0914e-05)
SeDuMi (HP) [38] 0.5813 (0.0027) 0.6406 (0.0038) 0.6787 (0.0028)

300 Algorithm 2.1 0.0081 (1.1997e-07) 0.0162 (1.9130e-06) 0.0411 (6.8016e-05)
AISS [7] 0.0063 (6.0184e-04) 0.0102 (5.8937e-04) 0.0283 (8.1150e-04)

SeDuMi (SP) [38] 0.3502 (5.3829e-04) 0.3724 (4.9952e-04) 0.3854 (5.9227e-04)
SPGL1 [40, 41] 0.0112 (2.1614e-05) 0.0181 (2.6325e-05) 0.0299 (5.3353e-05)

LARS [18] 0.0244 (1.7508e-05) 0.0300 (3.3939e-05) 0.0369 (4.4780e-05)
SeDuMi (HP) [38] 1.2914 (0.0152) 1.4947 (0.0179) 1.5797 (0.0143)

NR algorithm sparsity
20% 25% 30%

50 Algorithm 2.1 0.0085 (3.6050e-06) 0.0091 (1.0906e-06) 0.0092 (7.7791e-07)
AISS [7] 0.0186 (7.7498e-04) 0.0197 (7.6886e-04) 0.0195 (7.6616e-04)

SeDuMi (SP) [38] 0.0547 (3.6486e-04) 0.0539 (3.0153e-04) 0.0538 (3.0346e-04)
SPGL1 [40, 41] 0.0755 (3.2247e-04) 0.0779 (2.6061e-04) 0.0791 (2.8112e-04)

LARS [18] 0.0056 (1.2995e-06) 0.0059 (1.2474e-06) 0.0601 (1.2694e-06)
SeDuMi (HP) [38] 0.2407 (9.3084e-04) 0.2496 (0.0010) 0.2537 (0.0012)

175 Algorithm 2.1 0.0997 (0.0165) 0.4943 (0.0270) 0.5521 (0.0028)
AISS [7] 0.0866 (0.0083) 0.3485 (0.0115) 0.3739 (0.0024)

SeDuMi (SP) [38] 0.2077 (0.0011) 0.2491 (0.0013) 0.2534 (4.9534e-04)
SPGL1 [40, 41] 0.1187 (0.0026) 0.1421 (0.0015) 0.1334 (9.7981e-04)

LARS [18] 0.0199 (1.7296e-05) 0.0173 (3.1513e-06) 0.0209 (1.6831e-05
SeDuMi (HP) [38] 0.7787 (0.0170) .9592 (0.0147) 0.9820 (0.0054)

300 Algorithm 2.1 0.1402 (0.0035) 0.7100 (0.3449) 3.6610 (2.1706)
AISS [7] 0.1039 (0.0025) 0.4710 (0.1126) 2.0890 (0.5683)

SeDuMi (SP) [38] 0.4069 (7.2509e-04) 0.4403 (0.0021) 0.5739 (0.0049)
SPGL1 [40, 41] 0.0591 (4.4726e-04) 0.1639 (0.0038) 0.2013 (0.0019)

LARS [18] 0.0435 (4.1577e-05) 0.0515 (2.4983e-05) 0.0532 (9.1295e-06)
SeDuMi (HP) [38] 1.7613 (0.0235) 1.8634 (0.0752) 2.6824 (0.1787)

comparisons with other existing state-of-the-art methods is exhibited for noiseless454

compressive sensing (basis pursuit) problems.455

The numerical comparisons above showed that our algorithm compares advanta-456

geously with existing methods: the phase transition is observed with a higher accuracy.457

The algorithm proposed in this paper is parameter-less once a starting point has been458

chosen. However, the starting point can be tuned to further speed up the method. A459

future work could study the impact of this choice in terms of convergence speed.460

We also leave as future work theoretical and numerical comparisons with approx-461

imate path-methods (as opposed to piecewise affine paths such as our approach) such462

as [27] which corresponds to an approximate discetrization of trajectories. In partic-463
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Fig. 4.4. Differences of probability of success (4.2), with ε “ 10´4. Panel (a): algorithm 2.1-
AISS [7], panel (b): algorithm 2.1-LARS [18] , panel (c): algorithm 2.1-SPGL1 [40, 41], panel (d)
algorithm 2.1-SeDuMi (standard precision) [38] and panel (e) algorithm 2.1-SeDuMi (high preci-
sion) [38]. A positive value indicates that algorithm 2.1 achieves a higher probability of success than
the considered method, a negative value the contrary.

ular, it would be interest to know if it is better to compute an exact trajectory versus464

an approximate trajectory from a computational point of view.465

6. Appendix. This section contains several proofs used throughout this paper466

and some properties on the projection on polyhedral convex cone.467

6.1. Some properties of functions J, J˚, f and J .468

Lemma 6.1 (Some elementary properties of J and J˚). We posit the same469

assumptions as in proposition 3.1. We have470

1. J P Γ0pRnq, dom pJq “ Rn, J˚ “ χB8 P Γ0pRnq and dom pJ˚q “ B8;471

2. (Primal feasibility)472

(6.1) 0 P int pA dom J ´ tbuq “ A Rn ´ tbu “ Rm (see (iv));473

3. (Dual feasibility)474

(6.2) 0 P int
´

AT dom χ˚
tbu ` dom J˚

¯

“ int
`

span AT `B8
˘

.475

Proof. We sequentially prove the three assertions.476

Note that dom J “ Rn and that J is convex. It follows that J P Γ0pRnq and, from477

theorem 8.10, that J˚ P Γ0pRnq. Combining lemma 8.2 with proposition 8.4 we478

obtain that for any u P Rn we have J˚puq “ χB8puq and dom J˚ “ B8.479

From dom J “ Rn and the assumption that A has full row rank, we have A dom J “480

span A “ Rm and (6.1) immediately follows.481

Applying lemma 8.3 with C :“ tbu we have χ˚
tbup¨q “ x¨, by P Γ0pRmq and also482
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dom
´

χ˚
tbup¨q

¯

“ Rm. Since, in addition, dom J˚ “ B8, we have483

(6.3) ATdom χ˚
tbu ` dom J˚ “ B8 ` span AT .484

We have obviously have B8 Ă B8 ` span AT , and from (6.3) we deduce (6.2).485

Proposition 6.2 (and definition : function J ). We posit the same assumptions486

as in proposition 3.1. Consider the function J : Rm Ñ RY t`8u defined by487

(6.4) @λ P Rm, J pλq :“ J˚
`

´ATλ
˘

“ χC pλq488

where C is defined by (3.7). We have J P Γ0pRmq and dom J “ C ‰ H.489

Proof. From item 1 of lemma 6.1 we have J˚ P Γ0pRnq. Note that (6.2) in490

lemma 6.1 implies that span AT X dom J˚ ‰ H. Then, from theorem 8.5 we obtain491

that J p¨q :“ J˚
`

´AT ¨
˘

P Γ0pRmq. Moreover, for any λ P Rm, we have492

(6.5) J pλq “ χB8

`

ATλ
˘

“ χCpλq.493

The first equality in (6.5) is justified by combining item 1 (J˚ “ χB8q of lemma 6.1494

and that ´ATλ P B8 ô ATλ P B8. The second equality in (6.5) is justified by the495

fact that λ P C ô ATλ P B8. Indeed, we have496

λ P C ô xλ, Aẽiy ď 1 @i “ t1, . . . , 2nu ô ATλ P B8,(6.6)497

where ẽi is defined by (3.3). The first equivalence in (6.6) is obvious from the definition498

of C given by (3.7). The last equivalence follows from the definition of the `8pRnq499

unit ball (see (vii)). From (6.5) we can verify that dom J “ C and that 0 P C ‰ H.500

Lemma 6.3 (Subdifferential formulas for f , J˚ and J ). We posit the same501

assumptions as in proposition 3.1. We have502

1. (Subdifferential formula for f)503

(6.7) @u P dom J X dom χtbu pA¨q Bfpuq “ BJpuq `AT Bχtbu pAuq ;504

2. (subdifferential formula for J˚)505

(6.8) @λ P dom g BJ˚
`

´ATλ
˘

“ NB8
`

´ATλ
˘

“ cotẽi : i P Sp´λqu;506

3. (Subdifferential formula for J )507

(6.9) @λ P C BJ pλq “ ANB8pA
Tλq “ cotAẽi : i P Spλqu,508

where NB8pA
Tλq is the normal cone to B8 at ATλ P Rn (see (vi)), the509

set Spλq is defined by (3.3) and the 2n vectors ẽi of Rn are defined by (3.3)510

(page 5).511

Proof. We sequentially justify (6.7)-(6.9). Combining (6.1) in lemma 6.1 and512

theorem 8.16 (with “U “ J” and “V “ χtbu”) we immediately obtain (6.7). The513

first equality in (6.8) is justified by lemma 8.6. The second equality in (6.8) follows514

form lemma 8.7 applied with p :“ 2n, si :“ ei for i “ 1, . . . , n, si :“ ´ei´n for i “515

n` 1, . . . , 2n, ri :“ 1 for i “ 1, . . . , 2n and W
`

´ATλ
˘

“ S p´λq.We now justify (6.9).516

From (6.4) in proposition 6.2 we have J p¨q “ J˚
`

AT ¨
˘

. To prove the first equality517

in (6.9), we need to justify that518

(6.10) intpdom J˚q X span AT ‰ H.519
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Assuming that (6.10) holds true, combining item 1 in lemma 6.1 (J˚ P Γ0pRnq) and520

theorem 8.9 (with “f “ J˚”) we obtain that BJ pλq “ ´ABJ˚
`

´ATλ
˘

. We notice521

that522

(6.11) ´ BJ˚
`

´ATλ
˘

“ cot´ẽ, i P Sp´λqu “ co tẽ, i P Spλqu “ BJ˚
`

ATλ
˘

.523

Indeed, the first equality in (6.11) is justified by (6.8). The second equality is obvious524

from the definition of Spλq in definition 3.3 and the last equality follows. From (6.11)525

we immediately obtain (6.9). We now justify (6.10). From, again, item 1 in lemma 6.1526

we have dom J˚ “ B8 and therefore deduce that 0 P intpdom J˚q X span AT which527

justifies (6.10). This concludes our proof.528

6.2. Proof of proposition 3.1 on page 5.529

Proof. We first prove that f P Γ0pRnq then that g P Γ0pRmq and that (3.2) hold530

true. From the assumption that A has a full row rank, it follows that span A X531

dom χtbu “ span A X tbu ‰ H. In addition, χtbu P Γ0pRmq as the characteris-532

tic function of the closed convex set tbu. Therefore, from proposition 8.5 we de-533

duce that χtbu pA¨q P Γ0pRnq. Combining lemma 6.1 and proposition 8.10 we have534

that f P Γ0pRnq as the sum of the finite valued convex function J P Γ0pRnq and535

χtbu pA¨q P Γ0pRnq.536

Now we prove that g P Γ0pRmq. From proposition 6.2 the function J p¨q “ J˚
`

´AT ¨
˘

P537

Γ0pRmq. From proposition 8.10 we obtain that g P Γ0pRmq as the sum of the finite538

valued convex function xb, ¨y and J˚
`

´AT ¨
˘

P Γ0pRmq. The second equality in (3.2)539

follows from item 1 (J˚ “ χB8) of lemma 6.1. This concludes our proof.540

6.3. Proof of proposition 3.4 on page 5.541

Proof. The proof is in two steps. Step 1 proves that problems (P`1) and (D`1)542

have at least one solution. Step 2 justifies (3.4) and (3.5).543

Step 1. Problems (P`1) and (D`1) have at least one solution and . Com-544

bining the definitions of function f and g given in proposition 3.1, lemma 6.1, propo-545

sition 8.17 and theorem 8.18 with U :“ J and V :“ χtbu we conclude that prob-546

lems (P`1) and (D`1) have at least one solution. This concludes step1. We now turn547

to step2.548

Step2. Formulas (3.4) and (3.5) hold true. From [1, p. 166-167] applied549

with “ U :“ J and V :“ χtbu” we have that any point ū in the non-empty closed550

convex set Spλ̄q “ BJ˚p´AT λ̄qXtu : Au “ buis a solution to (P`1). The set Spλ̄q is551

non-empty and from step 1 the primal has a solution. Consider λ̄ solution to (D`1).552

Combining theorem 8.11 and lemma 3.8 we obtain that b P co
 

´Aẽ, i P S
`

λ̄
˘(

“553

co
 

Aẽ, i P S
`

´λ̄
˘(

. This means that b can be written as b “
ř2n
i“1 ruiAẽi, where554

rui ě 0, @ i P
`

´λ̄
˘

and rui “ 0 @i P t1, . . . , 2nuzS
`

´λ̄
˘

. Consider ū defined by (3.5).555

It is easy to see that ū P S
`

λ̄
˘

and therefore ū is a solution to (P`1). This concludes556

our proof.557

6.4. Proof of proposition 3.6 on page 6.558

Proof. From proposition 3.1, we have g P Γ0pRmq. Hence, from proposition 8.12559

we immediately obtain that Bgp¨q is a maximal monotone operator. Item 1 of propo-560

sition 3.6 follows from theorem 8.14. Items 2 and 3 of proposition 3.6 follows from561

theorem 8.15. This concludes our proof.562
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6.5. Proof of proposition 3.7 on page 7.563

Proof. Proposition 3.7 is obvious combining proposition 6.2 and (3.2) in proposi-564

tion 3.1. This concludes our proof.565

6.6. Proof of lemma 3.8 on page 7.566

Proof. Combining propositions 3.1 and 6.2, we have that g can be written as567

(6.12) @λ P Rm, g pλq “ J pλq ` xλ, by .568

From, again, proposition 6.2, we deduce that int pdom J q X int pdom x¨, byq ‰ H.569

Hence, combining theorem 8.13 and lemma 6.3 we obtain (3.8) and that @λ P dom g “570

C we have b P Bgpλq ‰ H. This concludes our proof.571

6.7. Proof of proposition 3.9 on page 7.572

Proof. We first establish the following lemma573

Lemma 6.4 (Directional derivative and Taylor formula for g).574

We posit the same assumptions as in proposition 3.1. For every λ P dom g and any575

d that satisfies (3.9) we have576

g1 pλ,dq “ xd, by;(6.13)577

g pλ` tdq “ g pλq ` tg1 pλ,dq for some t ą 0 small enough.(6.14)578

Proof. Let λ P dom g. By assumption we have that d satisfies (3.9). Combining579

proposition 3.7 and (3.9) we immediately obtain that pλ` tdq P dom g for some t ą 0580

small enough. Hence from the definition of g (3.7), we obtain that, for some small581

enough t ą 0,582

(6.15) g pλ` tdq ´ g pλq “ xλ` td, by ´ xd, by “ t xd, by.583

Formula (6.13) follows (xiii). Combining (6.13) and (6.15) we deduce (6.14). This584

concludes our proof.585

We first prove that the conditions (3.9)-(3.10) are necessary then that they are suffi-586

cient.587

If d is a descent direction for g at λ P dom g then, from definition 3.9, pλ`tdq P dom g588

for some t ą 0 small enough. From the definition of C (3.7) it follows that λ` td sat-589

isfies, in particular, xλ` td, Aẽiy ď 1 for every i P Spλq. The definition of Spλq (3.3)590

and the fact that λ P dom g imply that necessarily xd, Aẽiy ď 0 for every i P Spλq591

and (3.9) holds true. In addition, from definition 3.9 we have g pλ` tdq ă g pλq for592

some t ą 0 enough small and combining (6.13)-(6.14) we obtain that (3.10) holds593

true. Hence, (3.9)-(3.10) are necessary conditions. We now turn to the sufficiency.594

Conversely, consider d P Rmzt0u satisfying (3.9)-(3.10). From proposition 3.7 we595

have that λ P dom g satisfies xλ, Aẽiy ď 1 for every i P t1, . . . , 2nu. On the one hand,596

from (3.9), for any i P Spλq we have xd, Aẽiy ď 0 and therefore xλ ` td, Aẽiy ď 1597

@t ą 0. On the other hand, from λ P dom g and the definition of Spλq we deduce that598

for any i P t1, . . . , 2nuzSpλq we have xλ, Aẽiy ă 1 and therefore that xλ` td, Aẽiy ď 1599

for t ą 0 small enough. Thus, xλ ` td,´Aẽiy ď 1 for every i P t1, . . . , 2nu and600

t ą 0 small enough. It follows that pλ ` tdq P dom g for some t ą 0 small enough.601

Combining (3.10) and (6.14) we obtain g pλ` tdq ă g pλq for some t ą 0 small enough.602

It follows that d is a direction descent for g at λ. This concludes our proof.603
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6.8. Proof of proposition 3.10 on page 8.604

Proof. We recall that, in the sequel, λ P dom g and that d is a descent direction605

for g at λ P dom g. We sequentially consider the three following complementary cases606

Case 1. The case of indexes i such that i P Spλq.607

Case 2. The case of i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0.608

Case 3. The case of i P t1, . . . , 2nuzSpλq and xAẽi,dy ą 0.609

610

Case 1. From proposition 3.9 equation (3.9), we have that any descent direction611

d for g at λ P dom g satisfies xd, Aẽiy ď 0 for every i P Spλq. From definition 3.3612

(page 5), for every i P Spλq, we have xλ, Aẽiy “ 1 and therefore deduce that613

(6.16) i P Spλq ñ xλ` td, Aẽiy ď 1 @t ě 0.614

Case 2. For any i P t1, . . . , 2nuzSpλq, from λ P dom g we deduce that xλ, Aẽiy ă 1.615

Hence, if xAẽi,dy ď 0 then616

(6.17) i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0 ñ xλ` td, Aẽiy ă 1 @t ě 0.617

From (6.17) it is easy to deduce that618

(6.18) i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0 ñ i P t1, . . . , 2nuzSpλ` tdq @t ě 0.619

Case 3. We begin by noticing that620

(6.19) ti P t1, . . . , 2nuzSpλq : xAẽi,dy ą 0u “ ti P t1, . . . , 2nu : xAẽi,dy ą 0u .621

Indeed, we recall that from proposition 3.9 any descent direction d for g at λ implies622

that for every i P Spλq we have xd, Aẽiy ď 0. Hence, if xAẽi,dy ą 0 for some i P623

t1, . . . , 2nu then i R Spλq. This means that ti P t1, . . . , 2nuzSpλq : xAẽi,dy ą 0u Ą624

ti P t1, . . . , 2nu : xAẽi,dy ą 0u and therefore proves (6.19). The converse inclusion625

is trivial. Hence, Case 3 is, from (3.11), the case defined by S`pdq. For any i P S`pdq,626

it is easy to see that627

(6.20) i P S`pdq ñ xλ` td, Aẽiy ď 1 iff t P

„

0,
1´ xAẽi,λy

xAẽi,dy



.628

From (6.20) we obviously deduce629

i P S`pdq ñ xλ` td, Aẽiy ă 1 iff t P

„

0,
1´ xAẽi,λy

xAẽi,dy

˙

630

and therefore that631

(6.21) i P S`pdq ñ i P t1, . . . , 2nuzSpλ` tdq iff t P

„

0,
1´ xAẽi,λy

xAẽi,dy

˙

.632

In addition, for any i P S`pdq we have that xAẽi,λy ă 1 and therefore that 1 ´633

xAẽi,λy ą 0. Since, for any i P S`pdq, we also have xAẽi,dy ą 0 and we deduce634

(6.22) @i P S`pdq we have
1´ xAẽi,λy

xAẽi,dy
ą 0.635

From (6.16), (6.17) and (6.20) we deduce that S`pdq “ H iff pλ` tdq P dom g for636

every t ě 0. In addition, from (6.16), (6.17) and (6.20) we deduce that if S`pdq ‰ H637
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then pλ` tdq P dom g for every t P r0,Ď∆ts, where Ď∆t is defined by (3.12). The638

fact that Ď∆t ą 0 follows from (6.22) and, again (3.12). It remains to prove that for639

any t P r0,Ď∆tq we have Spλ ` tdq Ă Spλq. To this aim we consider an arbitrary640

i P t1, . . . , 2nuzSpλq. Combining (6.18), (6.21) and the definition of Ď∆t as a mini-641

mum (3.12), we deduce that i P t1, . . . , 2nuzSpλ ` tdq for any t P r0,Ď∆tq. Hence,642

by considering the complementary set we obtain that for any t P r0,Ď∆tq we have643

Spλ ` tdq Ă Spλq. Furthermore, the fact that Bgpλ ` tdq Ă Bgpλq for all t P
“

0,Ď∆t
˘

644

immediately follows from lemma 3.8. It is easy to see that for every t P
“

0,Ď∆t
‰

we645

have pλ` tdq P dom g.646

6.9. Proof of lemma 3.11 on page 8.647

Proof. The proof is in three steps. The first step justifies the well-posedness648

of (3.15). The second step proves that the conditions in (3.16) are equivalent. The649

last step proves that λ P dom g is a solution to (D`1) iff the conditions in (3.16) hold650

true.651

From lemma 3.8, for any λ P dom g we have that Bgpλq ‰ H and obviously closed,652

convex. Therefore, for any λ P dom g (3.15) is well posed.653

Combining the definitions of d (3.15) and of S`pdq (3.11) we have that d “ 0 implies654

S`pdq “ H. Conversely, if S`pdq “ H then we obtain that xd, Aeiy “ 0 for every655

canonical vector ei of Rm. From proposition 3.1 we have that A has full row rank656

and therefore deduce d “ 0. Thus, S`pdq “ H is equivalent to d “ 0. From the657

definitions of S`pdq (3.11) and of Ď∆t (3.12) it is obvious that S`pdq “ H is equivalent658

to Ď∆t “ `8. Thus, the three conditions in (3.16) are equivalent.659

From theorem 8.11 we have that λ P dom g is a solution to (D`1) iff 0 P Bgpλq. Hence,660

λ P dom g is a solution to (D`1) iff d defined by (3.15) satisfies d “ 0. It follows that661

λ P dom g is a solution to (D`1) iff the conditions in (3.16) hold true.662

6.10. Proof of proposition 3.12 on page 8.663

Proof. We begin to establish the following lemmas that will be useful for the proof664

of propositions 3.12.665

Lemma 6.5 (Technical lemma). Consider a convex set H ‰ K Ă Rm. For any666

x we have ΠK`xp0q “ ΠKp´xq ` x.667

Proof. From theorem 8.8 , we have that a vector yx is the projection of some x668

on K iff xx´ yx,y ´ yxy ď 0 @y P K. Hence, the projection y´x :“ ΠKp´xq of ´x669

onto K satisfies x´x´ y´x,y ´ y´xy ď 0 for all y P K. Therefore we obtain, for all670

y P K ´ x, that671

x´x´ y´x, py ´ xq ´ y´xy ď 0 @y P K ´ xô x0´ px` y´xq,y ´ py´x ` xqy ď 0672

and, from theorem 8.8 we obtain that x ` y´x is the projection of 0 on K ´ x. In673

other words, ΠKp´xq ` x “ ΠK´xp0q and the formula is proved.674

Lemma 6.6 (´ΠBgpλqp0q satisfies (3.9)). We posit the same assumptions as in675

proposition 3.1. For any λ P dom g consider d defined by (3.15) in lemma 3.11. We676

have that d satisfies (3.9).677

Proof. Consider λ P dom g and Spλq defined by (3.3) (page 5). We wish to678

prove that d :“ ´ΠBgpλqp0q satisfies (3.9). From lemma 6.5 applied with x “ b and679

K :“ co tAẽi, i P Spλqu we obtain d “ ´ΠBgpλqp0q “ ´b ´ ΠKp´bq. Thus, from680

theorem 8.8 we have that ΠKp´bq satisfies681

x´b´ΠKp´bq,y ´ΠKp´bqy ď 0 @ y P K :“ co tAẽi, i P Spλqu682
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and therefore, since d “ ´b´ΠKp´bq, we obtain683

(6.23) xd,y ´ΠKp´bqy ď 0 @ y P K :“ co tAẽi, i P S pλqu .684

Any coefficients µi of ΠKp´bq onto K satisfy685

ΠKp´bq “
ÿ

µiě0 @ iPSpλq
µi“0 otherwise

µiAẽi.686

Consider any j P Spλq and the coefficients αi given by αj “ 1 ` µj where αi “ µi687

for i ‰ j P Spλq and αi “ 0 otherwise. Note that the vector
ř

i αiAẽi P K and that688
ř

i αiAẽi ´ΠKp´bq “ Aẽj . Thus, from (6.23) we obtain that d satisfies (3.9).689

Lemma 6.7 (Descent direction condition). We posit the same assumptions as690

in proposition 3.1 and consider d defined by (3.15) in lemma 3.11. We have that if691

d ‰ 0 then d is a descent direction for g at λ P dom g. In addition, for all λ P dom g692

we have693

(6.24) g1
`

λ,´ΠBgpλqp0q
˘

“ ´
›

›ΠBgpλqp0q
›

›

2

`2
.694

Proof. We consider d defined by (3.15) in lemma 3.11. We first establish (6.24)695

then justify that if d ‰ 0 then d is a descent direction for g at λ P dom g. From696

theorem 8.8, we have that697

xd, s` dy ď 0 @s P Bgpλq ô xd, sy ď ´}d}2`2 @s P Bgpλq.(6.25)698

We have699

(6.26) ´ }d}2`2 ě xd, by “ g1 pλ,dq “ sup txs,dy : s P Bgpλqu ě x´d,dy “ ´}d}2`2 .700

Indeed, in (6.26) the first inequality is obtained by choosing s “ b P Bgpλq in (6.25).701

Combining lemma 6.6 and proposition 3.9 we obtain first equality in (6.26). The702

second equality is justified by the definition of the subdifferential (see (xvii)). The703

second inequality follows from ´d P Bgpλq. The last equality is obvious. Thus, we704

obtain (6.24). From (6.24), it follows that if d ‰ 0 we have that d satisfies (3.9)-(3.10).705

Hence, from proposition 3.9 we obtain that d is a descent direction.706

Consider d defined by (3.15) in lemma 3.11. If d “ 0 then (3.17)-(3.18) hold true.707

From now on, we assume that d ‰ 0. Let t P
“

0,Ď∆t
˘

, where Ď∆t is defined in proposi-708

tion 3.10 (page 8). For any λ1 P Rm we have709

gpλ1q ě gpλq `
@

ΠBgpλqp0q,λ
1
´ λ

D

(6.27)710

“ gpλq `
@

ΠBgpλqp0q,λ
1
´ λ´ td

D

´ t
›

›ΠBgpλqp0q
›

›

2

`2
(6.28)711

“ gpλq`
@

ΠBgpλqp0q,λ
1
´ λ´ td

D

`tg1pλ,dq(6.29)712

“ gpλq`
@

ΠBgpλqp0q,λ
1
´pλ` tdq

D

`txd, by(6.30)713

“ gpλ` tdq `
@

ΠBgpλqp0q,λ
1
´pλ` tdq

D

.(6.31)714

The inequality in (6.27) is nothing but the definition of ΠBgpλqp0q P Bgpλq (see (xvii))715

and (6.28) follows. Lemma 6.7 (we assumed d ‰ 0) justifies (6.29). From proposi-716

tion 3.10 (page 8), for any t P
“

0,Ď∆t
˘

we have pλ` tdq P dom g and, from lemma 6.4717

we obtain (6.30). Equation (6.31) immediately follows from (3.7) in proposition 3.7.718
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From (6.27)-(6.31) and (xvii) we obtain (3.17). From theorem 8.8, we have that719

ΠBgpλqp0q satisfies720

@s P Bgpλq,
@

´ΠBgpλqp0q, s´ΠBgpλqp0q
D

ď 0721

which is equivalent to722

@s P Bgpλq
›

›ΠBgpλqp0q
›

›

2

`2
ď
@

s,ΠBgpλqp0q
D

.723

Hence, from (3.14) in proposition 3.10 (page 8) we deduce that ΠBgpλqp0q satisfies724

@t P
“

0,Ď∆t
˘

@s P Bgpλ` tdq
›

›ΠBgpλqp0q
›

›

2

`2
ď

@

s,ΠBgpλqp0q
D

.(6.32)725

Combining (3.17), (6.32) and, again, theorem 8.8 we obtain (3.18).726

6.11. Proof of proposition 3.13 on page 8.727

Proof. The proof is in two steps. We first justify the well-posedness of (3.19) then728

justify that (3.20) coincides with the evolution equation (3.6) (see proposition 3.6 on729

page 6).730

Step 1. Let k “ 0. By assumption, λptkq P dom g. From lemma 3.11 we have that dk731

is well defined. From proposition 3.10 (page 8) this implies that tk`1 is well defined.732

s In addition, from, again, proposition 3.10 and the definition of tk`1 it is easy to see733

that λptq P dom g for every t P rtk, tk`1s. The rest of the recursion follows. Thus,734

we obtain that the trajectory λptq given in (3.20) is mathematically well-posed. It735

remains to show that (3.20) coincides with the trajectory given by (3.6).736

Step 2. From proposition 3.12, the vector ´ΠBgpλqp0q that appears in (3.6) is piece-737

wise constant on every intervals rtk, tk`1q. In addition, it is easy that the trajectory738

given by (3.20) coincides by construction with the solution to the evolution equa-739

tion (3.6) for every t ě 0. The fact that for every t ě 0, λptq P dom g follows740

combining proposition 3.6 and lemma 3.8. This concludes our proof.741

6.12. Proof of proposition 3.14 on page 9.742

Proof. From (3.17) and the lower semi-continuity of g P Γ0pRmq, we obtain743

ΠBgpλptkqqp0q P Bgpλptk`1qq and therefore that744

(6.33)
›

›ΠBgpλptk`1qqp0q
›

›

`2
ď
›

›ΠBgpλptkqqp0q
›

›

`2
.745

From proposition/definition 3.13 (page 8), we have that λptk`1q P dom g and there-746

fore, from lemma 3.8 we have Bgpλptk`1qq ‰ H. The uniqueness of the projection of747

0 onto the non-empty closed convex set Bgpλptk`1qq and (3.17) imply that748

(6.34)
›

›ΠBgpλptkqqp0q
›

›

2

`2
“
›

›ΠBgpλptk`1qqp0q
›

›

2

`2
ô ΠBgpλptkqqp0q “ ΠBgpλptk`1qqp0q.749

We wish to prove that ΠBgpλptkqqp0q ‰ ΠBgpλptk`1qqp0q. To do so, we set dk :“750

´ΠBgpλptkqqp0q and dk`1 :“ ´ΠBgpλptk`1qqp0q and denote by Ď∆tk (resp. Ď∆tk`1) the751

positive kick times computed, from proposition 3.10, at λptkq (resp. λptk`1q).752

By assumption, we have that λptkq is not a solution to (D`1). From lemma 3.11753

we have that dk ‰ 0. Assume, for the sake of contradiction, that dk “ dk`1. From,754

again, proposition 3.10, we would have pλptkq`Ď∆tkdkq`tdk “ λptk`1q`tdk P dom g,755

for some positive t P
`

0,Ď∆tk`1

˘

. This is impossible. Indeed, proposition 3.10 applied756

at λptkq with the direction dk implies that pλptkq ` tdkq P dom g iff t P
“

0,Ď∆tk
‰

.757

Thus, we obtain that dk ‰ dk`1 and combining (6.33)-(6.34) we obtain (3.21).758
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6.13. Proof of proposition 3.15 on page 9.759

Proof. The proof is in two steps. The first step justifies the existence of K P N760

and of tK such that λptq “ λptKq for every t ě tK . The second step justifies that761

λptKq is a solution to (D`1) and dK satisfies dK “ 0.762

Step 1. This part of the proof follows a classic approach that can be found in,763

e.g., [22, Thm. 3.4.8, p. 382]. From lemma 3.8 (page 7) there are 4n possible sets764

Bgpλq for λ P dom g. Each of them is uniquely associated with dk “ ´ΠBgpλqp0q.765

From proposition 3.14 they are all different from each other. This implies that the766

sequence pdkqk has a finite number of terms (is finite) and therefore converges for a767

finite index K. From proposition 3.10 (page 8) it is easy to deduce that the sequence768

ptkqk is also finite. From proposition 3.13 we deduce the existence of K. In other769

words, we obtained that the trajectory λptq given in (3.20) satisfies, for some K P N,770

λptq “ λptKq for every t ě tK . We now turn to the second step of the proof.771

Step 2. From proposition 3.13, we have that the trajectory λptq given in (3.20)772

coincides with the trajectory given by (3.6). Thus, the limit of λptq when t Ñ `8773

is a solution to (D`1). (The fact that (D`1) has a solution is justified by lemma 3.4774

page 5). From step1, we have that the limit of λptq is attained for t “ tK . Hence,775

λptKq is a solution to (3.4). From lemma 3.11 we immediately obtain dK “ 0.776

7. Glossary of notations, definitions.777

(i) (Vectors) Throughout the paper the vectors of, e.g., Rn are denoted in bold778

typeface, e.g., x. Other objects like scalars or functions are denoted in non-779

bold typeface.780

(ii) (Canonical vectors) Throughout the paper the i-th canonical vectors of, e.g.,781

Rn are denoted by ei.782

(iii) (Inner product) For x,y P Rn we denote by xx,yy the Euclidean inner product783

in Rn.784

(iv) (Interior) intpEq : interior of a set E.785

(v) (Conical hull) co ta1, . . . ,apu :“ t
řp
i“1 µiai : µi ě 0, @i “ 1, . . . , pu786

(vi) Normal cone to a convex set C ‰ H at λ P C:787

NCpλq “ ts : xs, s1 ´ λy ď 0 @s1 P Cu (See, e.g., [22, Def. 5.2.3, p. 136])788

(vii) (the `8pRnq unit ball) B8“tu : xu, ẽiy ď 1, i “ 1, . . . , 2nu where ẽi is given789

by (3.3).790

(viii) (Effective domain) dom f : The domain of a convex function f is the (convex,791

possibly empty) set dom f “ tx P Rn : fpxq P Ru792

(ix) (Convex function) A function f : Rn Ñ R Y t`8u is said to be convex if793

@px,yq P Rn ˆ Rn and @α P p0, 1q fpαx ` p1 ´ αqyq ď αfpxq ` p1 ´ αqfpyq794

holds true (in RY t`8u).795

(x) (Set Γ0pRnq) The set of lower semi-continuous, convex functions with796

dom f ‰ H is denoted Γ0pRnq797

(xi) (Characteristic function of a set) χEpxq “ 0 if x P E and χEpxq “ `8798

otherwise799

(xii) (Polyhedral convex function) f is a polyhedral convex function if fpuq “800

hpuq ` χCpuq hpuq “ maxi“1,...,p pxu,aiy ´ riq and801

C “ tu P Rnxu,αiy ď ρi, i “ 1, . . . , qu .802

(xiii) (Directional derivative) For f P Γ0pRq at a P dom f in the direction d is803

f 1pa,dq :“ limtÑ0`
fpa`tdq´fpaq

t804

(xiv) (Right derivative) d`λptq
dt :“ limhÑ0`

λpt`hq´λptq
h805

(xv) (Descent direction) d ‰ 0 is a descent direction for f at x if Dt ą 0 such that806
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x` td P dom f and fpx` tdq ă fpxq (See, e.g., [22, Def. 1.1.1, p. 343]).807

(xvi) (Convex conjugate) For any f convex that satisfies dom f ‰ H, the function808

f˚ defined by Rn Q s ÞÑ f˚psq :“ supxPdom f txs,xy ´ fpxqu. (See , e.g., [23,809

Def. 1.1.1, p. 37]). For any f P Γ0pRnq we have f˚ P Γ0pRnq (See, e.g., [22,810

Thm. 1.1.2., p. 38])811

(xvii) (Sub-differential) For f P Γ0pRnq and x P dom f the vector s P Rn is a812

subgradient of f at x if one of the following equivalent assertions is satisfied813

@y P Rn, fpyq ě fpxq ` xs,y ´ xy; or @d P Rn, xs,dy ď f 1px,dq.(7.1)814

We denote by Bfpxq the closed convex set of vectors s P Rn that satisfy (7.1).815

For x R dom f we set Bfpxq :“ H.816

(xviii) (Euclidean projection) ΠCpxq “ arg minyPC }y ´ x}`2 for C ‰ H closed and817

convex.818

8. Mathematical background. This section contains several propositions and819

theorems used throughout proofs given in section 6.820

Theorem 8.1. For any f P Γ0pRnq we have f˚ P Γ0pRnq.821

Proof. From f P Γ0pRnq we have f ‰ 0, and from [22, Pro. 1.2.1, p. 147] there is822

an affine function minorizing f on Rn. Applying [23, Thm. 1.1.2, p. 38] we conclude823

that f˚ P Γ0pRnq.824

Lemma 8.2 (Conjugate of absolute value). [4, Table 3.1, p. 76] Let f : x P R ÞÑ825

fpxq :“ |x| . We have for all v P R, f˚pvq “ χ´1,1pvq “

#

0 if v P r´1, 1s

`8 otherwise.
826

Lemma 8.3 (Conjugate of characteristic function). [23, Ex. 1.1.5, p. 39]] The827

conjugate of the characteristic function of the nonempty convex set set C (see (xi))828

is for all v P Rn, χ˚Cpvq “ supxPCxv,xy.829

Proposition 8.4 (Conjugation in Product Spaces). [36, Prop. 11.22, p. 493]830

Let f1, . . . , fn be in Γ0pRq, and f : Rn Ñ R Y t`8u given by: @px1, . . . , xnq P831

Rn, fpx1, . . . , xnq “ f1px1q`. . .`fnpxnq. Then f˚pv1, . . . , vnq “ f˚1 pv1q`. . .`f
˚
n pvnq.832

Theorem 8.5 (Pre-composition With a Matrix). [22, Prop. 2.1.5, p. 159] Let833

f P Γ0pRmq and A P MmˆnpRq, and assume that span A X dom f ‰ H. We have834

fpA¨q P Γ0pRnq.835

Lemma 8.6 (Subdifferential of Normal Cone to a Closed Convex Set). [23, Def.836

1.1.3, p. 93] The set of normal directions to a closed convex set C Ă Rm at λ P C,837

is the subdifferential of the characteristic function χC at λ: NCpλq :“ BχC.838

Lemma 8.7. [22, Ex. 5.2.6 b),p.138] Let a closed convex polyhedron defined by839

C :“ tu P Rn : xsi;xy ď ri for i “ 1, . . . , pu where si P Rn and ri P R for all i “840

1, . . . , p. The set of active constraints at u P C by W puq “ ti P 1, . . . , p : xsi;xy “ riu .841

Then we have NCpuq “ co tsi : i PW puqu .842

Proposition 8.8. [22, Thm 3.1.1, p. 117] Let C be a nonempty closed convex843

set of Rn. We have that yx P C is the Euclidean projection of some x onto C if only844

if xx´ yx,y ´ yxy ď 0 for all y P C.845

Theorem 8.9 (Subdifferential of Pre-composition with a matrix). Let f P846

Γ0pRnq such that int pdom fq ‰ H and A P MmˆnpRq. Assume that int pdom fq X847

span A ‰ H. Then, any u P Rn such that Au P dom f we have B pfpA¨qq puq “848

AT Bf pAuq .849

This manuscript is for review purposes only.



26 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

Proof. Since we assumed that int pdom fq ‰ H we have ri pdom fq X span A “850

int pdom fq X span A “ H. Thus, from [23, Thm. 3.2.1, p. 117] applied with ε “ 0851

and g :“ f to conclude.852

Proposition 8.10. [22, Prop. 2.1.1, p. 158] Let f1 P Γ0pRnq, ..., fp P Γ0pRnq853

and tl, ..., tp be positive numbers. We assume that there is a point where all the fj are854

finite. Then the function
řp
i“1 tifi P Γ0pRnq.855

Theorem 8.11 (Fermat’s rule). [36, Thm. 10.1, p. 422] Let f P Γ0pRnq. Then856

f has a global minimum at ū if only if 0 P Bf pūq .857

Proposition 8.12. [1, Prop. 1, p. 159] Let f P Γ0pRnq. Then the set-valued858

map Rn Q u ÞÑ Bfpuq is maximal monotone.859

Theorem 8.13 (Subdifferential of sum of Γ0-functions). Let f1, f2 P Γ0pRnq.860

We assume that int pdom f1q X int pdom f2q ‰ H. Then for all u P dom pf1 ` f2q we861

have B pf1 ` f2q puq “ Bf1puq ` f2puq.862

Proof. Since int pdom f1q X int pdom f2q ‰ H we deduce that ri pdom f1q X863

ri pdom f2q “ int pdom f1q X int pdom f2q ‰ H. Thus, from [23, Cor. 3.1.2, p. 114]864

applied with ε “ 0 to conclude.865

Theorem 8.14. [5, Thm. 3.1, p. 54] Let T be a maximal monotone operator866

from Rm to Rm and dom pT q be its domain. Consider the problem dλptq
dt P ´T pλptqq867

with λp0q “ λ0. For all λ0 P dom pT q, there exists a unique solution λp¨q : r0,`8q Ñ868

Rm such that :869

1. λptq P dom pT q for all t ą 0, and λp0q “ λ0;870

2. the function λp¨q is continuous on r0,`8q;871

3. the function λp¨q admits a right derivative d`λptq
dt at all t ě 0, given by872

d`λptq
dt “ ´ΠT pλptqqp0q for all t P r0,`8q;873

4. the function d`

dt λp¨q is continuous from the right on r0,`8q.874

Theorem 8.15. [1, Thm. 2, p. 160] Let g P Γ0pRmq, and assume that g achieves875

its minimum at some point. Then, for all λ0 P dom pBgq, the trajectory given by876
d`λptq

dt “ ´ΠBgpλptqqp0q with λp0q “ λ0 converges to a point which minimizes g when877

tÑ `8.878

Theorem 8.16. [1, Thm. 4, Eq (28), p. 35-36] Let A P MmˆnpRq and U P879

Γ0pRnq, V P Γ0pRmq. Assume that 0 P int pA dom U ´ dom V q . Then, for all u P880

dom U X dom V pA¨q we have B pU ` V pA¨qq puq “ BUpuq `AT BV pAuq .881

Proposition 8.17. [1, Prop. 1, p.163] Let A PMmˆnpRq and U P Γ0pRnq, V P882

Γ0pRmq. Assume that 0 P int
`

AT dom V ˚ ` dom U˚
˘

. Then, inf
uPRn

pUpuq ` V pAuqq883

has a solution.884

Theorem 8.18. [1, Thm. 2, p. 167] Let A P MmˆnpRq, U P Γ0pRnq and885

V P Γ0pRmq. Assume that assumptions of theorem 8.16 and proposition 8.17 hold.886

Then, inf
λPRm

`

U˚p´ATλq ` V ˚pλq
˘

has a solution.887
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