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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEMS
BASED ON MAXIMAL MONOTONE OPERATORS*

YOHANN TENDEROZ, IGOR CIRIL}, JEROME DARBON$, AND SUSANA SERNAT

Abstract. The need to solve ¢! regularized linear problems can be motivated by various com-
pressive sensing and sparsity related techniques for data analysis and signal or image processing.
These problems lead to non-smooth convex optimization in high dimensions. Theoretical works pre-
dict a sharp phase transition for the exact recovery of compressive sensing problems. Our numerical
experiments show that state-of-the-art algorithms are not effective enough to observe this phase tran-
sition accurately. This paper proposes a simple formalism that enables us to produce an algorithm
that computes an ¢! minimizer under the constraints Au = b up to the machine precision. In addi-
tion, a numerical comparison with standard algorithms available in the literature is exhibited. The
comparison shows that our algorithm compares advantageously with other state-of-the-art methods,
both in terms of accuracy and efficiency. With our algorithm, the aforementioned phase transition
is observed at high precision.

Key words. Sparse solution recovery, Compressive sensing, Inverse scale space, £! minimization,
Non-smooth optimization, Maximal monotone operator, Phase transition.

AMS subject classifications. 34A60 ,49M29 ;90C06 ,90C25.

1. Introduction. Compressive sensing and sparsity-related paradigms have gai-
ned enormous interest in the last decade and can be used for, e.g., data analysis, signal
and image processing, inverse problems or acquisition devices. Indeed, in many cases
the unknowns of an under-determined system can be obtained by finding the sparsest
(or simplest) solution to a linear system

(1.1) Au =b.

With this formulation b is the observed data, A € M, x»(R), m « n and the columns
of A represent a suitable frame or dictionary able to sparsely encode or observe u € R™.
However, finding a minimizer of the £° pseudo-norm under the constraints (1.1) is a
highly non-convex and non-smooth optimization problem. Hence, methods [19, 25,
30, 35, 39, 3, 14, 28] that aim at tackling ¢° pseudo norm minimization guarantee
an optimal solution only with high probability and for a specific class of matrices A.
Another class of methods consists in using an ¢! relaxation. The problem therefore
becomes

inf  [lufe
(le) ueR™
s.t. Au = b.

It turns out that under various assumptions, the minimizers remain the same if one
replaces the £ pseudo-norm by the ¢! norm (see, e.g., [11, 12, 16, 17] and the references
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2 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

therein). Problem (P;:) is a convex albeit non-smooth optimization problem in high
dimension (n can be thought as the number of pixels of an image for instance). For
these reasons developing efficient algorithmic solutions is still a challenge in many
cases. For instance, the CVX system “is not meant for very large problems” [20,
Sec. 1.3, p.3] that arise from signal/image processing applications [24, 37]. Hence,
many algorithms have been proposed to solve ¢! minimization problems, see, e.g., [34,
21, 2, 8, 9, 44, 45, 43, 42, 18, 40]. In this paper, we propose a simple algorithm
that can be employed to solve these ¢! minimization problems up to the machine
precision. Indeed, it is only assumed that the matrix A has full row rank. This
paper also exhibits a numerical comparison with several classic algorithms in the
literature. These comparisons illustrate that our algorithm compares advantageously:
the theoretically predicted phase transition, see e.g. [29, 10], is empirically observed
with a higher accuracy.

To design our algorithm, we required that: i) the method computes a solution
to (Pp1) up to the machine precision, and that ii) the method requires few computa-
tions involving vectors of length n.

The first requirement can be thought as guaranteeing the quality of the solution
or the fidelity to the problem. The second requirement can be thought as promoting
the numerical efficiency. Indeed, computations with vectors of length m « n require
less memory than the memory needed for vectors of the primal. (We recall that the
unknown w lives in a high dimensional space, while the observed data b lives in a
space of dimension m « n). It seems unrealistic to find a minimizer to (FPy) up to
the machine precision with a direct method. Consequently, the approach we employ
is iterative and can be summarized as follows.

To the best of our knowledge, the most similar approach to the one developed
in this paper is the AISS [7] method. AISS iterates over two variables: a primal one
that belongs to R™ and a dual one in R™. Instead, we compute one finite discrete
sequence Ag for k = 1,..., K in R™. The last iterate, namely A, is an solution to
the dual problem of (P;:) up to the machine precision. Given Ak a simple formula
allows us to compute a solution @ to (FPp1) up to the machine precision. This last
computation is the only one that requires vectors of the high dimensional space. Our
main assumption throughout this paper is that Ju such that Au = b, i.e., (Py1) has at
least one solution. This can be guaranteed if one assumes, as we shall do hereinafter,
that A has full rank.

Outline of the paper. The paper is organized as follows. Section 2 gives a very
compact, yet self-contained, presentation of the numerical computations needed to
implement the algorithm proposed in this paper (see algorithm 2.1 on page 4). Sec-
tion 3 on page 5 proves the mathematical validity of this algorithm. In other words,
we shall prove that the solution computed by algorithm 2.1 is exact (and numerically,
up to the machine precision). The convergence (in finite time) of algorithm 2.1 to a
solution to (Py1) is mathematically guaranteed. Section 4 on page 9 proposes a numer-
ical evaluation and comparison of algorithm 2.1 with some state-of-the-art solutions
solving (Pp:). We show in this section that our method has a higher probability of
success to reconstruct solutions with high precision compared to other state-of-the-art
methods, i.e., the phase transition is observed with a high precision. Discussions and
conclusions are summarized in section 5 on page 14. The appendix 6 on page 16 con-
tains several proofs used throughout this paper. A glossary containing the notations
and basic definitions is in appendix 7 on page 24. In the sequel, Latin numerals refer
to the glossary of notations on page 24. Appendix 8 on page 25 contains general
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 3

results on convex analysis used in this paper.

2. An Algorithm Solving (P,:). This section presents the algorithm proposed
in this paper. As usual in the literature on compressive sensing, we shall assume that
A € My, n(R) with m « n. The algorithm we shall develop in this paper begins by
computing a solution to the dual problem associated to (P ) then computes a solution
to the primal. The first step involves the computation of a finite and piecewise affine
trajectory, or more precisely the positions Ay where the trajectory changes of slope.
The second step relies on the computation of a solution to a constrained least square
problem. The construction leads to algorithm 2.1 (page 4).

Consider the Lagrangian £ : R" x R™ — R of (FP;1) namely

(2.1) L(u,A) = J(u) + (X, Au) + (X, =b),
where J(-) = | - |¢1. Consider also the function g : R™ — R U {400} defined by
s _ /AT . .
g(A) == Jélan L(u, \) Jélan {J(uw) = {(=A"X u)} — (X, =b)
(2.2) = J* (=ATA) + (A, b) = xB,, (—ATA) + (A, b)),

where J* denotes the Lengendre-Fenchel transform of .J (see (xvi)) and xg,, denotes
the convex characteristic function of £* (see (vii)) unit ball By, < R™ (see (xi)). (We
recall that hereinafter Latin numerals refer to the glossary of notations on page 24.)
Consider further the optimization problem

(D) Jnf - g(A),

where g is given by (2.2). As we shall see, under classic assumptions problems ()
and (Dy1) have at least one solution (see proposition 3.4 on page 5). We now give a
strategy to solve (Dy1). The trajectory [0, +0) 3 ¢t — A(t) explicitly given, for every
t >0, by

dtA
(2.3) W(t) = —Iag(a(1))(0)

A(0) = Ao

converges for some finite time tx € [0, +00) to a solution to (D). The main idea
of (2.3) is that it generalizes the usual steepest Euclidean descent for non-smooth con-
vex functions. When the function is not differentiable, then (2.3) selects the smallest
velocity in the #2 sense among all possible velocities that corresponds to the subdif-
ferential of the function at a non-differentiable point. Note that the subdifferential
always only contains one element, which is the gradient, when the function is differen-
tiable. Formula (2.3) formalizes an evolution equation governed by the (multi-valued)
maximal monotone operator dg (see, for instance, [1, Eq. 2, p. 158]). In (2.3),
sg(a(t)) denotes the Euclidean projection (xviii) on dg(A(t)) and Ag € dom g is
some initial state. We always set Ag = 0 in our experiments. For any A € dom g the
multi-valued monotone operator dg is given by the non-empty convex cone

(2.4) dg(A) = b+ > mA& : n; =0,ieS(A) ¢,
1€S(A)
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4 Y. TENDERO, 1. CIRIL, J. DARBON, AND S. SERNA
where the set S(A) is defined by

) - - e; fori={1,...,n}
(2.5) S(A) :={ie{1,...,2n}:(\, A&;)=1} and é; {Ei_n foriz{n+1.....2n}.
In (2.5) and everywhere else, e; denotes the i-th canonical vector of R™.

In addition, the trajectory given by (2.3) is piecewise affine. This means that the
next iterate Ar;1 produced by the algorithm is computed from the current iterate
Ak, the scalar (tr41 — tx) and the direction dp = —IIg4x,)(0). We now detail the
computation of the scalar (tx+1 — tx). For any k € N, we define

(2.6)  ST(dy):={ie{l,...,2n}:{dy, A&;) > 0}

_ 1 — (A&,
(2.7)  and we have Aty := (tx+1 — tx) =min {W7 i€ S+(dk)} .

Note that (2.6) and (2.7) are easy to compute since these quantities are given
explicitly and only involves computations of inner products. Therefore, from (2.3) we
observe that it remains to compute the direction dy = —II54(x,)(0) which corresponds
to computing the projection on a non-empty closed convex cone given by dg(Ag).
Note that this subdifferential has an explicit formula given by (2.4). One can use a
constrained least square solver, available in Matlab, to compute the solution. (See also
remark 2.1 below.) To sum up, to compute a solution to (D) one can compute the
limit of the trajectory A(t) given by (2.3) using the update rules (2.6) and (2.7). This
limit is attained after finitely many updates (see also proposition 3.15). It remains to
compute a solution to (Pp1) given X solution to (D).

Given X solution to (D), one can compute a solution # to (P;) by solving the
constrained least square problem

28) min [ Au = b,
. st w; = 0if (X Ae;) = —1,u; < 0if (X, Ae;) = 1 and u; = 0 otherwise.

We are now in position to state the entire algorithm.

Algorithm 2.1 Algorithm computing @ solution to (Pp1).

Input: Matrix A, b

Output: @ solution to (Py1)

Set k:=0 and A, := 0 € R™ repeat

. Compute S(Ay) (see (2.5));

. Compute dj, as dy := —Ilyg(x,)(0) (see remark 2.1)
. Compute S*(dy) (see (2.6)) then Aty, (see (2.7))

. Set Agr1 = A + A_tk dy;

. Set k =k +1andset X :=
until di, = 0 (see remark 2.1);
Compute @ using (2.8).

Uk W N~

Remark 2.1. To compute d; we define G:= {Zies(kk)m/léi :n; =0, ieS()\k)}. We

have that dy:=—1Il54(x,)(0) = —Ilg(—b) — b (see lemma 6.5 on page 21) can be com-
puted from a constrained least square problem similar to (2.8). We refer to [15,
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 5

Section 3.2] and the references therein for a detailed review of exact (up to machine
precision) numerical algorithms solving the above constrained least square problem.
For instance, one can use the lsgnonneg Matlab routine albeit we used an implementa-
tion based on [31] that is supposedly faster than the Matlab routine. The termination
condition, namely dj, = 0, was replaced by |d|s2 v |Atgdi|e < 10710 in all of our
experiments. The projection in step 5 is unnecessary if the precision of numbers is
high enough. However, we empirically observed that it increased the performance of
the method for the Matlab implementation.

3. From Maximal Monotone Operator to ¢! Solutions of Linear Prob-
lems. This section justifies the mathematical validity of algorithm 2.1 presented in
section 2.

We recall that to solve (P ), we first solve the dual (D) then compute a solution
to the primal problem (P;:). Hence, we first give the assumptions that justify the
existence of solutions to problems (P:) and (D) and give a closed formula that
allows us to compute the solution to (Pp1) from a solution to (Dy1). This is done in
proposition 3.4. We then briefly justify the fact that the trajectory we used in the
previous section converges to a solution to the dual. This is done in proposition 3.6.
This proposition translates into algorithm 2.1 on page 4 and is illustrated numerically
in section 4 on page 9.

PROPOSITION 3.1 (and definition). We assume that A € M, ,(R) has full row
rank and that J(-) = | - |er. We consider the functions

(3.1) YueR", f(u):=J(u)+ X (Au);
(32)  VAeR™, g(A):=J*(—ATA) + (A, b) = xB,. (—ATA) + (A\,b).

We have f € To(R™) and g € To(R™) (see (x)).
Proof. See appendix 16 on page 18. 0
Remark 3.2. The assumptions of proposition 3.1 allow to cover the case of com-
pressive sensing problems. Note that one can relax the assumption that A is full row

rank, we just need that b € span A. For instance if, for some specific application, the
observed b’s belong to a subspace B then we just need span A D B.

We recall that we wish to solve (P;:) using a solution to (D). To this aim the
following definition and proposition are needed.

DEFINITION 3.3 (Active set). For any A € dom g we define

— Y- 5N 1) and 8. — 1 € fori={1,...,n}
(3.3) S(A):={ie{1,...,2n}:{(X, Aé;)=1} del—{_Ein fori{nt 1. 2n),

and e; denotes the i-th canonical vector of R™.

PRrOPOSITION 3.4 (Existence of solutions and computation of a solution to (FPp1)).
We posit the same assumptions as in proposition 3.1. We have
1. Problems (Pp) and (Dy1) have at least one solution.
2. Let X be a solution to (D). Consider the coefficients U; such that U; = 0 Vi €
{1,...,2n}\S (75\) and u; =0 forie S (75\), of the Fuclidean projection of

This manuscript is for review purposes only.
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6 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

(3.4) Yy y= > U Aé; b
;=0 VieS(—A)
;=0 Vie{l,...,2n}\S(—=X)

where S(—A) and &; are defined by (3.3).
We have that the vector u obtained from the above coefficients u;

n
(35) u:= U;€;q, with U; = ﬂz — ﬂH—n
i=1

is a solution to (Pp).

Note that (3.4) is equivalent to formula (2.8) given in section 2. Indeed, in (3.4) at
least one of the coefficients u; or ;. , is zero.

Proof. See appendix 17 on page 18. 0

Remark 3.5. The reconstruction formula given by (2.8) is different from the re-
construction methods that can sometimes be found in the literature (see, e.g., [32, al-
gorithm 6, p. 11]). However, for matrices satisfying compressive sensing assumptions
(see, e.g., [12, 16]), the signal can be obtained from an unconstrained least-squares
solution to Aw = b. Indeed, the support constraint issued form A boils down to
solving, in the least squares sense, Bu = b, where B is a sub-matrix formed from A
by removing appropriate columns. Note that in this case, there is no sign constraint
on u; contrarily to (2.8). In addition, in many cases, the unconstrained least squares
solution can be computed using a Moore-Penrose pseudo inverse formula. However,
the least squares solution and (2.8) will, in general, differ: they have same ¢° pseudo
norms but different ¢! norms.

To solve (Dy1) we rely on a specific trajectory of feasible points for (D) governed
by the maximal monotone operator dg (see, e.g., [1]). The main properties of this
trajectory are summarized in the next proposition.

PROPOSITION 3.6 (Properties of the trajectory A(¢) [1, 5]). We posit the same
assumptions as in proposition 3.1. Consider the evolution equation explicitly given,
for every t € [0, +0), by

d* ()
(3.6) a - Mesn(©)

A(0) = Ao,

where Xg € dom 0g. We have that the solution A : [0, +0) 3 ¢t — X(t) € R™ to (3.6)
satisfies:
1. for every t € [0,+), A(+) is continuous, right-differentiable and belongs to
dom 0g;
2. the limits of g(A(t)) and X(t) when t — +00 exist;
3. limy 400 g(A(E)) = minyegm g(A) and lim;_, o A(t) € arg minyerm g(A).
Proof. See appendix 18 on page 18. O

The proposition above means that the limit of the trajectory A(t) is a solution to (Dy1).
In the sequel, we shall prove that the limit is attained for a finite time ¢ > 0. It is

This manuscript is for review purposes only.
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 7

worth noticing the similarity between (3.6) and inverse scale space methods (see,
e.g., [7, 32]). To compute A(t) one could rely on an Euler scheme to approximate the
trajectory for instance. However, a numerical computation of the trajectory A(t) up
to the machine precision is doable. This is the goal of the next paragraph.

Computation of the trajectory A(t) given by (3.6). We recall that to obtain
an algorithm we need to compute a solution A to (Dy:). To do so, we recall that we
compute the positions where A(¢;) changes of slope. Since dom g # R™ we cannot
recur to classic textbooks such as, e.g., [22, Chap. VIII]. Thus, some work is needed.

Proposition 3.13 (on page 8) proves that A(t) defined by (3.6) is piecewise affine.
In other words, A(¢) is made of pieces of straight lines. Hence, the computation of
A(t) boils down to the detection of “kicks”, i.e., positions where A(t) changes slope
and the computation of these slopes. The computation of these slopes is obtained
from (3.6) and lemma 3.8. Propositions 3.10 and 3.14 yield a direct and optimal
numerical method to detect kick times, i.e., times ¢ such that A(¢) and A(t + ) don’t
have the same slope for some € > 0. Propositions 3.11 and 3.15 give the termination
condition and proves that A(t) converges to a solution to (D,1) after finitely many
kicks. We recall that proposition 3.4 (page 5) directly gives an explicit formula that
allows us to compute a solution to (Pp:) given a solution to (D,:) obtained as the
limit of the trajectory A(t).

We recall that one of the two main ingredients to compute the trajectory A(¢) is
the computation of slopes given by a projection onto the closed convex cone dg (A(t))
(see proposition 3.6 on page 6). Hence, a closed formula for dg is needed. This is the
goal of the next proposition that leads to lemma 3.8.

PROPOSITION 3.7 (The function g defined by (3.2) is polyhedral). We posit the
same assumptions as in proposition 3.1. The function g defined in (3.2) is a polyhedral
proper and convex function that satisfies dom g = C # & and we have

(3.7) g(A) =N\, b) + xc (), where C:={XeR™: (X A&;)< 1,ie{l,...,2n}}
and €; is defined in (3.3).

Proof. See appendix 6.5 on page 19. ]
We now give a formula for the subdifferential of g.

LEMMA 3.8 (Subdifferential formula for g). We posit the same assumptions as
in proposition 3.1. We have dom dg = dom g = C # & and, for any A€ C,
(3.8) 0g(A) = {b} + co{4é; :ie S(A)},
where €;, S(X) are given by (3.3) and co by (v).

Proof. See appendix 6.6 on page 19. O

With the above formula it is easily seen that one can compute the slope of A(t) for
any t > 0. It remains to compute the kick times, i.e., times ¢ when the slope of the
trajectory A(t) changes. This is the goal of the next three propositions and lemma.

PROPOSITION 3.9 (and definition: descent direction). We posit the same setup
as in proposition 3.1. We say that a direction d € R™\{0} is a descent direction for g
at X € dom g iff (A +1td) € dom g and g(\ + td) < g(X\) for some t > 0. Moreover,
we have that a direction d # 0 is a descent direction for g at X iff d satisfies
(3.9) (d,A&;)<0VieS(\) and
(3.10) g (A, d) ={d,b) <0, where &; is given by (3.3).

This manuscript is for review purposes only.
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8 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

Proof. See appendix 21 on page 19. O

ProposITION 3.10 (Kick time computation).  We posit the same assumptions
as in proposition 3.1 and further assume that A € dom g and that d is a direction that
satisfies (3.9). Consider é; given by (3.3), the set St (d) defined by

(3.11) S*(d) = {ie{l,...,2n} : (A&, d)> 0}

and the scalar At by

(3.12)

At = mln{% : z’es+(d)} if S*(d) # &;
At := +© otherwise.

We have that At satisfies At > 0. In addition, S*(d) = & iff (A +td) € dom g for
every t = 0. Furthermore, we have

(3.13) (A+td) e dom g iff te [0, A_t] ;

(3.14) Vte [0,At) S(A+td)=S(A)  and dg(A+td) < dg(N).

Proof. See appendix 23 on page 20. 0

LEMMA 3.11 (Well possedness of d := —II54(x)(0), optimality conditions). We
posit the same assumptions as in proposition 3.1. For any A € dom g, the vector given

by
(315) d = _Hég()\) (0)

is well defined. Consider d defined by (3.15) and At, S*(d) defined in proposi-
tion 3.10. We have that the three following conditions are equivalent

(3.16) d=0 = At=+0 <= STd) =g.

In addition, XA € dom g is a solution to (Dy) iff the conditions in (3.16) hold true.
Proof. See appendix 24 on page 8 0

PROPOSITION 3.12 (ITy4(x)(0) is constant on time intervals). We posit the same
assumptions as in proposition 5.1. Consider any X € dom g, d defined by (3.15) and
At defined in corollary 3.10. We have

(317) Vt e [0, A—t) Hag()\) (0) € (79()\ + td);
(318) YVt e [0, Kt) Hz?g()\) (0) = Hz?g()\+td) (0)
Proof. See appendix 25 on page 21. ]

We are now in position to give a mathematical definition of the trajectory computed
by the algorithm.

PROPOSITION 3.13 (and definition: piecewise affine trajectory A(t)). We posit
the same assumptions as in proposition 3.1. Consider Ao € dom g and the sequences
(tg)k < [0, +0], (di)r and (A(tg))r recursively defined by

to:=0; dr = —Tloga))(0);  trgn i= th + Aly;
(3.19) )\(tk+1) = )\(tk) + (tk+1 — tk)dk if tp41 < +0O
Atk+1) == A(t) otherwise,

This manuscript is for review purposes only.
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 9

where Aty is obtained from proposition 3.10 (applied with X := X(ty) and d := dy,).
Consider also the affine interpolate (continuous) trajectory A : [0,+00] 3 t — R™
defined by

(320) )\(t) = )\(tk) + (t — tk)dk fO’I“ any te [tk,tk+1), )\(to) = Xp.

We have that the trajectory A(t) given in (3.20) coincides for every t = 0 with the
solution to the evolution equation (3.6). In addition, for every t = 0 we have A(t) €
dom g.

Proof. See appendix 29 on page 23. O

To compute A(t) the algorithm relies on the computation of the sequence (dg,tx)k
defined by (3.19). The next two propositions prove that A(t) changes of slope at every
tr and that the sequences in (3.19) are finite.

PROPOSITION 3.14 (Optimality of the sampling of the trajectory A(t)). We posit
the same assumptions as in proposition 3.1 and further assume that X(ty) € dom g is
not a solution to (Dy1). For A(tk+1) given by proposition 3.13 we have

(3:21) Mag(a(e4))(0) # Mag(a(tisn) (0) and [Mageace, 1)) (0)] 2 < [Magiaceen (02 -
Proof. See appendix 30 on page 23.

PROPOSITION 3.15 (A(t) converges to a minimizer of (D) after finitely many
kicks). We posit the same assumptions as in proposition 3.1. Consider the sequences
(te)k, (di)r and the trajectory X(t) defined in proposition 3.13. We have that 3K € N
such that A(t) = A(tx) for every t = tx. In addition, A(tk) is a solution to (D)
and dx satisfies dig = 0.

Proof. See appendix 31 on page 24. O

We now briefly justify that the computations in algorithm 2.1 (page 4) end with a
solution to (P, ) after finitely many iterations. We obtained that for any Ao € dom g
(see proposition 3.13) the sequence defined in (3.19) converges (see proposition 3.15)
after finitely many kicks to a solution to (D). In algorithm 2.1, the initialization step
namely Ag = 0 is valid since 0 € dom g. In addition, it is easily seen that steps 1-5
implement (3.19). From proposition 3.15, we deduce the validity of the termination
condition. Proposition 3.15 justifies that this termination condition is reached after
finitely many iterations. Hence, the while loop ends with some X solution to (D).
Therefore, the computation of @ solution to (FP,) is justified by proposition 3.4.
Therefore, the validity of algorithm 2.1 is proved.

Remark 3.16. Supplementary material shows that our proposed approach can be
extended to handle affine inequality constraints. In addition, supplementary material
presents how our proposed algorithm 2.1 can be used to solve the optimization problem
with constraints of the form |Au — b||s2 <, i.e., when there is Gaussian noise. This
approach will be presented in another paper.

4. Experiments. This section proposes an empirical evaluation of the following
methods to solve (Pp): AISS [7], LARS [18], SPGL1 [40, 41], SeDuMI [38] and algo-
rithm 2.1. Two parameters settings are consdered for SeDuMI: the first version version
which is called “standard precision” (SP) uses the standard parameters provided in
the CVX package, while the second version which is called “high precision” (HP) uses
the option “cvx_precision best”. Supplementary material gives the same comparisons
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between OMP [35], CoSamp [33] and GISS [32]. Note that OMP, CoSamp and GISS
are greedy-based numerical algorithms. LARS, SPGL1, AISS and algorithm 2.1 are
¢*-based numerical algorithms. SeDuMi [38] is a toolbox for linear, second order and
semi-definite problems. These methods are compared in terms of a “probability of
success” (defined below) and average number of iterations needed. The criterion will
be used to observe a so called phase transition that separates cases where algorithms
successfully recover the sparsest solution and when they fail. Note that solutions with
high precision are required to observe an accurate phase transition because, if the pre-
cision of the computed solutions is too poor, then any estimation can be considered
as a solution (i.e., a “success” in our experiments). Numerically, it seems to be hard
to know a priori the desired precision on the solutions to observe phase transitions.
Therefore, it is of interest to have numerical methods that can achieve reconstructions
with high precision, i.e., up to the machine precision.

First we describe the experimental setup. In these experiments the sensing matrix
A always has 1000 columns. The entries of A are drawn from i.i.d. realizations of
a centered Gaussian distribution. Without loss of generality we may normalize the
columns of A to unit Euclidean norm. The number of rows of A, i.e., the dimension
of the ambient space m, vary in M := {50,...,325} with increments of 25. For each
number of rows, we vary the sparsity level s between 5% and 40% with increments
of 5% and therefore consider the discrete set S := {0.05,...,0.4}. The sparsity level
is related to the £° norm of w by “|ull = round (s x m)” following [10]. The posi-
tions of the non-zero entries of w are chosen randomly, with uniform probability. The
non-zero entries of w are drawn from a uniform distribution on [—1, 1]. To do so, for
each parameter (i.e., sparsity level s and dimension of ambient space m) we repeated
the experiments 1,000 times. The implementations of AISS and SPGL1 we used are
the ones given by the authors of [7, 32, 41]. For LARS [18], we used the SPAMS
toolbox [26]. The implementation of SeDuMi [38] we used can be found at https:
//sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_1_3.zip. Default pa-
rameters have been used for all methods. We now give the criteria used for the
numerical comparisons of these numerical algorithms.

We need to define the “success” of an algorithm. We choose to define “success”
as “the output of an algorithm is equal to the source element w”. This choice can
be justified by several theoretical works, see, e.g., [11, 12, 16, 17]. This criterion,
namely the output is equal to the source element, is chosen for the numerical experi-
ments proposed thereafter. Note that this criterion seems slightly in favor of methods
specifically designed for the compressive sensing method compared to methods that
propose to solve (Py1). Here, this means that the comparisons are slightly biased in
favor of [33, 35]. We also need to deal with the finite numerical precision of computa-
tions. Thus, we define that a reconstruction is a success if the relative error satisfies

le—vestlz e, where ¢ = 1071% or e = 10~*. Hence, for any (m,s) € M x S, the

Tul,2
empirical probability of success is given by
1
4.1 P, = > 1 uiiui ),
(4.1) (m.5) # of tests le {7”” Huiﬁsg”ﬂ <s}(2)
4
where ul,, (resp. u') is the estimated signal (resp. source signal). Each method

is tested on the same data by using the same random seed. Note that this type of
experimental setup has been used before, for instance in [25].

Remark that another choice for defining “success” could be stated as “the output
of an algorithm is a solution to (P:)”. However, this criterion would be verified
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for every output of algorithm 2.1. Indeed, algorithm 2.1 ends with some u that
numerically verifies an optimality condition associated with (FP1). Thus, this choice
seems uninformative. Therefore, we have decided to not consider this definition of
“success” in this paper. We first consider ¢ = 107'°. Figure 4.1 depicts the empirical
probability of success (4.1) for AISS, LARS, SPGL1, SeDuMi and algorithm 2.1.
We also consider the difference of probability of success between algorithm 2.1 and
all other methods that is defined as follows

algorithm 2.1
(42) D(m,s) = P(mg,s) - P(m,s)a
where me M, s€ S, P(a;lg“;f'l (resp. P, s)) denotes the quantity (4.1) obtained with

algorithm 2.1 (resp. AISS, LARS and SPGL1). Note that a positive (negative) value
in (4.2) means that algorithm 2.1 achieves a higher (lower) probability of success than
the compared algorithm. These differences of probability of success are depicted in
figure 4.2. We deduce from figure 4.2 that algorithm 2.1 always achieves a higher
probability of success than AISS and GISS. We observe that LARS, SeDuMi (stan-
dard precision) and SPGL1 algorithms do not perform well for ¢ = 10710 since the
probability of success tends to be low, even for problems with very sparse signals. We
also observe that both SeDuMi (high precision) and our proposed algorithm produce
the best results. Table 4.1 gives the main assumptions on A and b for LARS [18],
SPGL1 [40, 41], AISS [7], SeDuMI [38] and algorithm 2.1 In this table, we also give
the empirical probability that at least % of signals are successfully reconstructed for
each method. This statistical indicator is defined as follows

_ #{(m,s)eMxS © Pins) >x}

where P, ,) is defined by (4.1) and # denotes the cardinality of a set. Supplemen-
tary material presents numerical results in terms of ¢!-norm for ¢!-based methods
namely AISS, LARS, SPGL1, SeDuMi and algorithm 2.1. Up to a probability of 0.95
AISS, SeDuMi (HP) and our algorithm give the same best results. For probability
0.99 SeDuMi and our algorithm give the same best results. For higher probabilities
Algorithm 2.1 gives the best results.

Table 4.2 presents the time results for AISS, LARS, SPGL1, SeDuMi and Al-
gorithm 2.1. All experiments are done using a single core of an Intel Core 10600k.
We observe that our proposed algorithm is very competitive compared to the state-
of-the art competitors. Indeed, our proposed algorithm outperforms the competitors
for sparsity 5/10% and 50/175 rows while the second best algorithm is AISS. The
computational time of our proposed algorithm is similar to AISS for sparsity 15/20%
and 175/300 rows. For sparsity 25/30% and 175/300 rows AISS performs better that
our proposed algorithm. We observe that the runtime of LARS [18], SPGL1 [40, 41],
SeDuMi (SP) [38] remains close to constant when the sparsity is greater or equals
20%: this suggests that for these levels of sparsity LARS [18], SPGL1 [40, 41], Se-
DuMi [38] computed poor solutions as it has been numerically exhibited previously.
Recall that SeDuMi (HP) [38] computes very good results as previously shown but
the computational time is significantly larger that our proposed algorithm 2.1 and
AISS except for the case of 30% sparsity with 300 rows.

As noted above the numerical results for LARS and SPGL1 show that these
two numerical methods are not able to produce good results for the above set of
experiments with ¢ = 107'°. We now present numerical experiments for a higher
threshold in (4.1) where we set ¢ = 10~%. Figure 4.3 depicts the empirical probability
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FIG. 4.1. Empirical probability of success (4.1), with ¢ = 10719, Panel (a): AISS [7], panel
(b): LARS [18], panel (c): SPGL1 [40, 41], panel (d) : SeDubMi (standard precision) [38], panel
(e): algorithm 2.1 and panel (f): SeDuMi (high precision) [38]. The non-zero entries of the source
element w are drawn from a uniform distribution on [—1,1]. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution. With their default parameters LARS, SPGL1 and SeDuli
(standard precision) are not able to produce good result for the above set of experiments. However,
SeDuMsi (high precision) produces good results. We also present results for an higher threshold
e = 1074, see figure 4.3.
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FIG. 4.2. Differences of probability of success (4.2), with € = 10710, panel (a): algorithm 2.1-
AISS [7] panel panel (b): algorithm 2.1-LARS [18] panel (c): algorithm 2.1-SPGL1 [40, 41], panel
(d) algorithm 2.1-SeDulMi (standard precision) [38] and panel (e) algorithm 2.1-SeDuMi (high pre-
cision) [38]. A positive value indicates that algorithm 2.1 achieves a higher probability of success

than the considered method, a negative value the contrary.

of success (4.1) for AISS, LARS, SPGL1, SeDuMi and algorithm 2.1. Figure 4.4

depicts the differences of probability of success. These results for ¢ = 10™* show

that all numerical algorithms have a higher empirical probability of success compared

to the results for ¢ = 10719,

In particular, we note that SPGL1 and LARS that

were performing poorly for ¢ = 10710 have dramatically improved their performance.
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TABLE 4.1
Main assumption and statistical indicator of “success” for LARS, SPGL1, AISS, SeDuMi
and algorithm 2.1. The numbers without parentheses correspond to € = 10710 and those between
parentheses correspond to & 10~%. Below, R.I.C. stands for restricted isometry constant see,
e.g., [33] and S.F.P.D. stands for strong feasibility of primal and dual program.

Algorithm LARS [18] || SPGL1 [40, 41] || AISS [7] SeDuMi (SP) [38] | SeDuMi (HP) [38] | Algorithm 2.1
Assumption R.I.C. Ju:Au=1»5 Ju:Au=2>% S.F.P.D. S.F.P.D. full row rank

Poo.9 (4.3) 0 (0.4688) || 0 (0.0833) 0.4688 (0.4688) || 0.104 (0.4688) 0.4688 (0.4639) 0.4688 (0.4688)
P-o.05 (4.3) 0 (0.4375) || 0 (0.0625) 0.4375 ( 0.4375) || 0 (0.4583) 0.4375 (0.4375) 0.4375 (0.4375)
P=0.09 (4.3) 0 (0.4167) || 0 (0.0104) 0.3438 (0.4167) 0 (0.4167) 0.4167 (0.4167) 0.4167 (0.4167)
P=0.000 (4.3) || 0(0.3750) || 0(0) 0.1250 (0.3646) 0 (0.3333) 0.3229 (0.3437) 0.3646 (0.3750)
P-1 (4.3) 0 (0.3646) || 0(0) 0.0521 (0.3646) 0 (0.1875) 0.1562 (0.1979) 0.3333 (0.3646)

Also, from figure 4.4, we observe that LARS and our proposed algorithm produce
very similar results. It seems that LARS works for the considered experiments (see
figure 4.4) although it was proved in [6] that LARS may not converge.

Empirical probability of success: spgl1 tresh :0.0001
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FiG. 4.3. Empirical probability of success (4.1), with ¢ = 10~*. Panel (a): AISS [7], panel
(b): LARS [18], panel (¢): SPGL1 [40, 41], panel (d) : SeDubMi (standard precision) [38], panel
(e): algorithm 2.1 and panel (f): SeDuMi (high precision) [38]. The non-zero entries of the source
element w are drawn from a uniform distribution on [—1,1]. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution.

5. Conclusion. In this paper, a new algorithm to solve ¢! regularized linear
problems up to the machine precision has been proposed. The method is based on i)
the numerical computation of a finite sequence that converges to a solution the dual
problem and ii) an explicit recovery formula -based on a non-negative least squares-
to compute a solution to the primal problem. The sequence we employed is driven
by an evolution equation ruled by a maximal monotone operator. The numerical
computations of this algorithm involve: the computation of a projection onto a closed
convex cone and the evaluation of inner products. The sequence in the dual space
lives in a low dimensional space compared to the unknown. Hence, most of the
numerical efforts require fewer memory usage than primal-based method. Numerical
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TABLE 4.2
Computational time results for the following methods: algorithm 2.1, AISS [7] and SeDuMi
(SP) [38], SPGL1 [40, 41], LARS [18], SeDuMi (HP) [38], the number of columns is set to 1,000
as everywhere else in this paper and various number of rows (NR) and several level of sparsity.
Time results are given in seconds and corresponds to the average time of 200 experiments. The

variance is also given in parenthesis.

NR algorithm sparsity
5% 10% 15%

50 Algorithm 2.1 6.2437e-04 (1.1274e-08)  9.9688e-04 (4.6010e-07)  0.0056 (1.2178e-05)
AISS [7] 0.0046 (6.2449¢-04) 0.0053 (5.8065e-04) 0.0135 (5.9706e-04)
SeDuMi (SP) [38] 0.0326 (2.9972¢-04) 0.0369 (2.7969¢-04) 0.0497 (3.4206e-04)
SPGL1 [40, 41] 0.0115 (3.5370e-05) 0.0240 (2.2200e-04) 0.0693 (4.0352e-04)
LARS [18] 0.0059 (1.2202¢-06) 0.0069 (3.5498e-06) 0.0100 (7.6192¢-06)

SeDuMi (HP) [3§] 0.2029 (5.4966e-04) 0.2130 (5.9799¢-04) 0.2330 (0.0010)
175 Algorithm 2.1 0.0033 (1.1617e-07) 0.0061 (5.7905e-07) 0.0161 (2.6142¢-05)
AISS [7] 0.0052 (5.6492e-04) 0.0071 (6.6601e-04) 0.0153 (7.7310e-04)
SeDuMi (SP) [3§] 0.1497 (3.6402¢-04) 0.1714 (3.4310e-04) 0.1729 (4.1359¢-04)
SPGL1 [40, 41] 0.0105 (2.3802¢-05) 0.0192 (3.6582e-05) 0.0372 (2.3437e-04)
LARS [18] 0.0097 (7.4096e-06) 0.0159 (2.9454e-05) 0.0198 (2.0914e-05)

SeDuMi (HP) [38] 0.5813 (0.0027) 0.6406 (0.0038) 0.6787 (0.0028)
300 Algorithm 2.1 0.0081 (1.1997e-07) 0.0162 (1.9130e-06) 0.0411 (6.8016e-05)
AISS [7] 0.0063 (6.0184e-04) 0.0102 (5.8937e-04) 0.0283 (8.1150e-04)
SeDuMi (SP) [38] 0.3502 (5.3829¢-04) 0.3724 (4.9952¢-04) 0.3854 (5.9227e-04)
SPGL1 [40, 41] 0.0112 (2.1614e-05) 0.0181 (2.6325¢e-05) 0.0299 (5.3353e-05)
LARS [18] 0.0244 (1.7508e-05) 0.0300 (3.3939¢-05) 0.0369 (4.4780e-05)

SeDuMi (HP) [3§] 1.2914 (0.0152) 1.4947 (0.0179) 1.5797 (0.0143)

NR algorithm sparsity
20% 25% 30%

50 Algorithm 2.1 0.0085 (3.6050e-06) 0.0091 (1.0906¢-06) 0.0092 (7.7791e-07)
AISS [7] 0.0186 (7.7498e-04) 0.0197 (7.6886e-04) 0.0195 (7.6616e-04)
SeDuMi (SP) [38] 0.0547 (3.6486e-04) 0.0539 (3.0153e-04) 0.0538 (3.0346e-04)
SPGL1 [40, 41] 0.0755 (3.2247e-04) 0.0779 (2.6061e-04) 0.0791 (2.8112¢-04)
LARS [18] 0.0056 (1.2995¢-06) 0.0059 (1.2474e-06) 0.0601 (1.2694e-06)

SeDuMi (HP) [38] 0.2407 (9.3084e-04) 0.2496 (0.0010) 0.2537 (0.0012)

175 Algorithm 2.1 0.0997 (0.0165) 0.4943 (0.0270) 0.5521 (0.0028)

AISS [7] 0.0866 (0.0083) 0.3485 (0.0115) 0.3739 (0.0024)
SeDuMi (SP) [38] 0.2077 (0.0011) 0.2491 (0.0013) 0.2534 (4.9534e-04)
SPGL1 [40, 41] 0.1187 (0.0026) 0.1421 (0.0015) 0.1334 (9.7981e-04)
LARS [18] 0.0199 (1.7296e-05) 0.0173 (3.1513e-06) 0.0209 (1.6831e-05

SeDuMi (HP) [3§] 0.7787 (0.0170) .9592 (0.0147) 0.9820 (0.0054)

300 Algorithm 2.1 0.1402 (0.0035) 0.7100 (0.3449 3.6610 (2.1706

AISS [7]
SeDuMi (SP) [38]
SPGL1 [40, 41]
LARS [15]
SeDuMi (HP) [38]

0.1039 (0.0025)
0.4069 (7.2509¢-04)
0.0591 (4.4726¢-04)
0.0435 (4.1577e-05)

1.7613 (0.0235)

)
0.4710 (0.1126)
0.4403 (0.0021)
0.1639 (0.0038)
0.0515 (2.4983-05)
1.8634 (0.0752)

0.5739 (0.0049
0.2013 (0.0019)
0.0532 (9.1295¢-06)
2.6824 (0.1787)

(

( )
2.0890 (0.5683)

g )

comparisons with other existing state-of-the-art methods is exhibited for noiseless
compressive sensing (basis pursuit) problems.

The numerical comparisons above showed that our algorithm compares advanta-
geously with existing methods: the phase transition is observed with a higher accuracy.
The algorithm proposed in this paper is parameter-less once a starting point has been
chosen. However, the starting point can be tuned to further speed up the method. A
future work could study the impact of this choice in terms of convergence speed.

We also leave as future work theoretical and numerical comparisons with approx-
imate path-methods (as opposed to piecewise affine paths such as our approach) such
as [27] which corresponds to an approximate discetrization of trajectories. In partic-
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FIG. 4.4. Differences of probability of success (4.2), with € = 107*. Panel (a): algorithm 2.1-
AISS [7], panel (b): algorithm 2.1-LARS [18] , panel (c): algorithm 2.1-SPGL1 [40, 41], panel (d)
algorithm 2.1-SeDuMi (standard precision) [38] and panel (e) algorithm 2.1-SeDuMi (high preci-
sion) [38]. A positive value indicates that algorithm 2.1 achieves a higher probability of success than
the considered method, a negative value the contrary.
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ular, it would be interest to know if it is better to compute an exact trajectory versus
an approximate trajectory from a computational point of view.

6. Appendix. This section contains several proofs used throughout this paper
and some properties on the projection on polyhedral convex cone.

6.1. Some properties of functions J, J*, f and 7.

LEMMA 6.1 (Some elementary properties of J and J*).  We posit the same
assumptions as in proposition 3.1. We have
1. JeTo(R™), dom (J) =R", J* = xB,, € I'o(R™) and dom (J*) = By;
2. (Primal feasibility)

(6.1) 0 € int(A dom J —{b}) = AR" — {b} =R™ (see (iv));
3. (Dual feasibility)
(6.2) 0 € int (ATdom X?b} + dom J*) = int (span AT + By) .

Proof. We sequentially prove the three assertions.
Note that dom J = R™ and that J is convex. It follows that J € I'o(R™) and, from
theorem 8.10, that J* € T'o(R™). Combining lemma 8.2 with proposition 8.4 we
obtain that for any u € R™ we have J*(u) = xp,, (u) and dom J* = B,.
From dom J = R™ and the assumption that A has full row rank, we have A dom J =
span A = R™ and (6.1) immediately follows.
Applying lemma 8.3 with C' := {b} we have x?‘b}() = (,by € Ty(R™) and also
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM 17
dom (be}(')) = R™. Since, in addition, dom J* = By, we have
(6.3) ATdom X{p) + dom J* = By, + span AT,

We have obviously have By, © By, + span AT, and from (6.3) we deduce (6.2). O

PROPOSITION 6.2 (and definition : function J). We posit the same assumptions
as in proposition 3.1. Consider the function J : R™ — R u {+0w} defined by

(6.4) YAeR™, J(A):=J*(—ATA) = xc(A)

where C is defined by (3.7). We have J € To(R™) and dom J = C # (.

Proof. From item 1 of lemma 6.1 we have J* € T'y(R™). Note that (6.2) in
lemma 6.1 implies that span AT N dom J* # . Then, from theorem 8.5 we obtain
that J(-) := J* (—AT") € To(R™). Moreover, for any A € R™, we have

(6.5) JA) = xB.,. (ATA) = xc(A).

The first equality in (6.5) is justified by combining item 1 (J* = xg, ) of lemma 6.1
and that —ATX € B, & ATX € B,,. The second equality in (6.5) is justified by the
fact that A e C < AT\ € By,. Indeed, we have

(6.6) AeC e (\AE)<1Vi={1,...,2n} & ATX e By,

where &; is defined by (3.3). The first equivalence in (6.6) is obvious from the definition
of C given by (3.7). The last equivalence follows from the definition of the ¢*(R™)
unit ball (see (vii)). From (6.5) we can verify that dom J = C and that 0 € C' # 3.0

LEMMA 6.3 (Subdifferential formulas for f, J* and J). We posit the same
assumptions as in proposition 3.1. We have
1. (Subdifferential formula for f)

(6.7)  Vue dom J n dom x (A) of (w) = 0J (u) + AT ox(py (Au);
2. (subdifferential formula for J*)

(6.8) VAedomg  8J* (—ATX) = Np, (—ATX) = co{é; : ieS(-A)}
3. (Subdifferential formula for J)

(6.9) YAeC  0J(A) = ANp, (ATX) = co{A&; : ieS(\)},

where Np, (ATX) is the normal cone to By, at ATX € R™ (see (vi)), the
set S(A) is defined by (3.3) and the 2n vectors &; of R™ are defined by (3.3)
(page 5).

Proof. We sequentially justify (6.7)-(6.9). Combining (6.1) in lemma 6.1 and
theorem 8.16 (with “U = J” and “V = xy,)”) we immediately obtain (6.7). The
first equality in (6.8) is justified by lemma 8.6. The second equality in (6.8) follows
form lemma 8.7 applied with p := 2n,s; :=e; fori =1,...,n,s8;, :== —e;_,, for i =
n+1,....2n,r,:=1fori=1,...,2nand W (—AT)\) = S (—\).We now justify (6.9).
From (6.4) in proposition 6.2 we have J(-) = J* (AT~). To prove the first equality
in (6.9), we need to justify that

(6.10) int(dom J*) nspan AT # .
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18 Y. TENDERO, I. CIRIL, J. DARBON, AND S. SERNA

Assuming that (6.10) holds true, combining item 1 in lemma 6.1 (J* € T'o(R™)) and
theorem 8.9 (with “f = J*”) we obtain that 07 (X) = —AdJ* (—ATX). We notice
that

(6.11) — 0J* (=ATX) = co{—€,i € S(-A)} = co{&,i e S(A)} = 2J* (ATA) .

Indeed, the first equality in (6.11) is justified by (6.8). The second equality is obvious
from the definition of S(A) in definition 3.3 and the last equality follows. From (6.11)
we immediately obtain (6.9). We now justify (6.10). From, again, item 1 in lemma 6.1
we have dom J* = By, and therefore deduce that 0 € int(dom J*) n span AT which
justifies (6.10). This concludes our proof. a

6.2. Proof of proposition 3.1 on page 5.

Proof. We first prove that f € Io(R™) then that g € To(R™) and that (3.2) hold
true. From the assumption that A has a full row rank, it follows that span A N
dom xp = span A n {b} # J. In addition, xgp; € I'o(R™) as the characteris-
tic function of the closed convex set {b}. Therefore, from proposition 8.5 we de-
duce that xy (A) € To(R™). Combining lemma 6.1 and proposition 8.10 we have
that f € T'o(R™) as the sum of the finite valued convex function J € T'o(R™) and
X{b} (A:) € To(R™).

Now we prove that g € I'o(R™). From proposition 6.2 the function J(-) = J* (—AT") €
T'o(R™). From proposition 8.10 we obtain that g € To(R™) as the sum of the finite
valued convex function (b,-) and J* (—A”") € I'x(R™). The second equality in (3.2)
follows from item 1 (J* = xp_ ) of lemma 6.1. This concludes our proof. d

6.3. Proof of proposition 3.4 on page 5.

Proof. The proof is in two steps. Step 1 proves that problems (P;:) and (Dy1)
have at least one solution. Step 2 justifies (3.4) and (3.5).

Step 1. Problems (P,1) and (D,:) have at least one solution and . Com-
bining the definitions of function f and g given in proposition 3.1, lemma 6.1, propo-
sition 8.17 and theorem 8.18 with U := J and V := x; we conclude that prob-
lems (Pp1) and (Dy:) have at least one solution. This concludes stepl. We now turn
to step2.

Step2. Formulas (3.4) and (3.5) hold true. From [1, p. 166-167] applied
with “ U := J and V := x” we have that any point @ in the non-empty closed
convex set S(A) = 0J*(—ATA) n{u : Au = b}is a solution to (P;1). The set S(A) is
non-empty and from step 1 the primal has a solution. Consider A solution to (D1 ).
Combining theorem 8.11 and lemma 3.8 we obtain that b € co{fAé,i €S (5\)} =

co {Aé,i €S (—;\)}. This means that b can be written as b = 22221 u; Aé;, where
u; =0, Vie (—5\) and u; =0 Vie {1,...,2n}\S (—5\) . Consider u defined by (3.5).
It is easy to see that uw e S (5\) and therefore w is a solution to (FP1). This concludes

our proof.

6.4. Proof of proposition 3.6 on page 6.

Proof. From proposition 3.1, we have g € T'o(R™). Hence, from proposition 8.12
we immediately obtain that dg(-) is a maximal monotone operator. Item 1 of propo-
sition 3.6 follows from theorem 8.14. Items 2 and 3 of proposition 3.6 follows from
theorem 8.15. This concludes our proof. 0
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6.5. Proof of proposition 3.7 on page 7.

Proof. Proposition 3.7 is obvious combining proposition 6.2 and (3.2) in proposi-
tion 3.1. This concludes our proof. ]

6.6. Proof of lemma 3.8 on page 7.

Proof. Combining propositions 3.1 and 6.2, we have that g can be written as
(6.12) YAeR™, g(A) =T (X)) +{\b).

From, again, proposition 6.2, we deduce that int (dom J) n int (dom {-,b)) # .
Hence, combining theorem 8.13 and lemma 6.3 we obtain (3.8) and that VA € dom g =
C we have b € 0g(\) # . This concludes our proof. |

6.7. Proof of proposition 3.9 on page 7.
Proof. We first establish the following lemma

LEMMA 6.4 (Directional derivative and Taylor formula for g).
We posit the same assumptions as in proposition 3.1. For every A € dom g and any
d that satisfies (3.9) we have

(6.13) g’ (A.d)={d b);
(6.14) gA+td) =g(N) +tg" (A, d)  for somet >0 small enough.

Proof. Let A € dom g. By assumption we have that d satisfies (3.9). Combining
proposition 3.7 and (3.9) we immediately obtain that (A+td) € dom g for some ¢t > 0
small enough. Hence from the definition of g (3.7), we obtain that, for some small
enough ¢ > 0,

(6.15) gA+td) —g(A) = (A +td, b) — (d, b) = t (d, b).

Formula (6.13) follows (xiii). Combining (6.13) and (6.15) we deduce (6.14). This
concludes our proof. 0

We first prove that the conditions (3.9)-(3.10) are necessary then that they are suffi-
cient.
If d is a descent direction for g at A € dom g then, from definition 3.9, (A+td) € dom g
for some ¢ > 0 small enough. From the definition of C (3.7) it follows that X + td sat-
isfies, in particular, (A + td, Aé;) < 1 for every i € S(A). The definition of S(A) (3.3)
and the fact that A € dom g imply that necessarily (d, Aé;) < 0 for every i € S(\)
and (3.9) holds true. In addition, from definition 3.9 we have g (A + td) < g (\) for
some ¢t > 0 enough small and combining (6.13)-(6.14) we obtain that (3.10) holds
true. Hence, (3.9)-(3.10) are necessary conditions. We now turn to the sufficiency.
Conversely, consider d € R"™\{0} satisfying (3.9)-(3.10). From proposition 3.7 we
have that A € dom g satisfies (A, Aé;) < 1 for every i € {1,...,2n}. On the one hand,
from (3.9), for any i € S(A) we have {(d, Aé;) < 0 and therefore (A + td, Aé;) < 1
¥t > 0. On the other hand, from A € dom g and the definition of S(A) we deduce that
for any i € {1,...,2n}\S(A) we have (A, A&;) < 1 and therefore that (A+td, A&;) <1
for t > 0 small enough. Thus, (A + td,—Aé;) < 1 for every i € {1,...,2n} and
t > 0 small enough. It follows that (A + td) € dom ¢ for some ¢ > 0 small enough.
Combining (3.10) and (6.14) we obtain g (A + td) < g (A) for some ¢ > 0 small enough.
It follows that d is a direction descent for g at A. This concludes our proof. 0
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6.8. Proof of proposition 3.10 on page 8.

Proof. We recall that, in the sequel, A € dom g and that d is a descent direction
for g at A € dom g. We sequentially consider the three following complementary cases

’ Case 1. The case of indexes ¢ such that i € S(X).

Case 2. The case of i € {1,...,2n}\S(A) and {A4¢;,d) < 0.

09 Case 3. The case of i € {1,...,2n}\S(\) and (Aé;,d) > 0.

Case 1. From proposition 3.9 equation (3.9), we have that any descent direction
d for g at A € dom g satisfies {(d, Aé;) < 0 for every i € S(A). From definition 3.3
(page 5), for every i € S(A), we have (X, Aé;) = 1 and therefore deduce that

(6.16) i€S(A) = A+td,A&)<1 Vt=0.

Case 2. For any i € {1,...,2n}\S(A), from A € dom g we deduce that (A, A&;) < 1.
Hence, if (A€;,d) < 0 then

(6.17) ie{l,...,2n}\S(A) and (Aé;,d) <0 = A +td, Aé;)<1 Vt=0.
From (6.17) it is easy to deduce that

(6.18) i€ {1,...,2n}\S(X\) and (4&;,dy <0 = ie{l,...,.2n}\S(A+td) Vt=0.
Case 3. We begin by noticing that

(6.19) {ie{l,...,2n}\S(A) : (Aé;,d) >0} ={ie{l,...,2n} : (A&;,d) > 0}.

Indeed, we recall that from proposition 3.9 any descent direction d for g at A implies
that for every i € S(A) we have {(d, Aé;) < 0. Hence, if (A€;,d) > 0 for some i €
{1,...,2n} then ¢ ¢ S(A). This means that {i € {1,...,2n}\S(A) : (4é;,d) >0} o
{ie{l,...,2n} : (Aé;,d) > 0} and therefore proves (6.19). The converse inclusion
is trivial. Hence, Case 3 is, from (3.11), the case defined by S*(d). For any i € S*(d),
it is easy to see that

1—(Aé&;,
(6.20) ieST(d) = (A+td,A&)<1iffte [o, <e>‘>] .

(Aé;, d)
From (6.20) we obviously deduce

ieST(d) = A+1td,A&) <1iffte [071—@4%>‘>>

(Aé;,d)
and therefore that

(6.21) ieSt(d) = ie{l,...,2n)\S(A + td) iff t € {0,1_@452‘7»)

<Aéi7 d>

In addition, for any i« € ST(d) we have that (A€;,A) < 1 and therefore that 1 —

(Aé;, A) > 0. Since, for any i € ST(d), we also have (4é;,d) > 0 and we deduce
. 1— (A&, A)
.22 + h — 7 .
(6.22) Vie ST(d) we have TAé, d) >0

From (6.16), (6.17) and (6.20) we deduce that S*(d) = & iff (A +td) € dom g for
every ¢t = 0. In addition, from (6.16), (6.17) and (6.20) we deduce that if S*(d) # &
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then (X +td) € dom g for every t € [0, At], where At is defined by (3.12). The
fact that At > 0 follows from (6.22) and, again (3.12). It remains to prove that for
any t € [0,At) we have S(A + td) < S(A). To this aim we consider an arbitrary
ie{l,...,2n}\S(A). Combining (6.18), (6.21) and the definition of At as a mini-
mum (3.12), we deduce that i € {1,...,2n}\S(X + td) for any t € [0, At). Hence,
by considering the complementary set we obtain that for any ¢ € [0, At) we have
S(A +td) = S(A). Furthermore, the fact that dg(A + td) < dg(X) for all t € [0, At)
immediately follows from lemma 3.8. It is easy to see that for every ¢ € [0, A_t] we
have (A + td) € dom g. ad

6.9. Proof of lemma 3.11 on page 8.

Proof. The proof is in three steps. The first step justifies the well-posedness
of (3.15). The second step proves that the conditions in (3.16) are equivalent. The
last step proves that A € dom g is a solution to (D,:) iff the conditions in (3.16) hold
true.

From lemma 3.8, for any A € dom g we have that dg(\) # ¢ and obviously closed,
convex. Therefore, for any A € dom ¢ (3.15) is well posed.

Combining the definitions of d (3.15) and of S*(d) (3.11) we have that d = 0 implies
St(d) = &. Conversely, if ST(d) = & then we obtain that {d, Ae;> = 0 for every
canonical vector e; of R™. From proposition 3.1 we have that A has full row rank
and therefore deduce d = 0. Thus, ST(d) = ¢J is equivalent to d = 0. From the
definitions of S*(d) (3.11) and of At (3.12) it is obvious that S*(d) = J is equivalent
to At = +o0. Thus, the three conditions in (3.16) are equivalent.

From theorem 8.11 we have that A € dom g is a solution to (D) iff 0 € dg(A). Hence,
A € dom g is a solution to (D) iff d defined by (3.15) satisfies d = 0. It follows that
A € dom g is a solution to (D) iff the conditions in (3.16) hold true. |

6.10. Proof of proposition 3.12 on page 8.

Proof. We begin to establish the following lemmas that will be useful for the proof
of propositions 3.12.

LEMMA 6.5 (Technical lemma). Consider a conver set & # K < R™. For any
x we have g ,(0) =g (—x) + .

Proof. From theorem 8.8 , we have that a vector y,, is the projection of some
on K iff (x —y,,y —y,» <0 Vy € K. Hence, the projection y_,, := I (—x) of —x
onto K satisfies (—x —y_,,y —y_,» < 0 for all y € K. Therefore we obtain, for all
y € K — x, that

-y o Y—2)—y p)<0VYyeK-—2<0—(2+y ) y— (Y ,+z) <0
and, from theorem 8.8 we obtain that « + y__, is the projection of 0 on K — . In
other words, g (—x) + @ = lIx_,(0) and the formula is proved. O

LEMMA 6.6 (—II5g(x)(0) satisfies (3.9)). We posit the same assumptions as in
proposition 3.1. For any X € dom g consider d defined by (3.15) in lemma 3.11. We
have that d satisfies (3.9).

Proof. Consider A € dom g and S(A) defined by (3.3) (page 5). We wish to
prove that d := —Il54x)(0) satisfies (3.9). From lemma 6.5 applied with & = b and
K := co{A€;, ie S(\)} we obtain d = —II34x)(0) = —b — IIx(—b). Thus, from
theorem 8.8 we have that Iy (—b) satisfies

(=b—Tg(-b),y —Ig(—b)) <0 Vye K :=co{dé;, ieS(A)}
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and therefore, since d = —b — I (—b), we obtain
(6.23) {d,y —IIg(—b)) <0 Vye K :=co{dé;, ieS(A\)}.

Any coefficients p; of Il (—b) onto K satisfy

©i=0 V ieS(A)
;=0 otherwise

Consider any j € S(A) and the coefficients «; given by a; = 1 + p; where a; =
for i # j € S(A) and a; = 0 otherwise. Note that the vector ), a;Aé; € K and that
D vjAé; — Il (—b) = Aé;. Thus, from (6.23) we obtain that d satisfies (3.9). d

LEMMA 6.7 (Descent direction condition). We posit the same assumptions as
in proposition 3.1 and consider d defined by (3.15) in lemma 5.11. We have that if

d # 0 then d is a descent direction for g at A € dom g. In addition, for all A € dom g
we have

(6.24) g (A —Tag(x) (0) = — [ag(a) (0)] . -

Proof. We consider d defined by (3.15) in lemma 3.11. We first establish (6.24)
then justify that if d # 0 then d is a descent direction for g at A € dom g. From
theorem 8.8, we have that

(6.25) (d,s+d)y<0 Vsedg(\) < {d,s)<—|d|: Vsedg(N).
We have
(6.26) —|d[7: = (d,b) = g' (A, d) = sup {(s,d) : s € dg(N)} = (~d,d) = —||d|7..

Indeed, in (6.26) the first inequality is obtained by choosing s = b € dg(A) in (6.25).
Combining lemma 6.6 and proposition 3.9 we obtain first equality in (6.26). The
second equality is justified by the definition of the subdifferential (see (xvii)). The
second inequality follows from —d € dg(A). The last equality is obvious. Thus, we
obtain (6.24). From (6.24), it follows that if d # 0 we have that d satisfies (3.9)-(3.10).
Hence, from proposition 3.9 we obtain that d is a descent direction. 0

Consider d defined by (3.15) in lemma 3.11. If d = 0 then (3.17)-(3.18) hold true.
From now on, we assume that d # 0. Let t € [O, At), where At is defined in proposi-
tion 3.10 (page 8). For any A’ € R™ we have

(6.27) g(N') = g(A) + (Tag(x)(0), X' — A>

(6.28) = 9(A) + (Tag(x) (0), X = A = td) — t[Tl5y2(0)]
(6.29) = g(A) + Mg ( ), N =X —td)y+tg (X, d)

(6.30) = g(A)+Tag(2) (0), X' = (X + td) ) +1(d, b)

(6.31) = g(A +td) + (Tg(x)(0), N = (A + td) ) .

The inequality in (6.27) is nothing but the definition of IT54(x)(0) € dg(X) (see (xvii))
and (6.28) follows. Lemma 6.7 (we assumed d # 0) justifies (6.29). From proposi-
tion 3.10 (page 8), for any ¢ € [0, At) we have (A + td) € dom g and, from lemma 6.4
we obtain (6.30). Equation (6.31) immediately follows from (3.7) in proposition 3.7.
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From (6.27)-(6.31) and (xvii) we obtain (3.17). From theorem 8.8, we have that
542 (0) satisfies

Vs e og(N), (g2 (0), 8 — Tag(x)(0)) < 0

which is equivalent to

Vs e og(A)  [Tagn(0)] < (5. Mag(x)(0)).

Hence, from (3.14) in proposition 3.10 (page 8) we deduce that IIy4(x)(0) satisfies

(6.32) Vte[0,Af)  VsedgA+td)  [Mogn(0)] < (8. yn(0)).

Combining (3.17), (6.32) and, again, theorem 8.8 we obtain (3.18). d
6.11. Proof of proposition 3.13 on page 8.

Proof. The proof is in two steps. We first justify the well-posedness of (3.19) then
justify that (3.20) coincides with the evolution equation (3.6) (see proposition 3.6 on
page 6).

Step 1. Let k = 0. By assumption, A(¢;) € dom g. From lemma 3.11 we have that dj
is well defined. From proposition 3.10 (page 8) this implies that ¢;41 is well defined.
s In addition, from, again, proposition 3.10 and the definition of ¢;; it is easy to see
that A(t) € dom g for every t € [tg,tr+1]. The rest of the recursion follows. Thus,
we obtain that the trajectory A(t) given in (3.20) is mathematically well-posed. It
remains to show that (3.20) coincides with the trajectory given by (3.6).

Step 2. From proposition 3.12, the vector —II5,(x)(0) that appears in (3.6) is piece-
wise constant on every intervals [tg,tx+1). In addition, it is easy that the trajectory
given by (3.20) coincides by construction with the solution to the evolution equa-
tion (3.6) for every t > 0. The fact that for every ¢ > 0, A(¢) € dom g follows
combining proposition 3.6 and lemma 3.8. This concludes our proof. O

6.12. Proof of proposition 3.14 on page 9.

Proof. From (3.17) and the lower semi-continuity of g € T'o(R™), we obtain
ag(A(tr))(0) € 09(A(tx+1)) and therefore that

(6.33) HHag(A(tkH))(O) ng < HHr?g(A(tk))(O)Hﬂ :

From proposition/definition 3.13 (page 8), we have that A(tx+1) € dom g and there-
fore, from lemma 3.8 we have 0g(A(tx+1)) # &. The uniqueness of the projection of
0 onto the non-empty closed convex set 0g(A(tx+1)) and (3.17) imply that

(6:34)  [Tagiagee ()22 = [Mageacann O] < Magiae)(©0) = Magiagee,1))(0).

We wish to prove that oo, ))(0) # Ilag(a(trs))(0). To do so, we set dp :=
*Hag()‘(tk))(()) and dpy1 = *Hﬁg()\(tkﬂ))(o) and denote by Aty (resp. Atgi1) the
positive kick times computed, from proposition 3.10, at A(tx) (resp. A(tg+1)).

By assumption, we have that A(fy) is not a solution to (D,:). From lemma 3.11
we have that di # 0. Assume, for the sake of contradiction, that dy = dj1. From,
again, proposition 3.10, we would have (A(ty)+Atgdy,) +tdy, = A(tg41)+tdy, € dom g,
for some positive ¢ € (0, Atyy1). This is impossible. Indeed, proposition 3.10 applied
at A(ty) with the direction dj, implies that (A(tx) + tdi) € dom g iff ¢ € [0, Aty].
Thus, we obtain that dj # di4+1 and combining (6.33)-(6.34) we obtain (3.21). d
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6.13. Proof of proposition 3.15 on page 9.

Proof. The proof is in two steps. The first step justifies the existence of K € N
and of tx such that A(t) = A(tx) for every t > tx. The second step justifies that
A(tk) is a solution to (D,1) and dg satisfies di = 0.

Step 1. This part of the proof follows a classic approach that can be found in,
e.g., [22, Thm. 3.4.8, p. 382]. From lemma 3.8 (page 7) there are 4" possible sets
0g(A) for XA € dom g. Each of them is uniquely associated with dj, = —II54x)(0).
From proposition 3.14 they are all different from each other. This implies that the
sequence (dy)x has a finite number of terms (is finite) and therefore converges for a
finite index K. From proposition 3.10 (page 8) it is easy to deduce that the sequence
(tx)g is also finite. From proposition 3.13 we deduce the existence of K. In other
words, we obtained that the trajectory A(t) given in (3.20) satisfies, for some K € N,
A(t) = A(tg) for every ¢ = tx. We now turn to the second step of the proof.

Step 2. From proposition 3.13, we have that the trajectory A(t) given in (3.20)
coincides with the trajectory given by (3.6). Thus, the limit of A(t) when ¢ — +o0
is a solution to (Dy1). (The fact that (D, ) has a solution is justified by lemma 3.4
page 5). From stepl, we have that the limit of A(¢) is attained for ¢ = tx. Hence,
A(tk) is a solution to (3.4). From lemma 3.11 we immediately obtain dx = 0. d

7. Glossary of notations, definitions.

(i) (Vectors) Throughout the paper the vectors of, e.g., R™ are denoted in bold
typeface, e.g., . Other objects like scalars or functions are denoted in non-
bold typeface.

(ii) (Canonical vectors) Throughout the paper the i-th canonical vectors of, e.g.,
R™ are denoted by e;.

(iii) (Inner product) For x,y € R™ we denote by (&, y) the Euclidean inner product
in R™.

(iv) (Interior) int(FE) : interior of a set E.

(v) (Conical hull) co{ai,...,ap}:={>F  ma; : p; =0, Vi=1,...,p}

(vi) Normal cone to a convex set C' # J at A e C:

Ne(A) ={s : (8,8 —X) <0Vs e€C} (See, e.g., [22, Def. 5.2.3, p. 136])

(vii) (the ¢*(R™) unit ball) Byy={u:(u,é;) <1,i=1,...,2n} where €; is given
by (3.3).

(viii) (Effective domain) dom f: The domain of a convex function f is the (convex,
possibly empty) set dom f = {x e R" : f(x) € R}

(ix) (Convex function) A function f : R™ — R u {+o0} is said to be convex if
V(z,y) € R" x R" and Yo € (0,1) f(ax + (1 - a)y) < af(x) + (1 —a)f(y)
holds true (in R U {+o0}).

(x) (Set T'o(R™)) The set of lower semi-continuous, convex functions with
dom f # ¥ is denoted I'y(R™)

(xi) (Characteristic function of a set) xg(x) = 0 if x € F and yg(x) = +o©
otherwise

(xii) (Polyhedral convex function) f is a polyhedral convex function if f(u) =
h(u) + xc(u) h(u) = max;—1,._, ((u,a;) —r;) and
C={ueR™(u,a;)<p;, i=1,...,q}.

(xiii) (Directional derivative) For f € I'y(R) at @ € dom f in the direction d is
f'(a,d) = lim, g+ LeHD=I(@)

(xiv) (Right derivative) T .— Jim, . ACHZAD

(xv) (Descent direction) d # 0 is a descent direction for f at x if 3¢ > 0 such that
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x +tdedom f and f(x + td) < f(x) (See, e.g., [22, Def. 1.1.1, p. 343]).
(xvi) (Convex conjugate) For any f convex that satisfies dom f # ¢F, the function
[* defined by R™ 3 s+ f*(s) := SuDgedom f {(5,®) — f(x)}. (See, e.g., [23,
Def. 1.1.1, p. 37]). For any f € I'((R") we have f* € I'((R"™) (See, e.g., [22,
Thm. 1.1.2,, p. 38])
(xvii) (Sub-differential) For f € I'o(R") and & € dom f the vector s € R™ is a
subgradient of f at « if one of the following equivalent assertions is satisfied

(T.1)VyeR", f(y)= f(x)+{(s,y—x); or VYdeR", (s,d)< f'(z,d).

We denote by df(x) the closed convex set of vectors s € R that satisfy (7.1).
For x ¢ dom f we set 0f(x) := .

(xviii) (Euclidean projection) Il¢(z) = arg mingec |y — x| for C # & closed and
convex.

8. Mathematical background. This section contains several propositions and
theorems used throughout proofs given in section 6.

THEOREM 8.1. For any f € To(R™) we have f* € T'o(R™).

Proof. From f € I'o(R™) we have f # 0, and from [22, Pro. 1.2.1, p. 147] there is
an affine function minorizing f on R™. Applying [23, Thm. 1.1.2, p. 38] we conclude
that f* € To(R™). 0

LEMMA 8.2 (Conjugate of absolute value). [4, Table 3.1, p. 76] Let f:xz € R —
0 ifve[-1,1]

f(z) :=|z| . We have for allveR, f*(v) =x_11(v) = .
' +00  otherwise.

LEMMA 8.3 (Conjugate of characteristic function). [2%, Ex. 1.1.5, p. 39]] The
conjugate of the characteristic function of the nonempty conver set set C (see (xi))
is for allv e R™,  x&(v) = sup,ec(v, ).

PROPOSITION 8.4 (Conjugation in Product Spaces). [36, Prop. 11.22, p. 493]
Let f1,...,fn be in To(R), and f : R® — R U {+0} given by: V(x1,...,z,) €
R™, f(x1,...,xn) = fi(x1)+...+ fn(xn). Then f*(v1,...,v,) = ff(v1)+...+ 5 (vn).

THEOREM 8.5 (Pre-composition With a Matrix). [22, Prop. 2.1.5, p. 159] Let
f € To(R™) and A € Myxn(R), and assume that span A n dom f # &. We have
f(A:) e To(R™).

LEMMA 8.6 (Subdifferential of Normal Cone to a Closed Convex Set). [23, Def.
1.1.3, p. 93] The set of normal directions to a closed convex set C < R™ at X € C,
is the subdifferential of the characteristic function xc at A: No(X) := Oxc.

LEMMA 8.7. [22, Ex. 5.2.6 b),p.138] Let a closed convex polyhedron defined by
C:={ueR": {(sxy<r; for i=1,...,p} where s; € R" and r; € R for all i =
1,...,p. The set of active constraints atu € C by W(u) ={i€l,...,p : {853y =1;}.
Then we have No(u) = co{s; : i€ W(u)}.

PROPOSITION 8.8. [22, Thm 3.1.1, p. 117] Let C' be a nonempty closed convex
set of R™. We have that y,, € C is the Euclidean projection of some x onto C if only
if{x -y, y—y,) <0 foralyeC.

THEOREM 8.9 (Subdifferential of Pre-composition with a matrix).  Let f
To(R™) such that int(dom f) # & and A € Myxn(R). Assume that int(dom f)
span A # . Then, any u € R™ such that Au € dom f we have 0 (f(A-)) (u)
ATOf (Au).

> m
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Proof. Since we assumed that int (dom f) # ¢ we have ri (dom f) nspan A =
int (dom f) nspan A = . Thus, from [23, Thm. 3.2.1, p. 117] applied with ¢ = 0

and g := f to conclude. ]
PROPOSITION 8.10. /22, Prop. 2.1.1, p. 158] Let f1 € To(R™),..., fp € To(R™)
and t, ..., t, be positive numbers. We assume that there is a point where all the f; are

finite. Then the function Y% t;f; € To(R™).

THEOREM 8.11 (Fermat’s rule). [36, Thm. 10.1, p. 422] Let f € T'o(R™). Then
f has a global minimum at w if only if 0 € 0f (u).

PROPOSITION 8.12. [1, Prop. 1, p. 159] Let f € T'x(R™). Then the set-valued
map R™ 5 u — df(u) is mazimal monotone.

THEOREM 8.13 (Subdifferential of sum of Tg-functions). Let fi, fa € To(R™).
We assume that int (dom f1) nint(dom f2) # &. Then for all uw € dom (f1 + f2) we
have 0 (f1 + f2) (w) = 0f1(w) + fa(w).

Proof. Since int (dom f1) n int (dom f2) # & we deduce that ri (dom fi) n
ri (dom f2) = int (dom f;) nint (dom fo) # &. Thus, from [23, Cor. 3.1.2, p. 114]
applied with £ = 0 to conclude. 0

THEOREM 8.14. [5, Thm. 3.1, p. 54] Let T be a mazimal monotone operator

from R™ to R™ and dom (T') be its domain. Consider the problem %Et) e —T(A(t))
with X(0) = Ag. For all Ag € dom (T), there exists a unique solution A(-) : [0, +o0) —
R™ such that :

1. X(t) € dom (T) for all t > 0, and X(0) = A;

2. the function X(+) is continuous on [0, +00);

3. the function A(-) admits a right derivative d+£(t) at all t = 0, given by

L
A2 — Tpay(0)  for all t e [0, +o0);

4. the function %)\(-) is continuous from the right on [0, +0).

THEOREM 8.15. [1, Thm. 2, p. 160] Let g € To(R™), and assume that g achieves
its minimum at some point. Then, for all X9 € dom (0g), the trajectory given by
d+d>;(t) = —Ilag(x(t))(0) with X(0) = Ao converges to a point which minimizes g when

t — +00.

THEOREM 8.16. [1, Thm. 4, Eq (28), p. 35-36] Let A € Mpxn(R) and U €
To(R™),V € T'x(R™). Assume that 0 € int(A dom U — dom V). Then, for all u €
dom U n dom V(A-) we have (U + V(A-)) (u) = oU(u) + ATOV (Au).

PROPOSITION 8.17. [1, Prop. 1, p.163] Let A€ Myxn(R) and U € To(R™),V €
Io(R™). Assume that O € int (AT dom V* + dom U*). Then, ing (U(u) + V(Au))

ueRn
has a solution.
THEOREM 8.18. [1, Thm. 2, p. 167] Let A € My xn(R), U € T\(R") and

V e To(R™). Assume that assumptions of theorem 8.16 and proposition 8.17 hold.
Then, Ain (U*(=ATX) + V*(X)) has a solution.

eRm™
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