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Abstract

We aim to present a theory for the derivation of relaxation operators in kinetic
theory. The construction is based on an approximation of the inverse Boltzmann
linearized operator, on relaxation equations on the moments of the distribution
function and finally on a variational problem to be solved. The theory comprises
a characterization of the set of moments of non negative integrable functions, a
study of those linear application whose range lies in this set and a generalization of
the functional to be minimized under moment constraints. In particular we clarify
but also modify some steps in the proof of Junk’s theorem on the characterization
of moments of non negative functions [30]. We also reestablish Csiszar’s theorem
[20] by different means on a class of functionals leading to well-posed variational
problems. The present theory encompasses the derivation of known models and
that of new models.

Keywords: relaxation operator, truncated moment problem, positive polynomials,
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1 Introduction

Kinetic models are used to simulate rarefied gases in the context of atmospheric reen-
try, CVI deposition, micro-channels and other processes. The question arises whether
the very fine description of the gas that is given by the original Boltzmann equation
is required or not for such simulations. Depending on the Knudsen number, the col-
lision operator may be replaced by simpler models that are easier to handle such as
relaxation operators which seminal model is the BGK one [7]. Another reason for con-
sidering such operators is the difficulty to obtain the physical parameters that rule the
interaction between molecules beyond the case of mono-atomic molecules. Contrarily,
relaxation operators are often scaled by measurements obtained at the macroscopic
level such as the diffusion coefficients. The idea that consists in taking some informa-
tion available at this level is also used for the Boltzmann equation with continuous
internal energy states - see e.g [10] - but this will not be our concern here. So, there
exists plenty relaxation operators that are used in different context but no unified
approach while many feature the same patterns. A linear or almost linear behavior
with respect to the moments of the distribution function, most properties that are
satisfied by the original equation such as positivity of solution or the existence of an
entropy, and finally a correct hydrodynamic limit up to the Navier- Stokes equation.

In the present article, we aim to develop a theoretical approach that applies to
existing models such as the BGK [7], ESBGK [29] or Shakhov model [41] and serves
as a ground from which ongoing models can be constructed. The theory is presented
only in the case of mono-atomic molecules for it requires much technical matters. The
paper goes along the steps of what we name the method of moments relaxation which
is a generalization of the work presented in [12, 13] together with some applications
for modeling multicomponent gases (see for example [11, 14, 15, 40]). For short, the
construction is based on relaxation equations that are relations between moments of
the operator and moments of the distribution function with respect to a vector of
weight functions mmm. mmm together with relaxation parameters are suitably chosen in
order to obtain for example the right transport coefficients in the hydrodynamic limit.
The relaxation equations are restated in term of linear relations between the moments
of the probability density function f and those of the target function to be found.
So the question arises whether those relations have a range into the set of realizable
moments R+

mmm, that is the set of vectors which are moments of nonnegative functions.
This implies in a first time to characterize R+

mmm and in a second time to specify which
are the admissible relaxation equations. In one dimension and when the domain of
velocity is R and mmm = {1, . . . , v2N}T , the characterization of R+

mmm is known as the
Hamburger moment problem. In this case, a moment ρρρ is realizable w.r.t. mmm iff the
moment matrix (ρi+j)i=0,...,N ;j=0,...,N is symmetric positive definite (SPD) (see for
example [3]). In higher dimension which is the case of the usual velocity domain, the
problem has given rise to many research (see for example [21, 23, 24, 27, 28, 32] and also
the survey in [25]). Most results deal with moments of Borel measures and eventually
of moments of atomic measures. They are unfortunately abstract and do not lead to
tractable conditions such as in dimension 1. Typically, those results are expressed in
terms of : ”a moment is realizable if and only if there exists an extension of it - i.e
with respect to a basis of higher degree - satisfying some property”. Such a remark has
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lead Pichard [36, 37] to propose specific moment closures in kinetic theory. However
no such an extension is required when one deals with moments of integrable functions
as proved by Junk [30]. In this case realizable moments are related to nonnegative
polynomials in the space spanned by the components of mmm, and not those of an higher
order. Characterizing realizable moments then amounts to characterizing nonnegative
polynomials. This problem is known as the 17th Hilbert problem (see [6] for a survey).

The next problem is the way to define G once its moments are known. For most
relaxation operators, it is usually done by minimizing the natural entropy under
moment constraints. Unfortunately, this functional is not suited neither to the sim-
ple case of Grad thirteen moments nor to moments of higher degree. Junk was the
first to raise and characterize the problem that one may face with Levermore’s closure
[33]. He was then followed by different authors giving their own insight on the prob-
lem [26, 35, 39]. One way to bypass the problem related to the natural entropy is to
approximate it in a proper way. To do so one has to consider optimization problems
with linear constraints such as in the article of Borwein and Lewis [8]. Another article
by Csiszar [18] presents a large set of convex functionals - named φ-divergence - to be
minimized under moments constraints. He would establish later on [20] the conditions
for those minimization problems to have a solution. Abdelmalik and Van Brummelen
have then proposed to use Csiszar’s approach to set well-posed closure relations for
moment systems [2]. The generalization to different approximations of

∫
f ln(f) by

φ-divergence can finally be found in [1].
This article is organized as follows. We set in section 2 the properties that must

be satisfied by a well-posed relaxation operator. The method of moments relaxation
is displayed in section 3 together with the mathematical problems that one must
address. Section 4 is devoted to the characterization of realizable moments and of
admissible linear relaxations. Firstly, we revisit and try to clarify Junk’s theorem
[30] on the characterization of R+

mmm. Secondly, we display the known results on the
17th Hilbert problems, how they can be used but also what is the limitation of the
characterization of R+

mmm by using nonnegative polynomials. Thirdly we consider the
case of Grad thirteen moments and fully describe admissible relaxations whose range
are in R+

mmm. We close this section by a studying a class of linear operators that let R+
mmm

invariant and that are related to Galilean invariance of the models to be constructed.
Section 5 deals with the optimization problem. The somehow formal derivation of the
solution given in [20] leads us to reestablish his existence theorem. Another reason to
do this is that his proof relies on probabilistic tools such as convergence in measure
but also on duality in Orlicz spaces whereas convex analysis is more appropriate to the
problem we are dealing with. In section 6, we show that the model which is constructed
just basing on relaxations on the Grad thirteen moments is well-posed in the sense
of section 2. We also address the general case and point out some problems to be
solved. We then display some known models that can be derived in this framework just
by using different functional in the variational problem [7, 29, 41]. We compare the
present approach to Levermore’s sum of relaxation operators [33]. Velocity dependent
relaxation frequency models are not contained within the present approach even if
they share a lot of common points with the present study [9, 34, 42, 43]. Finally, all
proofs are presented separately in section 6.
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2 Well-posed BGK models and method of relaxation

2.1 Well-posed BGK models

Consider the kinetic equation

∂tf + v · ∇xf = Q(f, f), (1)

where Q(f, f) is the classical Boltzmann operator [16, 17]. We are looking for a family
of relaxation operators

K (f) = ν(G− f)

that we may substitute to Q(f, f) in some physical regime. We require K(f) to satisfy
the properties:

1. Conservation laws. There must hold

∀f,
∫
K(f)φ (v) dv = 0⇔ φ ∈ K,

with

K = span
{
1,v,v2

}
(2)

2. There exists an “entropy” H (f) =
∫
η(f)dv satisfying∫

K(f)∂fη (f) dv ≤ 0. (3)

H(f) with η(x) = x lnx is a Lyapunov functional for the non homogeneous
equation. Unfortunately, the moment approach of relaxation operators is not suited
to the Boltzmann entropy in most cases. The weakened property that is required
here enlarges the choice in η and so may lead to well-posed variational problems
which is part of the construction of K(f). Also this may give some stability if
the variations of f due to the transport of particles are smaller than those due
to the relaxation operator. Property (3) must then be completed with the usual
characterization of local equilibrium.

K(f) = 0⇔
∫
∂fη (f)K (f) = 0⇔ ∂fη (f) ∈ K, (4)

with

K(f) = 0⇔M (v) =
n

(2πkBT/m)
3/2

exp

(
−m (v − u)

2

2kBT

)
(5)

where n,u, T are the density, velocity and temperature. We refer (3),(4) and (5) as
the extended H-theorem or H-theorem in short.
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3. Preservation of positivity. Starting from nonnegative initial data f (0,x,v) ≥ 0 the
solution must remain nonnegative. Preservation of non negativity is ensured by the
Boltzmann operator but also by K(f) if G(f) ≥ 0. Models such as the Shakhov
model [41] which write G [f ] =M [f ]P [f ] where P [f ] is just a polynomial function
do not satisfy this property.

4. Galilean invariance. For any translation: τv = v − u and rotation τv = Θv in the
velocity space there holds

K ([τf ]) = [τK (f)]

where by definition
∀v, [τf ] (v) := f (τv) .

5. Hydrodynamic limit. The relaxation operator must be defined so as to obtain the
right transport coefficients in the hydrodynamic limit. This essentially relies on the
shape of the linearized operator L defined with

L (g) := lim
ε 7→0+

1

εM
K (M (1 + εg)) , (6)

as well as its pseudo-inverse. In order to perform the Chapman-Enskog expansion,
there must hold

(a) kerL = K
(b) L id Fredholm, so invertible on the orthogonal of kerL
(c) It is symmetrical negative on (kerL)

⊥

(d) The viscosity and thermal conductivity computed from L−1 must be the same
as the ones derived from the Boltzmann equation.

2.2 Method of moments relaxation

Let us nlow consider the kinetic equation

∂tf + v · ∇xf = K(f) (7)

with
K(f) = ν(G− f).

The question is : how to define ν and G in such a way that the solution equation
(7) behaves as that of the Boltzmann equation (1). The range of validity in this
comparison is understood in the following way.M being a local equilibrium function,
f =M+Mg and the Boltzmann operator reads

Q(f, f) =MLB(g) +Q(Mg,Mg),

where LB is the linearized Boltzmann operator. So we assume that Q(Mg,Mg) is
negligible compared to MLB(g) and we are looking in a first time for a well-posed
relaxation operator K(f) approaching MLB(g). This writes in the weak form∫

R3

K(f)φdv ≈
∫
R3

MLB(g)φdv =

∫
R3

MgLB(φ) dv
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=

∫
R3

(M+Mg)LB(φ) dv =

∫
R3

fLB(φ) dv.

This approximation is of course impossible if one considers all test functions φ in
L2(M) since this would imply K(f) = MLB(g). So we must restrict ourselves to a
space of finite dimension P. In the case lof Maxwell molecules, one just has to consider
the space P spanned by the q first eigenfunctions of LB : (mi(v))i=1,··· ,q. One then set
the following relaxation equations∫

R3

K(f)mi dv =

∫
R3

fLB(mi) dv = −νi
∫
R3

fmi dv.

The generalization to other types of molecular interaction can be done in two ways.
Let P be a (polynomial) space with K ⊂ P and P be the projection onto P in L2(M).
One then considers the linear operator L̃ which restriction to P is PLBP. Notice that
this approximation corresponds to the one performed in [16] for the linearized and
linear Boltzmann equation. PLBP being self-adjoint and compact, there exists an
orthogonal basis (mi(v))i=1,··· ,q such that

∀g ∈ P, L̃(g) = PLBP(g) = −
q∑
i=1

ν̃iPmi(g), (8)

with ν̃i = 0 for mi ∈ K and ν̃i > 0 in K⊥. One then replace LB with L̃ in the above
approximation. Unfortunately such a direct approximation of LB does not give the
right transport coefficients in the hydrodynamic limit as will be shown below. Instead,
the idea consists in approximation L−1

B by stating

∀g ∈ P ∩K⊥, L−1(g) = PK⊥L−1
B PK⊥(g) = −

q∑
i=6

ν−1
i Pmi(g), (9)

where PK⊥ is the restriction of P to K⊥. Here the eigenvalues (−ν−1
i )i=6,...,q corre-

sponding to each eigenfunctions in K⊥ are strictly negative. It must denoted that
L−1 is not the pseudo-inverse of L̃ except in the case of Maxwell molecules. With
the eigenfunctions (mi)i and eigenvalues (−ν−1

i )i defined in (9), one set the following
relaxation equations∫

R3

K(f) (1,v, |v|2)dv = 0, (10)∫
R3

K(f) mi(v) dv = −νi
∫
R3

fmi(v)dv, ∀mi ∈ P ∩K⊥. (11)

One can then prove formally the following proposition.
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Proposition 1. Assume (4) and (5) hold. Assume moreover that f → G(f) is smooth,
then if K(f) satisfies (10, 11) there is

L = ν

(
(PK − I) +

∑
i

(
1− νi

ν

)
Pmi

)
. (12)

Details of the proof are let to the last section of this article.
Example 1. Relaxation on the Grad thirteen moments : for M defined in (5) we
consider the polynomial space

P = K⊕⊥ A⊕⊥ b := K⊕⊥ D, (13)

where A and b are the Sonine polynomials

A (v− u) =
m

kBT

[
(v− u)⊗ (v− u)− 1

3
‖v− u‖2 I

]
, (14)

b (v− u) = (v− u)

[
1

2
m (v− u)

2 − 5

2
kBT

]
. (15)

The orthogonality in (13) holds for the L2(M) scalar product with full contraction
when applied to tensors. Then there exists functions a(|V|, T ) > 0 and b(|V|, T ) > 0
with V = (v − u)/

√
kBT/m (see e.g [17]) such that

L−1
B (A) = −a(|V|, T )A, L−1

B (b) = −b(|V|, T )b (16)

so that L−1
B (A) ⊥ b, L−1

B (b) ⊥ A. As a consequence L−1 in (9) satisfies

L−1(A) = −ν−1
A A, L−1(b) = −ν−1

b b, (17)

for some positive values νA and νb. Those values are then related to the viscosity µB
and the thermal conductivity κB obtained in the Navier-Stokes limit of the Boltzmann
equation

µB = −kBT
10

〈
L−1
B (A) ,A

〉
= −kBT

10

〈
L−1 (A) ,A

〉
=
nkBT

νA
, (18)

κB = − 1

3kBT 2

〈
L−1
B (b) , b

〉
= − 1

3kBT 2

〈
L−1 (b) , b

〉
=

5

2

nk2
BT

mνb
. (19)

With those eigenfunctions and eigenvalues at hand one set two relaxation constraints
in addition to the conservation laws (10)

∫
R3

ν(G− f)A dv = −νA
∫
R3

fA dv, (20)
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∫
R3

ν(G− f)b dv = −νb
∫
R3

fb dv. (21)

Under the assumptions of proposition 1, one can perform a Chapman-Enskog expan-
sion in

∂tf + v · ∇xf =
1

ε
K(f). (22)

f then writes as f =M+ εMg +O(ε2). This provides us with the Euler equation up
to an order O(ε) while at the next order g satisfies

L(g) = A : D (u) + b.∇x
(
− 1

kBT

)
, (23)

where D (u) is the Reynolds tensor

D (u) =
[
∇xu + (∇xu)

T
]
− 2

3
(∇x · u) I

Proposition 1 allows to solve (23) and one finds that the corresponding diffusion coef-
ficients are those given in (18). Contrarily, if one considers the operator defined in
(8) the diffusion coefficients in the Navier-Stokes equations are not correct. One first
remark that 〈L (A) , b〉 = 0 thanks to the even/odd symmetry. Thus A and b are
eigenfunctions of L̃ with corresponding eigenvalues −ν̃A and −ν̃b defined by

ν̃A = −〈LB (A) ,A〉
〈A,A〉

, ν̃b = −〈LB (b) , b〉
〈b, b〉

.

So, in the Chapman-Enskog expansion, the Navier-Stokes equations with the following
diffusion coefficients

µK =
nkBT

ν̃A
= −nkBT

〈A,A〉
〈LB (A) ,A〉

,

κK =
5

2

nk2
BT

mν̃b
= −5

2

nk2
BT

m

〈b, b〉
〈LB (b) , b〉

.

By comparison with (18) one finds that µK = µB and κK = κB for Maxwell molecules.
In the other cases, µK = µB reads also

〈
L−1
B (A) ,A

〉
= C(n, T ) 〈LB (A) ,A〉−1

where
C(n, T ) does not depend on the interaction potential which is untrue (and likewise for
the heat conductivity). Remark finally that such a problem arises in the hydrodynamic
limit of moment system for the Boltzmann equation [33]. It is then found that µK < µB
and κK < κB.

The final step of the method consists in defining ν and G in a proper way. This is
part of the following mathematical problems that we are going to study :

1. Characterization of the set of realizable moments R+
m : the set of constraints writes∫

R3

Gmidv = (1− νi
ν

)

∫
R3

f midv, i ∈ {1, . . . , q} (24)
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⇔ ρρρG := L(ρρρf ) (25)

If one assumes that the moments ρρρf of the nonnegative function are bounded -
ρρρf ∈ R+

m - then the range of L must be in R+
m as well. The set (mi, νi)i being

already defined in (9), ν must be defined so that this important property holds.
This requires to have a tractable way to characterize R+

m and to study the range
of L as a linear operator depending on ν.

2. How to define G(f)? Assume that

Cf =

{
h ≥ 0,

∫
h(v) m(v)dv = L(ρρρf )

}
6= ∅. (26)

The final step of the method is performed by solving a variational problem and
defining G as

G = arg min
h∈Cf

∫
η(h) dv, (27)

where η is a given functional. Statistical physics state that η must be defined
as ηB(.) = . ln(.). Unfortunately theoretical and numerical studies have revealed
numerous problems as soon as there are more constraints than (10) and (20) [30].
In particular there is no solution to the variational problem under the constraints
(10, 11) in the example of Grad relaxation on thirteen moments. Adding more
constraints neither provides us with a well-posed variational problem in general.
This explains why other choices of η must be found and why we only ask for some
local stability through (3), (4) and (5).

3 The moment problem

3.1 Introducing the problem of realizable moment

Let (m0 (v)) , · · · ,mn (v)) be a list of (symmetrical tensor) polynomial functions and
ρρρ0, · · · , ρρρn be a list of (symmetrical) tensors of same order. Let R3 be equipped with
the Lebesgue measure dv. The problem of realizability is stated as follows : is there
an integrable (non null) non negative function f : R3 7→ R+ such that

∀k ∈ [0, n] ,

∫
mk (v) f (v) dv = ρρρk. (28)

ρρρ := (ρρρ0, · · · , ρρρn) is said realizable when (28) holds. In whole generality, this problem
is stated in a more general framework. That is: is there is a Borel measure µ such that∫

R3

mk (v) dµ = ρk. (29)

The existence of such a measure is related to nonnegative polynomials according to
the following remark. If µ exists, then for any nonnegative polynomial writing as
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P (v) = ααα ·mmm(v) there is ∫
R3

ααα ·mmm(v) dµ = ααα · ρρρ ≥ 0. (30)

Definition 1. Lρρρ(P ) = ρρρ·ααα is the Riesz functional at P . It is positive when Lρρρ(P ) ≥ 0
for all P ≥ 0 in P.

The converse statement of (30), that is Lρρρ(P ) ≥ 0 for any nonnegative polynomials
in P implies the existence of a Borel measure, is not true in general. More precisely, if
P2n = span (m0, · · · ,mn), the Riesz-Haviland theorem states that ρρρ is the moment of
a Borel measure iff there exists an extension to it in ρ̃ ∈ Rdim(P2n+2) whose dim(P2n)
first components are those of ρρρ and such that L̃ρ̃ρρ is positive in P2n+2 [24]. Contrarily,
the existence of such an extension is not necessary when addressing the case of realiz-
able moments as proved by Junk [30]. The characterization of realizable moments then
turns into the characterization of nonnegative polynomials in P = span (m0, · · · ,mn)
which is known as the 17th Hilbert problem.

In the sequel we study Junk’s theorem by clarifying but also modifying some
steps in the proof. Then we display known results on the characterization of positive
polynomials, give their link with the criteria of realizability in one dimension and point
out the limitation of those results in higher dimension. Next we address the case of
Grad thirteen moments where the characterization by positive polynomials provides
us with a tractable criteria for realizability. Finally, the last section is devoted to a
special class of linear maps onto the set of realizable moments which are compatible
with the Galilean invariance of the model to be constructed.

3.2 Junk’s theorem

Let us first assume that m := (m0, · · · ,mk, · · · ,mn)
T

is pseudo-Haar with the
following meaning.
Definition 2. Let m := (m0, · · · ,mn) be a list of (tensor structured) functions defined
on R3. The list is pseudo-Haar when the following property is satisfied:

∀ααα, [ααα 6= 0⇒ ααα ·m (v) 6= 0] , a.e v ∈ Rd

We denote by q the total dimension of the space generated by m.
Definition 3. We denote with L1 (m) the set of integrable functions f : R3 7→ R such
that

∀k ∈ [0, n] ,

∫
‖mk (v)‖ |f (v)| dv < +∞.

When f ∈ L1 (m) is non negative, we note f ∈ L1,+ (m), and when it is not zero we
note f ∈ L1,∗ (m).

Now we introduce the moment map
Definition 4. Let m (v) be pseudo-Haar. Then we define the map R : L1 (m) 7→ Rq
as follows

∀f ∈ L1 (m) , R [f ] =

∫
m (v) f (v) dv

10



we adopt for the sequel the following notations

R+
m =

{
R [f ] , f ∈ L1,+ (m)

}
, R∗+m =

{
R [f ] , f ∈ L1,∗,+ (m)

}
.

In principle, most results are concerned with finding a Borel measure satisfying
(29) and not necessarily represented by L1 functions. Apart of this extensive literature,
the theorem stated by Junk addresses the case of integrable functions. So we recall
the theorem together with the steps of the proof.
Theorem 2. (Junk [30]) A vector ρρρ ∈ R∗+m iff all ααα 6= 0 ∈ Rq which satisfies ααα·m(v) ≤
0 on R3, the relation ααα · ρρρ < 0 holds.
In particular, R∗+m is an open set. Moreover each ρρρ ∈ R∗+m is a moment vector of
bounded f ∈ L1,∗(m) which is compactly supported.

The proof relies essentially on a duality argument. The right implication is quite
obvious. Consider indeed a moment ρρρ ∈ R∗+m , that is a vector such that there exists a
nonnegative and non null function f ∈ L1,+ (m) satisfying ρρρ =

∫
m (v) f (v) dv. Let

ααα ·m (v) be a non positive and non null polynomial, then

ααα · ρρρ = ααα ·
∫

m (v) f (v) dv =

∫
ααα ·m (v) f (v) dv < 0 (31)

since f 6= 0 on a set of non zero measure and ααα ·m (v) 6= 0 almost everywhere. So, up
to a sign, this equation is very similar to (30) except that the inequality is strict. R+

m

is a positive cone and the above computation proves that its polar cone is the set of
coefficients of non positive polynomials :

(R+
m)◦ =

{
ααα ∈ Rq, ∀ρρρ ∈ R+

m, ααα · ρρρ ≤ 0
}

=

{
ααα ∈ Rq, ∀f ∈ L1,+ (m) ,

∫
ααα ·m (v) f (v) dv ≤ 0

}
= {ααα ∈ Rq, ααα ·m (v) ≤ 0} := C◦.

If the convex cone R+
m is of non empty interior, one finds that R+∗

m is characterized by
the right statement in theorem 2 according to (31) and the following characterization
of cone’s interior
Theorem 3. Assume C is a convex cone of Rq with non empty interior, then

∀y ∈ Rq, [y ∈ int (C)⇔ ∀ααα ∈ C◦, ααα 6= 0⇒ ααα · y < 0] .

It is possible to prove that R+∗
m is an open set in the case where the space of

velocity is a bounded set in one dimension [36] but such a construction is not possible
in other cases. A more general argument consists in considering the set

C =

{∑
i

λim (vi) , λi ≥ 0, ∀vi ∈ R3

}
(32)
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which is the set of moments of all atomic measures. C should contain R+
m according

to Tchakaloff’s theorem on quadrature rules [22]. Indeed, this theorem implies that
a compactly supported Borel measure has the same moment as the one of an atomic
measure. Moreover, the moments in C are those of all atomic measures without any
restriction in their support.
It is easily seen that the polar cone of C is the same as the one of R+

m

C◦ =
{
ααα ∈ Rq, ααα ·m(v) ≤ 0, ∀v ∈ R3

}
(33)

= (R+
m)◦. (34)

So, one proves in a first time
Proposition 4. For C defined in (32) int(C) 6= ∅.

This implies that R+∗
m ⊂ intC according to theorem 3. Then remark that for

Ψε ∈ C∞c (R3), Ψε ≥ 0 such that Ψε → δ0 as ε→ 0, one has

∀v ∈ Rd,
∫

m(x) Ψε(v − x)dx −→m(v)

This proves that the set of moments of nonnegative functions in C∞c (Rd) is dense in
C (C ⊂ clR+

m). To summarize, one has

R+∗
m ⊂ intC ⊂ int

(
clR+

m

)
R+∗

m is a convex set so that R+∗
m = int (clR+

m) according to a Caratheodory theorem
in finite dimension [38] : each ρρρ ∈ int (clR+

m) is the convex combination of q + 1
affinely independent points in int(clR+

m) and by density of q+1 affinely independent
points in R+∗

m . So finally there is

R+∗
m = intC = int

(
clR+

m

)
which proves the first assertion in theorem 2 together with ”R+∗

m is an open set”.
Finally, the q+ 1 affinely independent points in the above reasoning can be chosen as
moments of nonnegative functions in C∞c (Rd) by density which ends the proof.
Remark 1. Let P be the space generated by the components of the set of tensors
(mk(v))k. Then the first statement of theorem 2 also writes as :

ρρρ ∈ R∗+m ⇐⇒ [Lρρρ(P ) > 0 ∀P ∈ P with P (v) ≥ 0 (P (v) 6= 0)] .

Thus, when P = P2n, the characterization of a realizable moment does not require
any property related to polynomials of higher degree contrarily to moments of Borel
measure [24].

3.3 Moment matrices and sum of square polynomials

According to Theorem 2, characterizing realizable moments is equivalent to charac-
terizing those ααα for which ααα ·mmm(v) ≤ 0 on R3. As we are working with a polynomial

12



pseudo Haar family, the problem is usually stated in term of nonnegative polynomials.
In one dimension and for polynomial spaces spanned by mmm(v) = {111, v, v2, . . . , v2p}t,
the problem is known as the Hamburger moment problem. A well known theorem
states that ρρρ = {ρ0, ρ1, . . . , ρ2p} ∈ R+,∗

m iff the moment matrix (ρi+j)i=0,··· ,p, j=0,··· ,p
is positive definite. While the original proof does not make mention to it, the result
may be obtained by the characterization of positive polynomials in one dimension.
That is:

• In one dimension, every non negative polynomials in P = span(mmm) writes as a sum
of square polynomials

p(v) =
∑
i

(βi0 + βi1v + . . .+ βipv
p)2 =

∑
i

(βββi · m̃(v))2, (35)

where βββi = (βi0, β
i
1v, · · · , βip)t ∈ Rp+1 and m̃(v) = (1, v, · · · , vp)t. This result is a

consequence of the fundamental theorem of algebra (d’Alembert-Gauss).
• According to Theorem 2, ρρρ ∈ R+

m iff for every ααα s.t ααα ·m(v) ≥ 0 and ααα 6= 0, there
holds ααα · ρρρ > 0. Equivalently for any f ∈ L1,∗,+(mmm) such that

∫
fmmm(v)dv = ρρρ then

there is also ∫
ααα ·m(v) f(v) dv = ααα · ρρρ > 0 (36)

Using (35) this also writes

∑
βββti

(∫
R3

m̃(v)m̃(v)t f(v)dv

)
βββi > 0.

Thus ρρρ is realizable iff the moment matrix

HHH =

(∫
R

m̃(v)m̃(v)tf(v)dv

)
is symmetric positive definite.

In higher dimension, the problem may be generalized as follows.
Definition 5. Let m̃ = {1, m̃1, . . . , m̃p} be a pseudo-Haar family composed of mono-

mials in R[v1, · · · , vd], d > 1 and P̃ be the polynomial space generated by this family.
We denote with

P = span(m̃im̃j), 0 ≤ i ≤ j ≤ p) (37)

the space generated by the family of pairwise multiplication of any element in m̃(v).

We say that P is the quadratic space over P̃. The dimension of P being at most
(p+1)(p+2)

2 , one may extract from (m̃im̃j)i,j a pseudo-Haar family which we denote as
before with m(v).

Example 1: Each polynomial space P2p, p ≥ 1 is quadratic over Pp.
Example 2: The space of collisional invariant K is not quadratic over another space if

13



d > 1 but the space generated by {1, v, v ⊗ v, vv2, v4} is quadratic over K (here we
have used the tensorial notation for convenience.) It is a space strictly contained in P4.

Let us write now the condition ρρρ·ααα > 0 for square polynomials that is p(v) = ααα·mmm(v) =
(βββ · m̃mm(v))2. For all k ∈ {1, . . . , dim(P)}, denote with Ik = {(i, j) ∈ {1; p} s.t. m̃im̃j =
mk}. Then

αk =
∑

(i,j)∈Ik

βiβj . (38)

Correspondingly, for any (i, j) ∈ Ik, we denote ρij = ρk. There is

p∑
i,j=1

ρijβiβj =

dim(P)∑
k=1

∑
(i,j)∈Ik

ρijβiβj =

dim(P)∑
k=1

ρkαk = ρρρ ·ααα,

because of relation (38). So if we write the condition ρρρ · ααα > 0 for all square poly-
nomials (and thus for all sum of square polynomials), we end up with an equivalent
condition which is: the moment matrix H = (ρij) is symmetric positive definite (SPD).
This means that those moments whose moment matrix is symmetric definite positive
constitute a space which is R+

m or contains it. The condition on H becomes sufficient
only if all polynomials are sum of squares (SOS). This question is part of the cele-
brated 17th Hilbert problem. We refer to [6] for a bibliography on the topic. It turns
out that in dimension bigger than 1, there exists positive polynomials which are not
sum of square. As an example, for d > 3, there exists polynomials in P4 and of higher
degree which are not SOS. Questions relating SPD moment matrix, SOS polynomials
and realizable moments are addressed for example in [23, 24].
To conclude with, we always start in the method of moments relaxation with a moment
ρρρf of a nonnegative function f . So, the criteria that is given by the moment matrix
allows to discard most relaxations (24) that lead to non admissible moments, but not
all of them.

3.4 Application to relaxation of the Grad moments

So far, we have focused on pretty general consideration on realizable moment. In
practice, some usual basis in kinetic theory are

• ”Euler” basis {1,v,v2}
• Gauss basis {1,v,v ⊗ v}
• Grad basis {1,v,v ⊗ v,v v2}
• Levermore basis {1,v,v ⊗ v,vv2,v4}

The last one has no particular physical interpretation and was just introduced for
solving variational problems with the usual entropy

∫
f ln(f)dv. Among those basis,

the Grad one’s is the most important because it contains all physically meaningful
moments (mass, momentum, energy, pressure tensor, heat flux). In the sequel, we use
the decomposition of the Grad space defined in (13). The polynomial family of interest
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is the pseudo-Haar families denoted as:

a (v − u) =

(
1, (v − u) , (v − u)

2 − 3
kBT

m
,
kBT

m
A (v − u) ,b (v − u)

)
(39)

:= (a0 (v − u) ,a1 (v − u) , a2 (v − u) , a3 (v − u) ,a4 (v − u)) . (40)

It is still composed of tensors of even or odd ranks in the variable v − u. The polar
cone of R∗+a is given by:

C◦a =
{
ααα ∈ Rq, ∀v ∈ Rd, ααα · a (v − u) ≤ 0

}
.

It is immediate that any ααα ∈ C◦a has a null component on (v − u) (v − u)
2

and as a
consequence on b (v − u). Then we have

C◦a =

{
(βββ,0) ,∀v ∈ Rd, βββ ·

(
1, (v − u) , (v − u)

2 − 3
kBT

m
, a3 (v − u)

)
≤ 0

}
.

The study of realizable moments on a (v − u) then simplifies dramatically since we
just need to know which moments are realizable in the Gauss basis defined as
PGauss = span{1, v, v2, A(v)}. Using Theorem 2, the characterization of R∗+a is
equivalent to the characterization of the positive polynomials in P = span{1,v,v⊗v}.
From Hilbert’s theorems, any positive polynomial in P can be written as a sum of
square of polynomials, that is

g (v) =
∑
i

(pi + qi · v)
2
,

with pi ∈ R and qi ∈ R3. Let ρρρ = (n, nu, nD) be a moment w.r.t. this (1,v,v ⊗ v).
According to Theorem 2, ρρρ is realizable if and only if for any non negative, non null
polynomial g (v) defined by its list of coefficients γγγ there holds γγγ · ρρρ > 0. Rearrang-
ing the components of g(v) in the Gauss basis, we find after some algebra that this
condition can be written as

n
∑
i

(
[pi qi]

[
1 ut

u D

] [
pi
qi

])
> 0 := n

∑
i

(
[pi qi] H

[
pi
qi

])
.

This is equivalent to n > 0 and to the positivity of the moment matrix H. But H is
positive if and only D− u⊗ u is positive as proved in the following lemma:
Lemma 1. The matrix [

1 ut

u D

]
is positive if and only if the matrix D− u⊗ u is positive.

It is interesting to remark that for a given realizable moment ρρρ :=
{n, nu, 3ne, nΠ, nQ}, the heat flux nQ can take any value in R3 because of the char-
acterization given by theorem 2 which does not include moments of order 3. This is
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due to the fact that one can always add to a positive function having this moment a
perturbation that let it nonnegative, keeps all of its moments in the Gauss basis but
not that with respect to b (v − u). The Grad basis being conveniently written in (39),
that is starting from a nonnegative function f , there is∫

R3

f a(v − u)dv = (n, 0, 0, nΠ, nQ) .

whete nΠ is the traceless pressure tensor and nQ is the heat flux. A straightforwards
consequence of lemma 1 is the following proposition
Proposition 5. [Grad relaxation] If (n,0, 0, nΠ, nQ) is realizable, then for any λA ∈
[− 1

2 , 1] , and λb ∈ R the moment (n,0, 0, nλAΠ, nλbQ) is still realizable.
Coming back to the relaxation constraints, the above result states that the relaxed

moment (n, 0, 0, (1− νA
ν )nΠ, (1− νb

ν )nQ) is realizable when 0 ≤ 1− νA
ν ≤ 1 and for

all νb ∈ R. Also, the admissible relaxation on nΠ is just the one that is found in the
study of the ESBGK model [4, 12].

3.5 Stability under Galilean transformations

We may now address the problem of finding linear application that let R+
mmm invariant.

However, it is important to set this question in the context of kinetic theory. In the
sequel we are going to focus on the relation between such linear maps and Galilean
invariance. The method developed in section 2.2 for constructing relaxation operators
K(f) must satisfy

τu(K(f)) = K(τuf) ∀u ∈ R3 and τΘK(f) = K(τΘf) ∀Θ ∈ SO(3), (41)

where

τuf(v) = f(v + u) and τΘf(v) = f(τΘv).

Recall that K(f) = ν(G − f). The setting of ν and construction of G just depends
on the moments of f - ρρρ =

∫
f(v)mdv ∈ R∗+m - and not on f itself. We may write

ν = ν(ρρρ(f)) and G = G(ρρρ(f)). So, starting from a function f ∈ L1,+(m), τuf and τΘf
must themselves be function of L1,+(mmm) to make the construction G(ρρρ(τuf)) (likewise
G(ρρρ(τΘf))) possible. This writes

ρρρ(τuf) =

∫
(τuf)m(v)dv =

∫
f(w)m(τ−u(w))dw ∈ R∗+m .

A sufficient condition for integrability of τuf in L1(m) is: P = span(m) is invariant
under the action of τ−u, which can be expressed as

∃Λ(−u) ∈ Rq × Rq such that m(τ−u(w)) = Λ(−u)m(w). (42)

Positivity is then satisfied since τuf ≥ 0 and there is ρρρ(τuf) ∈ R∗+m . As a consequence
R∗+m is stable under the action of the linear map Λ(−u) which inverse is Λ(u). Likewise,
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if there exists Λ(Θt) ∈ Rq × Rq such that

m(Θtw) = Λ(Θt)m(w), (43)

the same conclusion holds. The above conditions relate polynomial spaces P which are
invariant under the action of translations and rotations to set of moments R∗+m which
are invariant under the above mapping. Such polynomial spaces are named Galilean
invariant and are necessarily polynomial as proved by Junk and Unterreiter [31].
Proposition 6. Assume that the space P = span{m} is invariant under the trans-
lations and the rotations. Then R+

m is invariant under the action of Λ(u) and Λ(Θ)
for any u ∈ R3 and any Θ ∈ SO(3), where Λ(u) and Λ(Θ) are the matrices defined
in (42) and (43).

Instead of proving the equivalence in the above conclusion, we prefer to look at
the construction of the model and state a necessary condition on P.
Proposition 7. Let G : R+

m → L1,+(m) s.t. G(ρρρ1) 6= G(ρρρ2) for any ρρρ1 6= ρρρ2 ∈ R+
m.

Then if G satisfies

(∀f ∈ L1,+(m)), (∀u ∈ R3), (∀Θ ∈ SO(3)), G(R[τuf ]) = τuG(R(f)),

G(R[τΘf ]) = τΘG(R[f ]),

the space P = span{m} is invariant under Galilean transforms.

4 Solving the variational problem

From now on, we assume that a vector ρρρ ∈ R+
m has been obtained after some relaxation

like (25). We are looking for a function G satisfying
∫
Gmmmdv = ρρρ together with other

properties that are summarized here.

• Nonnegativess: the Duhamel formulation of the kinetic equation (7) shows that f
remains nonnegative when G is also nonnegative.

• Entropy and convexity: the natural property related to an entropy defined as
H (f) =

∫
η (f) dv is convexity. If it holds the H-theorem is satisfied as soon as

H (G) ≤ H (f) with equality iff H (G) = H (M) since∫
∂fη
′ (f)K (f) dv ≤ ν (H (G)−H (f)).

This suggests that G should minimize H (h) under the moment constraints∫
hmmmdv = ρρρ. This also requires that when ρρρ are the moment of the local Maxwellian

function then the minimum is obtained for G =M.
• Analytic form: There is a need to to identify as much us possible and the exact shape

of G. If we formally apply Kuhn and Tucker theorem for constrained optimization
then there is

η′(G) =
∑
i

αi [ρρρ] ·mi(v) = ααα ·m (v) ,
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where (αi)i are the Lagrange multipliers related to the constraints
∫
Gmmmdv = ρρρ.

Moreover, if η is a strictly convex functions, then (η′)−1 = η∗′ where η∗ is the
Legendre dual function to η, and there holds formally:

G (v) = η∗′ (ααα ·m (v)) . (44)

This analytic expression provides us with a relation between ααα and ρρρ through the
moment constraints. ααα is then found either explicitly or using a Newton algorithm
depending on the choice of η.

Let us start with a simple example. Assume that the basis m(v) is orthonormal for
the L2(M) scalar product. Then for ρρρ ∈ R+

m we set

G(v) =M
∑

ρimi (45)

which naturally satisfies
∫
Gmdv = ρρρ.

∑
ρimi ∈ L2(M) is the classical orthogonal

projection onto P = span(mmm) of any h ∈ L2(M) satisfying
∫

mhM dv = ρρρ. It is also
well defined for those functions h = f/M 6∈ L2(M) as soon as

∫
m f dv = ρρρ and there

is

‖ρρρ‖2 = ‖
∑

ρimi‖2L2(M) = infD(ρρρ)

∫
M(f/M)2dv

with D(ρρρ) = {f/
∫
fm = ρρρ}.

Finally the function H(f) =
∫
M(f/M)2dv is an entropy for the relaxation operator

if ∫
G(1, v, v2)dv =

∫
f(1, v, v2)dv

and ∫
Gmidv = λi

∫
fmidv

for any 0 ≤ λi < 1. The only problem is that G has no sign!
In what follows, we intent to clarify the above consideration. Firstly by analyzing

known results on this topic and then by stating a theorem proving that an equation
similar to (44) holds.

4.1 The framework of convex analysis

Apart from the L2(M) case which is quite simple but does not provide us with a non-
negative solution, one should come back to the general setting of variational problem
under linear constraints (27) and to the earlier work of Borwein and Lewis [8]. While
their article addresses a wide class of problems, one may outline some reasonable
conditions for the problem to be solved. We display them as follows:
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1. dom(η) = [0, +∞[, in order to have nonnegative solutions. η is convex and even
strictly convex in order to ensure uniqueness of the solution if it exists. η is proper
and closed and finally η is super linear at infinity.

2. In this framework, there always hold the following: There exists a weak topology
for which the functional g 7→

∫
η(g) dv is semi-lower continuous and which is suited

to the continuity of the constraints with respect to g.
3. The next condition may stated in simple words as follows. There exists a feasi-

ble function g, that is a function satisfying at the same time
∫
η(g) dv ∈ R and∫

gmmmdv = ρρρ.

With this set of conditions, it may be proved that (44) is satisfied. As we will see
below, the second condition is hardly compatible with kinetic theory, especially when
one considers the entropy functional: g 7→

∫
g ln(g) dv in an unbounded domain. We

know want to make use of the simple analysis of the L2(M) case, the above framework
of Borwein and Lewis and an other approach by Csiszar.

4.2 φ-divergence

In 1970, Csiszar introduced general distances between measures defined in the
following way [18].
Definition 6. Let φ with domain on [0,+∞[, which is strictly convex at x = 1. The
φ-divergence of two distribution function is defined as

I(p‖q) =

∫
R3

q(v)φ(
p(v)

q(v)
)dv.

This definition was first intended to generalize Shannon’s entropy. When φ(x) =
x ln(x) it is known as the Kullback-Leibler divergence between p and q or relative
entropy of p with respect to q. This definition allows to consider more general functions
φ with the assumption that φ(1) = φ′(1) = 0 and φ′′(1) ≥ 0. However

∫
f ln(f)dv is

in principle the only meaningful entropy for kinetic equations.
We are now interested in solving a variational problem when q =M.
Definition 7 (Entropy and primal problem). Let φ be a φ divergence. Let ρρρ ∈ Rq and
consider the convex domain

D (ρρρ) =

{
g ∈ L1 (m) ,

∫
m g = ρρρ

}
. (46)

Define the entropy as H(f) = I(f‖M) and the real extended value function h: Rq → R
for any ρρρ ∈ Rq by

h(ρρρ) = infg∈D(ρρρ)H(g).

The primal problem consists in finding if possible a function G s.t.
1) G ∈ D (ρρρ)

2) H(G) = h(ρρρ)
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Thus solving the primal problem requires firstly to define the domain of h and
secondly to find (in the sense of existence) a function satisfying 1) and 2).

4.2.1 Analysis of the case φ(x) = x ln(x)

It has been analyzed in series of papers and we want to summarize here some key point
related to that case. Remark first that changing the Lebesgue measure withM dv the
problem is almost equivalent to the class of problem that were addressed in Borwein
and Lewis. Also φ is easily seen to satisfy the first set of conditions of subsection 4.1.
The condition 3 is addressed in the following proposition.
Proposition 8. The domain of h is R+

m.

Proof. (∀f ≥ 0), f ln(f/M) ≥ − 1
eM as a simple consequence of the inequality

x ln(x) ≥ − 1
e . Thus (∀f ≥ 0), H(f) ≥ −ne .

Next, ∀ρρρ ∈ R+
m, ∃Ψρρρ ∈ C∞c (R3) such that Ψρρρ ∈ D (ρρρ). Hence f/M is compactly

supported, bounded and H(Ψρρρ) < +∞. And there is

D+ (ρρρ) = {g s.t.

∫
R3

m g dv = ρρρ and H(g) < +∞} 6= ∅.

As a consequence h(ρρρ) is well defined for all ρρρ ∈ R+
m.

Assume now that ρρρ /∈ R+
m. Then for any f s.t.

∫
fm dv = ρρρ, there is an open set ωf

of non zero measure s.t. f < 0 on ωf . φ being equal to +∞ when x < 0, we have
h(ρρρ) = +∞.

Utilizing theorem 2, for any ρρρ ∈ R+
m we may restrict D+ (ρρρ) to

D+
Ψ (ρρρ) = {g s.t.

∫
R3

m g dv = ρρρ and H(g) ≤ H(Ψρρρ)} 6= ∅.

The superlinearity of φ together with the boundedness of moments of order more
than 1 show that D+

Ψ is weakly relatively compact in L1 by Dunford-Pettis lemma. In
principle, it is not possible to prove more than this and condition 2 of Borwein and
Lewis is not satisfied.

As a consequence any minimizing sequence fn ∈ D+ (ρρρ) converges weakly in L1 to
a function G but it is not sufficient to ensure that

∫
Gm dv = ρρρ. Junk has shown in

a famous paper that the constraint of highest degree might drop in when looking at
the infimum in D+ (ρρρ). We want here to give a rapid hint into that problem. Consider
the dual function h∗ of h defined on its domain Λ by

h∗(ααα) =

∫
exp(ααα ·mmm)dv

and assume that Λ ∩ ∂Λ 6= ∅. For ααα ∈ Λ ∩ ∂Λ. Clearly h∗ has only sided derivative at
ααα in the directions pointing into the domain and there is only a subdifferential at ααα.
One can prove the following. Firstly, each moment

ρρρ+ = (ρ0, ρ1, . . . , ρq + t), t > 0,
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where

ρρρ =

∫
mmm(v) exp(ααα ·mmm)dv

belongs to R+
m when mmm = {1, v, v2, . . . , |v|N} (here N is the maximal degree of

the component). Indeed, ρρρ being a realizable moment, the necessary and sufficient
condition ρρρ ·ααα > 0 for any positive polynomial implies ρρρ+ ·ααα > 0 for any ρρρ+. One can
then prove that [26, 35]

h∗∗(ρρρ+) = max
α̃αα
{α̃αα · ρρρ+ − h∗(α̃αα)} = ααα · ρρρ− h∗(ααα) = h(ρρρ).

h being semi lower continuous in R+∗
m (implying h∗∗ = h) this proves that the subdif-

ferential ∂h∗(ααα) is the whole half-line ρρρ+. Therefore infg∈D(ρρρ+)H(g) = h(ρρρ) is attained
at the function exp(ααα ·mmm) 6∈ D(ρρρ+). To summarize, the existence of a solution to
the primal problem is subjected to the shape of the domain of definition of the dual
function h∗. However, the problem can still be seen as a problem of approximation
theory.
Remark 2. We have seen that under suitable assumption on φ, any minimizing
sequence fn ∈ D+ (ρρρ) converges weakly in L1 to a function G which satisfies

H(f) = inf
f∈D(ρρρ)

H(f) = inf
f∈D(ρρρ)

I(f |M)

Csiszar has defined the later value as the ”distance”’ d(M, D(ρρρ)) between M and
D(ρρρ). G was called later on the generalized projection ofM on D(ρρρ) [20]. If G ∈ D(ρρρ),
G is named projection and it is the solution to the primal problem.
d is not a metric but it plays the role of the square Euclidean distance when
φ(x) = x lnx and there is Pythagorus theorem

(∀f ∈ D(ρρρ)), d(M, f) = d(M, G) + d(G, f).

The question that will be addressed in the next section is when does d(M, fn)→
d(M, G) imply weak convergence of fn to G in L1(m).

4.2.2 Csiszar assumption

In a remarkable paper, Csizsár [20] has shown existence of generalized projection
onto convex subset D of some finite measure space for a wide class of problem. If we
restrict ourselves to the case of constraints like D(ρρρ), sufficient assumptions on φ to
the existence of generalized projection are: φ is a strictly convex differentiable function
defined on ]0,+∞[,

φ(1) = φ′(1) = 0, lim
p→+∞

φ′(p) = +∞. (47)

When one turns to the problem of the existence of a projection, one needs an additional
assumption. Let us assume for simplicity that the condition at x = 1 occurs at x = 0.
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The idea consists in considering the Orlicz (Banach) space Lφ whose norm is related
(but not equal) to H(|g|) and its dual space L∗φ = Lφ∗ . If the dual space contains
P = span(mmm), a theorem states that any bounded sequence gn in Orlicz morm which
converges in measure to a given measure G satisfies on one hand G ∈ Lφ and on the
other hand converges P weakly, that is

∫
gn p(v) dv →

∫
Gp(v) dv ∀p ∈ P. So, after

one has proved that G is the generalized projection of M on D(ρρρ), this proves that
G ∈ D(ρρρ). In other words G is the (unique) solution to the primal problem.

4.3 Assumption and main result

Without too much restriction, Csiszar assumption’s can be restated as follows.
Definition 8 (φ-divergence functions). In this article, we assume that φ has the
following properties:

1. The function φ : R 7→ R
⋃
{+∞} is strictly convex on its domain dom (φ) = [0,+∞)

and differentiable on [0,+∞)
2. There holds the following properties:

φ (0) = 0, p0 := inf
y>0

φ (y)

y
∈ R, sup

y>0

φ (y)

y
= +∞

3. For any polynomial π (v) = γγγ ·m (v) then φ∗ (π) ∈ L1 (M (v) dv) where φ∗ is the
Legendre transform of φ

Let us address the following remarks:

1. From the first assumption, dom (φ) = [0,+∞) enables to grant that the primal
problem will have solutions that will be non negative. Also, it is quite natural
to assume that 0 is in the domain of φ unless the p.d.f 0 cannot appear as a
solution. So we will be able to produce non negative modeling function for the BGK
construction. Differentiation on [0,+∞) implies semi-lower continuity on [0,+∞)
(which is essential in convex optimization) and will enable one to one property of φ′.
Strict convexity will have, as often, many implications in uniqueness consideration.

2. The third assumption is essential for integrations properties. In particular, it breaks
when φ (x) = x ln (x) since there holds then φ∗ (y) = exp (y − 1) and only few
polynomial exp (π (v)− 1) have proper integration properties. This is one of the
most difficult aspect of the Levermore program which was based first on a function
like x ln (x).

As usual in convex analysis, the theorem that will be established is based on the
analysis of the primal problem and of the dual problem.
Problem 1. The dual problem consists in defining the Legendre dual function h∗mmm
from Rq to the extended reals R - that is R

⋃
{+∞,−∞}- as follows:

∀ααα ∈ Rq, h∗mmm (ααα) = sup
ρρρ∈Rq

(ρρρ ·ααα− hm (ρρρ)) . (48)

The theorem that we are going to prove is the following
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Theorem 9. 1. For any ρρρ ∈ R+∗
m there exists a unique ααα ∈ Rq such that

ρρρ =

∫
φ∗′ (ααα ·m (v)) m (v)Mdv

and the moments ρρρ and its conjugate moment ααα are linked thanks to the sub-
differential equation:

hm (ρρρ) + h∗m (ααα) = ααα · ρρρ (49)

2. Moreover the function G =Mφ∗′ (ααα ·m (v)) is the unique minimizer of the primal
problem and satisfies

hm (ρρρ) =

∫
φ

(
G

M

)
Mdv (50)

3. hm is strictly convex in its domain and ∇h∗ is a bijection from C◦ to R+
m \ {0}

where

C◦ = {ααα ∈ Rq, ααα ·m(v) > p0, on a set of ωααα of non 0 measure} . (51)

The proof goes along different steps we are going to develop. The first one consists
in generalizing Proposition 8 concerning the primal problem.
Proposition 10. The following properties are satisfied

1. The moment entropy function hm (ρρρ) has returned values in R
⋃
{+∞}

2. Its domain is exactly dom (hm) = R+
m =

{∫
mg, g ∈ L1+ (m)

}
.

3. The interior of the domain is given by int (dom (hm)) = R+∗
m = dom (hm) \ {0}

4. The function hm is convex.

From this we may show using Dunford-Pettis Theorem that there exists a general-
ized projection in the sense of Remark 2. However, it is not sufficient to prove on one
hand that G is a projection and on the other hand to exhibit the shape of the solu-
tion. Both can be proved by using duality arguments. We start with some properties
of the Legendre conjugate φ∗ of φ.
Lemma 2. Let φ be a φ-divergence function. Then the following properties hold

1. There holds ∀x ∈ (−∞, p0] , φ∗ (x) = 0
2. There holds ∀x ∈ (p0,+∞) , φ∗ (x) > 0
3. The function φ∗ : R 7→ R+ is C1 smooth and thus semi-lower continuous.

The link between strict convexity of a given function and smoothness of its con-
jugate is well known in convex analysis (see [38]). But we prefer to detail the whole
proof of this lemma for the sake of consistency. Smoothness of the function φ∗ will
have many important implications on the smoothness of the dual function h∗, which,
in turn, will have important consequences on the primal minimization problem and
on existence and uniqueness of the minimizer.
At this point, it is important to recall the noteworthy example of Abdelmalik and Van
Brummelen [2].
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Example 2. For N ∈ N, define φN with

∀x < 0, φN (x) = +∞, ∀x ≥ 0, φN (x) = N
(
x1+1/N − x

)
is a φ-divergence function. Moreover, there holds respectively

p0 (N) = −N, ∀y ≥ p0 (N) , φ∗N (y) =

(
1 +

y − 1

N + 1

)N+1

It is really worth noticing the following pointwise convergence aspect:

∀x ≥ 0, lim
N
φN (x) = x ln (x) , ∀y ∈ R, lim

N
φ∗N (y) = exp (y − 1)

that is, the entropy φN is a pointwise approximation of the Boltzmann entropy density
x ln (x) and φ∗N is an approximation of exp (y − 1) which is the Legendre transform of
x ln (x). Moreover we have the important limits:

∀x ∈ R∗+, ∂xφN (x) = (N + 1)x1/N −N, ∀y ≥ −N, ∂yφ
∗
N (y) =

(
1 +

y − 1

N + 1

)N
∀x ∈ R∗+, lim

N
∂xφN (x) = ln (x) + 1, ∀y ∈ R lim

N
∂yφ

∗
N (y) = exp (y − 1)

This means that the derivatives of φN and φ∗N are respectively good approximation of
the ∂x (x lnx) and ∂y (exp (1− y)).

We can now give an explicit expression of the dual function h∗ and analyze its
properties.
Theorem 11. 1. For any ααα ∈ Rq there is

h∗m (ααα) = sup
g∈L1(m)

∫ [
ααα ·m (v) g (v)− φ

( g

M

)
M (v)

]
dv ∈ R. (52)

2. Moreover one can also compute for any ααα ∈ Rq

h∗m (ααα) =

∫
φ∗ (ααα ·m (v))M (v) dv. (53)

3. The function h∗m is continuously differentiable on Rq and there holds for any ααα ∈ Rq

h∗′m (ααα) =

∫
φ∗′ (ααα ·m (v)) m (v)M (v) dv. (54)

Now we are able to finish the proof of Theorem 9. It is based on important
properties. In few words, it is based on well known properties of convex analysis.

1. Any convex function f : Rq → R
⋃
{+∞} is continuous on the interior of its domain

2. Any convex function f : X → R
⋃
{+∞} which is continuous at x ∈ dom (f) has a

non void sub-differential at x, that is ∂f (v)) 6= ∅.
3. For a proper convex function f , closed at ρρρ, there is ααα ∈ ∂f(ρρρ)⇔ ρρρ ∈ ∂f∗(ααα).
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5 Application to the construction of BGK models
using φ-divergence

5.1 Relaxation on the Grad thirteen moments

Let f(t, x, v) be a nonnegative function at (t, x). Denote with n, u and T the corre-
sponding density, velocity temperature and with M the local Maxwellian associated
to f . Let a (v − u) be the local Grad basis and denote

ρρρf = (n,0, 0, nΠ, nQ) (55)

=

∫ (
1, (v − u) , (v − u)

2 − 3
kBT

m
,A (v − u) ,b (v − u)

)
f (v) dv. (56)

Remark that there is by definition ρρρM = (n,0, 0, 0, 0) .

5.1.1 Principle of construction

We just recall here the steps in the derivation of a relaxation operator in the framework
of example 1.

1. The relaxation frequencies νA and νb being defined in (18), one may take any value
for ν with the condition ν > νA, νb.

2. The relaxed moment L (ρρρf ) writes

L (ρρρf ) = (n,0, 0, λAnA, λbnb) , λA = 1− νA
ν
, λb = 1− νb

ν
. (57)

With the above value of ν, L (ρρρf ) is still realizable from proposition 5
3. Choose a φ-divergence function satisfying the properties of Definition 8. Then

replace in Theorem 9, ρρρ with L(ρρρf ). Then G is defined as M(φ∗)′(ααα ·mmm)
4. The BGK operator reads as K (f) = ν (G− f).

5.1.2 Properties of the model

Remark firstly that G =M(φ∗)′(ααα ·mmm) is nonnegative. Thus the solution f to (7), if
it exists, is nonnegative as well. Next the Grad space satisfies the necessary conditions
of proposition 7 as concerns Galilean invariance of the modeling equation (7). Then
Galilean invariance holds according to
Proposition 12. For τ ∈ {τu; τθ} τG(f) = G(τf)

Let us now prove the (full) H-theorem.
Theorem 13. [H-theorem] Recall that

H(f) =

∫
R3

Mφ(f/M) dv.

Then there hold

∀f ≥ 0 ∈ L1 (a) ,

〈
K (f) ∂xφ

(
f

M

)〉
≤ 0.
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together with the characterization of equilibrium

K (f) = 0⇔
〈
K (f) ∂xφ

(
f

M

)〉
= 0⇔ f =M.

It must be denoted that the condition ν > νA, νb is necessary in order to obtain
the above results. This may be easily understood if one considers the relations between
the moments of G and those of f (24) which only equate at ρρρG = ρρρf = ρρρM. Let us
now derive proposition 1 in the case of relaxation in Grad space together with other
properties stated in section 2.1 (the proof easily extends to the general case).
Proposition 14. For K(f) derived in section 5.1.1, the linearized operator L defined
in (6) reads as

L (g) = ν
(
PK − I +

(
1− νA

ν

)
PA +

(
1− νb

ν

)
Pb

)
. (58)

As a consequence there holds

1. The kernel of the operator L is exactly K and there is also

∀f,
[∫

K (f)φ = 0

]
⇔ φ ∈ K

2. The operator is Fredholm, self-adjoint and negative on K⊥
3. The diffusion coefficients in the Navier-Stokes limit of (7) are given by (18).

Remark that the second item is easily seen from (58). The third one is already
proved in example 1.

5.2 The general case

We now consider a polynomial space P satisfying the condition in proposition 7 and
containing PGrad ⊂ P. P being invariant under translations and rotations, we may
write

P = K⊕⊥ m6 ⊕⊥ · · · ⊕⊥ mq. (59)

where the polynomials (mi)i are defined in (9). If the collision invariants are written
in an orthogonal basis for the L2(M) dot product, then the vectors ρρρf , ρρρM and
ρρρG = L(ρρρf ) in the above decomposition read respectively

ρρρf = (n,0, 0, ρ6, · · · , ρq)T ,
ρρρM = (n,0, 0, 0, · · · , 0)

T
,

ρρρG =
(
n,0, 0, (1− ν6

ν
)ρ6, · · · , (1−

νq
ν

)ρq

)T
.

The criteria of realizability of ρρρG through symmetric positive definite moment matrix
(see section 3.3) is unsatisfactory for two reasons : 1 - if P is a quadratic space (def-
inition 5), it is difficult to express the moment matrix corresponding to ρρρG without
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knowing explicitly the eigenfunctions (mi)i and the corresponding eigenvalues (νi)i, 2
- even if it would be possible this criteria is not sufficient if all positive polynomials in
P are not sum of square polynomials.
So, for want of anything better we make the following assumption : the solution to (7)
is such that the ball B(ρρρM, r) of radius r = ||ρρρf − ρρρM|| stays in R∗+m . In this case, it
is easily seen that ρρρG ∈ R∗+m if ν > νi, ∀i.
Let us consider again a φ-divergence function satisfying the properties of Definition 8.
The question whether ∫

K(f)∂fφ

(
f

M

)
dv ≤ 0 (60)

holds or not is for the moment an open problem. However the characterization of local
equilibrium is easily found since K(f) = 0 if and only if ρρρf = ρρρG which occurs only
at G = M. All other properties in the preceding section are satisfied. In particular,
in the Chapman-Enskog expansion, one still finds that the solution satisfies the Euler
equation in O(ε) while the Navier-Stokes equation is obtained with the right viscosity
and heat conductivity just by using the definition of (9) in (18).

5.3 Some known models

5.3.1 BGK and ESBGK models

Let φ(x) = x ln(x). If one just considers the conservation laws (10) together with the
relaxation equation (20), then the variational problem is well-posed for − 1

2 ≤ 1− νA
ν ≤

1. Indeed on one hand the of constraints (26) is non empty according to proposition
5 and on the other hand the domain of h∗ is non empty and open [30].
ν = νA with νA defined in (18) gives the well-known BGK operator [7]. Remark in this
case that (21) is satisfied for νb,BGK = ν. So while the right viscosity is recovered in
the hydrodynamic limit, the heat conductivity κBGK is such that the Prandtl number

Pr =
5

2
R

µB
κBGK

=
νb,BGK
νA

= 1.

More generally, for 0 ≤ νA
ν ≤

3
2 , the solution to the variational problem always satisfies∫

Gb (v− u) dv = 0. The ESBGK model is then found by letting ν = νb with νb
defined in (18) which corresponds to the limit νA

ν = 3
2 and Pr = 2

3 .

5.3.2 Shakhov model

Let now φ(x) = 1
2 (x − 1)2. In the Grad space, one considers the system (10, 20, 21).

Assume that µB and κB are either given by the exact computations in (18, 19) or by

using some approximations of them. Let ν = νA = nkBT
µB

and νbbb = 5
2
nk2BT
mκB

. Remark
that

Pr =
5

2
R
µB
κB

=
νbbb
νA

=
νbbb
ν
.
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Then the system (10, 20, 21) together with the minimization problem give

GS =M
(

1 +
1− Pr

5

m

n(kBT )2
q · (v − u)

(
m

(v − u)2

kBT
− 5

))
,

where q is the heat flux defined by

q =
1

2
M

∫
R3

f (v − u)(v − u)2 dv.

Originally GS was computed in such a way that∫
R3

a(v − u)ν(GS − f)dv =

∫
R3

a(v − u)Q(f, f)dv (61)

for Maxwell molecules and then adapted to other types of molecular interaction by
introducing Pr into the definition of GS . In the later case, the above equation is not
valid.
The generalization through the diagonalization in (9) is easily performed by letting

G =M

(
1 +

∑
i

(
1− νi

ν

)
Pmi(g)

)
,

where g = f/M− 1 and ν > νi, ∀i. In both cases G is not nonnegative. However one
must point out that H(f) =

∫
Mφ(f/M) dv is the natural entropy related to the

whole method since∫
R3

ν(GS − f)φ′(
f

M
− 1) dv = 〈L(g), g〉 ≤ 0

where g = f/M− 1 and L is defined in (12). It might happen that g 6∈ L2(M) in
which case the above value is −∞. However 〈L(g), g〉 = 0 only for g = 0 or equivalently
f =M. Every other properties of section 2.1 are satisfied except the nonnegativness
of G.

5.3.3 Levermore’s operator

The analysis of the Chapman-Enskog expansion for moment system of the Boltzmann
equation shows that wrong diffusion coefficients are obtained at the Navier-Stokes
level [33]. Levermore has then proposed to substitute to the collision operator Q(f, f)
a sum of relaxation operators constructed as follows. Let K = M1 ⊂ M2 ⊂ . . . ⊂ MN

and 0 < η1 < η2 < . . . < ηN . Set

Mk = Argmin

{∫
g ln(g) /

∫
gp(v) dv =

∫
fp(v) dv, ∀p ∈Mk

}
, (62)
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then KLev(f) writes

KLev(f) = η1(M− f) +

N∑
k=2

(ηk − ηk−1)(Mk − f)

Due to the assumption on each relaxation frequencies νi, it is clear that KLev(f)
preserves positivity, together with conservation laws. Also

∫
f ln(f)dv is the entropy

in the non homogeneous equation (7). The linearized operator reads as

LLev = −
N−1∑
k=1

ηk (Pk+1 − Pk) + ηN (PN − I)

where Pk is the orthogonal projection onto Mk in L2(M). Denoting with
(mi,k)i=1,...,Dk an orthogonal basis of Mk ∩M⊥k−1, there is

LLev = ηN (PN − I)−
N−1∑
k=1

ηk

Dk+1∑
i=1

Pmi,k+1

= ηN

(PK − I) +

N−1∑
k=1

(
1− ηk

ηN

)Dk+1∑
i=1

Pmi,k+1


which has a form similar to (12). However there are many problems related to this
construction. Junk was the first to point out that the solution to the variational
problem might not satisfy all constraints [30]. Also, if LLev = L in (12), the solution
to the variational problem in (62) may not exist as shows the simple case of Maxwell
molecules. Indeed, some spaces Mk have a maximal odd degree in which case there
exists no solution in (62). Remark finally that KLev(f) does not satisfy relaxation
equations such as (11). Indeed, for p ≥ 3 and 1 ≤ i ≤ Dp, there is

∫
KLev(f)mi,p dv = η1

∫
(M− f)mi,p dv +

p−1∑
k=2

(ηk − ηk−1)

∫
(Mk − f)mi,p dv

= −ηp−1

∫
f mi,p dv +

p−1∑
k=2

(ηk − ηk−1)

∫
Mkmi,p dv.

But for 2 ≤ k ≤ p− 1,
∫
Mkmi,p dv is not related to

∫
f mi,p dv in the minimization

problem (62). Also, it does not vanish except if Mk = M q(v) for some polynomial
q(v) ∈ Mk in which case the functional to be minimized in (62) is the one of the
previous section.
The minimization problem in (62) can be fixed by using φ-divergence as in definition 8
instead of φ(x) = x lnx since then the solution exists whatever the parity of the highest
degree of the polynomials in the constraints. The operator satisfies by construction
(60) and the characterization (4) follows under the sufficient condition M1 = K. Thus,
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in the general case of section 5.2, the model is well-posed. Notice again that relations
(11) still not hold so that it cannot be used in practice, especially in the context of
moment systems for which it was originally designed.

6 Proofs

6.1 Proofs of the section 3

Proof. (Theorem 3) Let x ∈ int(C). Then there exists ε > 0 s.t. B(x, ε) ⊂ int(C). So
∀y ∈ C0, y 6= 0, x · y ≤ 0. But if there exists y 6= 0 s.t. x · y = 0, then by introducing
z = x+ ε y

‖y‖ , we get z · y > 0. But as z ∈ B(x, ε), we get a contradiction.

Conversely, let x0 ∈ C s.t. (∀y ∈ C0, y 6= 0), x0 · y < 0. Consider the linear form:
y 7→ x0 · y. Hence, by compactness of the unit sphere, we get

sup
y∈C0, ‖y‖=1

x0 · y = −α < 0.

Therefore, (∀y ∈ C0), x0 · y ≤ −α‖y‖. Then ∀x ∈ B(x0,
α
2 ) and ∀y ∈ C0,

x · y ≤ (x− x0) · y + x0 · y ≤
α

2
‖y‖ − α‖y‖ ≤ −α

2
‖y‖.

Then ∀x ∈ B(x0,
α
2 ), ∀y ∈ C0\{0}, x · y < 0. By recalling that (C0)0 = C and that

(C0)0 = {x ∈ Rq, s.t. ∀ y ∈ C0, x · y ≤ 0}, we deduce that B(x0,
α
2 ) ⊂ C i.e.

x0 ∈ int(C).

Proof. (Proposition 4) Let q be the dimension of the space generated by m. Then
let us prove that there exists x1, · · · ,xq such that the family m (xk) , k ∈ [1, q] is
independent. It is obvious first that there exists x1 such that m (x1) 6= 0. Otherwise,
for any γγγ and for any x there is γγγ · m (v)) = 0 and the family m (v)) cannot be
pseudo-haar. That being said, there exists x2 such that m (x1) ,m (x2) is independent.
If we assume the contrary, this means that for any x there is λ (x) such that m (x) =
λ (x) m (x1). Choose now γγγ not zero orthogonal to m (x1). Then we have for any x,
γγγ ·m (x) = λ (x)γγγ ·m (x1) = 0. But this is in contradiction with the pseudo-haar
assumption. By induction, if m (x1) , · · · ,m (xk) is independent such that k < q,
we can always find γγγ not zero in the orthogonal part and so justify, by the pseudo-
haar property, that there exists a xk+1 such that the family m (x1) , · · · ,m (xk+1) is
independent.
If C has an empty topological interior, then it is contained in an hyperplane and the
subtraction of 2 elements of C is contained in an hyperplane containing 0. Here we
just prove that Rq = C − C. For this let us consider the family m (xk) , k ∈ [1, q].
By the former lemma it is (independent so also) generating. Then any ρρρ ∈ Rq can be
written by a linear combination:

ρρρ =

k=q∑
k=1

λkm (xk)
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Just let then write λk = λ+
k − λ

−
k with x+, x− the positive and negative part of any

real x. Then we have immediately:

ρρρ =

k=q∑
k=1

λ+
km (xk)−

k=q∑
k=1

λ−km (xk)

so proving Rq = C − C.

Proof. (Lemma 1) Let v 6= 0 and α such that α+ u ·v = 0. A direct calculation gives

[α v]

[
1 u
u D

] [
α
v

]
= α2 + 2αu · v + D : v ⊗ v > 0

By factorization there holds

α2 + 2αu · v + D : v ⊗ v = (α+ u · v)
2

+ (D− u⊗ u) : v ⊗ v > 0. (63)

Then as α+ u · v = 0, it comes that D− u⊗ u is positive.
The converse statement is straightforwards. If D− u⊗ u is positive, choose α,v 6= 0.
Since (D− u⊗ u) is positive, then RHS of (63) is always non negative. It is zero if and
only if both α+ u ·v and (D− u⊗ u) : v⊗v are zero. From positiveness of D−u⊗u
we get v = 0. So α = 0.

Finally we prove quickly Proposition 5.

Proof. (Proposition 5). If (n,0, ne, nΠ, nQ) is realizable, then∫
R3

(v − u)⊗ (v − u)f dv = nΠ + n
kB
m
T Id

is SPD. We proceed as in [12]. Let Θ1, Θ2, Θ3 the eigenvalues of Π. Then the
eigenvalues of λAΠ + (1− λA)nkBTm Id are

1 + 2λA
3

Θ1 + (1− λA)
Θ2

3
+ (1− λA)

Θ3

3
, (1− λA)

Θ1

3
+

1 + 2λA
3

Θ2 + (1− λA)
Θ3

3
,

(1− λA)
Θ1

3
+ (1− λA)

Θ2

3
+

1 + 2λA
3

Θ3.

So λAΠ + (1 − λA)nkBTm Id is SPD for λA ∈ [− 1
2 , 1] Hence, the relaxed moment

(n,0, ne, nλAΠ, nλbQ) is realizable.

Proof. (Proposition 7). Let ρρρ ∈ R+
m and f ∈ L1,∗(m), f ≥ 0 s.t. R[f ] = ρρρ. Let u ∈ R3

and assume that

G(R[τuf ]) = τuG(R[f ]) = τuG(ρρρ). (64)

Hence there exists a relation between ρρρ and R[τuf ]. Remark that the relation defined
by (64) does not depend on f as soon f ∈ R−1(ρρρ). Thus, the application L = R ◦ τu ◦
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R−1 : R+
m → R+

m is well defined as soon as τuf ∈ L1,+(m) if f ∈ L1,+(m).
Under this condition, R−1 defines a linear map from R+

m into subsets of L1,∗(m) as
follows:

(∀ λ ≥ 0), R(R−1(ρρρ1) + λR−1(ρρρ2)) =

∫
(f + λg)m(v)dv = ρρρ1 + λρρρ2

which is equivalent to R−1(ρρρ1 +λρρρ2) = R−1(ρρρ1)+λR−1(ρρρ2)). Hence L = R◦τu ◦R−1 :
R+

m → R+
m is linear.

Now remark that this relation can be extended to Rq. Indeed, R+∗
m is an open and non

void set in Rq and contains q independent vectors (ρ1, . . . , ρq) which form a basis of
Rq. Otherwise R+∗

m would be contained in an hyperplane. Thus, the linear application
L is well defined on Rq entirely.
∀ρρρ ∈ Rq, ∀f ∈ R−1(ρρρ), there is Lρρρ =

∫
f Lm(v) dv and Lρρρ = R ◦ τuf at the same

time i.e.∫
R3

τuf(v)m(v) dv =

∫
R3

f(w) m(w − u) dw =

∫
R3

f(w)Lm(v) dv.

As Im(R−1(Rq) = L1(m), the previous relation must be true for any f ∈ L1(m).
Hence P = span(m) must be invariant under the action of τ−u and L = Λ(−u) as
defined in (42). We can proceed in the same way for any u ∈ R3 and Θ ∈ SO(3), we
deduce that P is invariant by Galilean transforms.

6.2 Proof of section 4

Proof. (Lemma 2). Let us prove any of the claimings:

1. First let us remark that from the definition of φ-divergence, there holds the following
property: since φ is strictly convex and that there is φ (0) = 0 then the following
function

∀y ∈ (0,+∞) , y 7→ φ (y)

y
∈ (p0,+∞)

is strictly increasing and one to one from (0,+∞) onto (p0,+∞). For any p ≤ p0

and for any y > 0 we have

p ≤ p0 <
φ (y)

y
.

Then using φ (0) we have ∀p ≤ p0, ∀y ≥ 0, py − φ (y) ≤ 0. Hence, taking the
supremum on y ∈ dom (φ) = [0,+∞) there holds ∀p ≤ p0, φ

∗ (p) ≤ 0. But on the
other hand, since the function φ is convex and semi lower continuous, there holds
φ∗∗ = φ. As a consequence,

φ (0) = − inf
p∈R

φ∗ (p) = 0.

This means that infp∈R φ
∗ (p) = 0. So we have ∀p ∈ R, φ∗ (p) ≥ 0, ∀p ≤

p0, φ
∗ (p) ≤ 0. So ∀p ≤ p0, φ

∗ (p) = 0.
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2. Now let us prove the non negativity of φ∗. Since the function φ (y) /y is strictly
increasing and one to one, it is also continuous (characterization of bijection on
intervals). For p ∈ (p0,+∞) there is just one element yp ∈ (0,+∞) such that
pyp − φ (yp) = 0. Then for any y ∈ (0, yp) we have pyp − φ (yp) > 0 and for any
y > yp there holds pyp − φ (yp) < 0. In particular, there holds

∀p > p0, sup
y∈dom(φ)

yp− φ (y) = sup
y∈[0,yp]

yp− φ (y) ≥ 0.

But any semi-upper continuous function gets its supremum on a compact set (and
yp− φ (y) is semi-upper continuous). Then there exists zp ∈ [0, yp] such that

∀p > p0, φ∗ (p) = zpp− φ (zp) ≥ 0, φ∗ (p) = zpp− φ (zp) ∈ R.

Finally, since for all y ∈ (0, yp), yp− φ (y) > 0 the supremum is of course > 0.
3. From the former property, dom(φ∗) = R. Then φ∗ is continuous on R and at any

point p ∈ R, its sub-differential is not void. Assume that y1 < y2 are in its sub-
differential. Then, by the characterization of the sub-differential for φ∗, and since
φ = φ∗∗ (semi-lower continuity)

φ (y1) = py1 − φ∗ (p) , φ (y2) = py2 − φ∗ (p)

this also means that p ∈ ∂φ (y1) and p ∈ ∂φ (y2). So, φ (y)− φ (yi) ≥ p (y − yi) . So

p (y2 − y) ≥ φ (y2)− φ (y) , φ (z)− φ (y1) ≥ p (z − y1) .

For y = y1 and z = y2, there holds p (y2 − y1) ≥ φ (y2) − φ (y1) ≥ p (y2 − y1). So
φ (y2)−φ (y1) = p (y2 − y1) . In particular, since φ is convex, then for any α ∈ [0, 1]
and y = αy1 + (1− α) y2

φ (y) ≤ αφ (y1) + (1− α)φ (y2) = φ (y2) + αp (y1 − y2)

having φ (y2) = −φ∗ (p) + py2 we get φ (y) ≤ −φ∗ (p) + (1− α) py2 + αpy1 =
−φ∗ (p) + py. This proves that p ∈ ∂φ (y). Using the same inequalities as above we
have then

∀y ∈ [y1, y2] , φ (y)− φ (y1) = p (y − y1) .

So φ is affine on [y1, y2] (with y1 < y2) which contradicts that φ it is strictly
convex. Then for any p the sub-differential ∂φ∗ (p) has only one element. Then
φ∗ is differentiable. Finally any convex function on R which is differentiable is C1

smooth.

Proof. (Proposition 10)
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1. Define the entropy by

∀g ∈ L1 (m) , H (g) =

∫
φ
( g

M

)
M∈ R

⋃
{+∞} .

First let us begin by assuming that g ≥ 0 almost everywhere. φ is differentiable on
[0,+∞[ strictly, φ(0) = 0 and φ(p)→ +∞ imply that φ is bounded from below. So

H (g) ≥ min(φ)

∫
Mdv.

This proves that H is bounded form below independently of g.
Now assume that g takes negative values on a non zero measure set of R+ denoted
by Ω. So φ = +∞ on Ω. Then

H (g) =

∫
φ
( g

M

)
M = +∞.

2. Finally H is strictly convex on its domain comes thanks to the strict convexity of φ.
3. Now let us prove the rest of the proposition.

• Let ρρρ ∈ R+
m. Then there exists Ψρρρ ∈ C∞c (R3), Ψρρρ ≥ 0 s.t.

∫
Ψρρρmmmdv = ρρρ. Thus

the set D+(ρρρ) defined as

D+(ρρρ) = {g ≥ 0,

∫
gmmm = ρρρ, H (g) ≤ H (Ψρρρ)}

is non empty and convex. Moreover, infH exists on D+(ρρρ) but is not necessarily
attained by a function in D+(ρρρ). Then R+

m ⊂ dom (hm). If ρρρ /∈ R+
m, then there

are no nonnegative function that realizes ρρρ. Hence, hm(ρρρ) = +∞ by definition
of hm. So dom (hm) = R+

m.
• It is very clear that any ball of Rq which contains 0 contains moment ρρρ /∈ R+

m.
Then any subset of R+

m which contains 0 is not open. On the other hand the set
R+∗

m is open. Then it is obviously the biggest open set (in sense of inclusion) which
is included in R+

m. Then we have straightforwards: int (dom (hm)) = int (R+
m) =

R+∗
m .

• Now we need to prove that the function hm : Rd 7→ R
⋃
{+∞} is convex. Let

ρ1, ρ2 ∈ R+∗
m . Then (∀ε > 0), ∃g1, g2 ∈ L1(m) with

∫
gimmmdv = ρρρi such that

h(ρi) > H(gi)− ε for i ∈ {1; 2}. Thus,

(∀λ ∈ [0, 1]) λhm(ρ1) + (1− λ)hm(ρ2) > λH(g1) + (1− λ)H(g2)− ε.

H being strictly convex it comes that

(∀λ ∈ [0, 1]) λhm(ρ1) + (1− λ)hm(ρ2) > H(λg1 + (1− λ)g2)− ε.
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By definition of hm it holds that

(∀λ ∈ [0, 1]) H(λg1 + (1− λ)g2) ≥ hm(λρ1 + (1− λ)ρ2)

and the convexity of hm follows.

6.3 Proofs of section 4

Proof. (Theorem 11)

1. Let ρρρ ∈ Rq and recall that D (ρρρ) =
{
g ∈ L1 (m) ,

∫
mg = ρρρ

}
(which is never the

empty set). There is by definition:

hm (ρρρ) = inf
g∈D(ρρρ)

∫
φ
( g

M

)
M

Noting that for any g ∈ D (ρρρ) there holds ρρρ =
∫

ag we get

ααα · ρρρ+ sup
g∈D(ρρρ)

[
−
∫
φ
( g

M

)
M
]

= sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])

As ααα · ρρρ− hmmm(ρρρ) = h∗mmm(ααα) we have

h∗mmm (ααα) = sup
ρρρ∈Rq

sup
g∈D(ρρρ)

(∫ [
m ·ααα g − φ

( g

M

)
M
])

.

The next step consists to show that supρρρ∈Rq and supg∈D(ρρρ) can be permuted in the
previous formula.
Let ρρρ be fixed. It is clear that ∀ρρρ ∈ Rq

sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])
≤ sup
g∈L1

(∫ [
m ·αααg − φ

( g

M

)
M
])

then obviously we have:

sup
ρρρ∈Rq

sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])
≤ sup
g∈L1

(∫ [
m ·αααg − φ

( g

M

)
M
])

On the other hand, let g ∈ L1 (m) and note by ρρρ (g) =
∫

mg ∈ Rq. Then∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
ψ∈D(ρρρ(g))

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]
.
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We have then

sup
g∈L1(a)

∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
g∈L1(a)

sup
ψ∈D(ρρρ(g))

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]
.

But there is Rq =
{∫

mg, g ∈ L1
}

(see for example the construction given in (45)).
Then

sup
g∈L1(a)

sup
ψ∈D(ρρρ(g))

= sup
ρρρ∈Rq

sup
ψ∈D(ρρρ)

and finally we have

sup
g∈L1(m)

∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
ρρρ∈Rq

sup
ψ∈D(ρρρ)

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]

and we get formula (52).
2. Pick ααα ∈ R3 and consider the polynomial πααα := ααα ·m and Gααα = φ∗′ (πααα)M. From

the characterization of sub-differential of φ∗ at (real) point Gααα/M, and taking into
account that φ is semi-lower continuous, we have

φ

(
Gααα
M

)
+ φ∗ (πααα) = πααα

Gααα
M

Using Young inequality for φ∗ we have straightforwards

φ∗ (2πααα)− φ∗ (πααα) ≥ παααφ∗′ (πααα) = πααα
Gααα
M

.

Recall that we have for any convex function φ : R 7→ R

−φ∗ (0) = inf
y∈R

φ (y)

Then there holds immediately

−φ∗ (0) ≤ φ
(
Gααα
M

)
= πααα

Gααα
M
− φ∗ (πααα) ≤ φ∗ (2πααα)− 2φ∗ (πααα)

Since πααα is a polynomial function, and since by the assumption 3 any φ∗ (π) is in
L1 (Mdv), then the former inequalities prove that φ

(
Gααα
M
)
∈ L1 (Mdv). Using then

φ

(
Gααα
M

)
+ φ∗ (πααα) = πααα

Gααα
M

we deduce finally that Gααα
M πααα is also in L1 (Mdv). By Young inequality we have for

any g
g

M
πααα − φ

( g

M

)
≤ φ∗ (πααα) .
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Multiplying by M and integrating (any term can be computed) there holds:∫ [
παααg − φ

( g

M

)
M
]
≤
∫
φ∗ (πααα)M.

By having the infinimum:

sup
g∈L1(a)

∫ [
παααg − φ

( g

M

)
M
]
≤
∫
φ∗ (πααα)M

which gives us finally:

h∗m (ααα) ≤
∫
φ∗ (πααα)M =

∫
φ∗ (ααα ·m)M.

On the other hand, since we have

φ∗ (πααα)M =

(
φ

(
Gααα
M

)
− Gααα
M

πααα

)
M.

Any term can be integrated and by having integration we have:∫
φ∗ (πααα)M =

∫ (
φ

(
Gααα
M

)
− Gααα
M

πααα

)
M≤ sup

g∈L1(a)

∫ [
παααg − φ

( g

M

)
M
]

Then we have exactly (53)
3. Finally, consider for ε ∈ (0, 1] the function

fε (βββ) =

(
φ∗ (πααα + επβββ)− φ∗ (πααα)

ε
− φ∗′ (πααα)πβββ

)
M.

Young inequality gives εφ∗′ (πααα)πβββM ≤ [φ∗ (πααα + επβββ)− φ∗ (πααα)]M. So fε (βββ) ≥
0. On the other hand, by using πααα + επβββ = ε (πααα + πβββ) + (1− ε)πααα, the convexity
of φ∗ gives

φ∗ (πααα + επβββ) ≤ εφ∗ (πααα + πβββ) + (1− ε)φ∗ (πααα) .

Hence we get

φ∗ (πααα + επβββ)− φ∗ (πααα)

ε
≤ φ∗ (πααα + πβββ)− φ∗ (πααα) .

So, after multiplication by M

fε (βββ) ≤ [φ∗ (πααα + πβββ)− φ∗ (πααα)− φ∗′ (πααα)πβββ ]M = f1
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that is 0 ≤ fε (βββ) ≤ f1 (β). Since limε→0 fε (βββ) = 0 pointwise, using Lebesgues
dominated convergence theorem there holds:

∀βββ, lim
ε7→0+

h∗ (ααα+ εβββ)− h∗ (ααα)

ε
=

∫
φ∗ (πααα)πβββM = βββ ·

[∫
φ∗ (ααα · a) aM

]
.

The convex function ααα ∈ Rq 7→ h∗ (ααα) has partial derivatives in any direction at
any point. Then, using a classical result of convex analysis, it is C1 smooth and we
have (54).

Proof. (Theorem 9) Let us finally prove Theorem 9 step by step.

1. We first prove that hm is closed in its domain. hm being convex, this amounts
to prove that h∗∗m = hm in R+

m. The delicate point is to prove this relation at
0. Let us observe the following: there is hm (0) = 0. This is just because the
only non negative function which is able to realize 0 is g = 0. Since φ (0) = 0
then we deduce immediately that hm (0) = 0. Let us now compute h∗∗m (0) :=
supααα∈Rq (0 ·ααα− h∗m (ααα)) = − infααα∈Rq h

∗
m (ααα) ≤ 0. Remark then that h∗∗m (0) ≤ 0

from the expression given of h∗ (theorem 11). Recall from Lemma 2 that φ∗ (y) ≥ 0
and for y ≤ p0, φ

∗ (y) = 0. Chose nowααα0 = (y0,0, · · · ,0). There is φ∗ (ααα0 ·m (v)) =
0. So h∗m (ααα0) = 0 and finally h∗∗m (0) = 0 = hm (000).
Finally, hm being convex, hm is continuous on int (dom (hm)). As a consequence
there is h∗∗m = hm in dom (hm) = R+

m.
2. Let ρρρ ∈ int(dom (hm)). hm being continuous at this point, there is ∂hm(ρρρ) 6= ∅ [38].

Pick some ααα ∈ ∂h(ρρρ). hm being proper convex and closed at ρρρ, there is ρρρ ∈ ∂hm (ααα).
But h∗m is C1 in Rq so ∂hm (ααα) = ∇h∗m(ααα) and ρρρ = ∇h∗m(ααα).

3. Let ρρρ ∈ int(dom (hm)) and ααα ∈ ∂hm (ρρρ). We prove that the function G =
Mφ∗′ (ααα ·m (v)) is the unique solution to the primal problem. We firstly have

ρρρ = ∇h∗m(ααα) =

∫
φ∗′ (ααα ·m (v)) m (v)Mdv.

Next φ∗ is a C1 convex function in R and thus

(∀y ∈ R), φ∗ (y) + φ∗∗ ((φ∗)′(y)) = y (φ∗)′(y).

φ is also convex, proper and semi lower continuous. So φ∗∗ = φ and

(∀y ∈ R), φ∗ (y) + φ ((φ∗)′(y)) = y (φ∗)′(y).

Put y = ααα ·m(v) in the above equation, multiply byM and integrate w.r.t v gives

h∗m(ααα) +

∫
Mφ ((φ∗)′(ααα ·m)) =

∫
M(ααα ·m)(φ∗)′(ααα ·m) = ααα · ρρρ.
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One then deduces from the subdifferential equation (49) that

hm(ρρρ) =

∫
Mφ ((φ∗)′(ααα ·m)) = H (G) .

Recall that H is strictly convex and thus G is the unique solution to the primal
problem. From the form G =Mφ∗′ (ααα ·m (v)) which is necessarily strictly positive
on a set of non-zero measure - that is for those velocities v for which ααα ·m(v) > p0

- ααα is found to be unique. This in turn proves that the subdifferential of h at
interior point of R+

m is reduced to one point. As a consequence ∇h∗ is a bijection
from from C◦ to R+

m where C◦ is defined in (51). And there is ∇h∗(ααα) = 0 in the
complementary set of C◦.

4. Let us finally prove that hm is strictly convex on R+
m. Let ρρρ1 6= ρρρ2 ∈ R+

m. Consider
ρρρ(t) = (1 − t)ρρρ1 + tρρρ2, t ∈ [0, 1] and ααα(t) s.t. ∇h∗m(ααα(t)) = ρρρ(t). In particular, we
have ρρρ(0) = ρρρ1 and ρρρ(1) = ρρρ2. Define f1 and f2 by f1 = M(φ∗)′(ααα(0) ·m) and
f2 =M(φ∗)′(ααα(1) ·m). They satisfy the relation

hm(ρρρ1) = H(f1), hm(ρρρ2) = H(f2). (65)

Moreover, (1− t)f1 + tf2 is a nonnegative function which moment is ρρρ(t). Then

(∀t ∈]0, 1[) hm(ρρρ(t)) ≤ H((1− t)f1 + tf2).

H being strictly convex, we get from (65) for any t ∈]0, 1[,

hm(ρρρ(t)) < (1− t)H(f1) + tH(f2) = (1− t)hm(ρρρ1) + thm(ρρρ2).

6.4 Proof of section 5

Proof. (Proposition 12). We may first consider the rotation around the mean velocity
u since they play an important role to obtain the right hydrodynamic limit. So we
define τ = τu−1θu = τu−1τθτu and let us prove the result for this τ . By definition of G,
G(f) =M(φ∗)′(ααα · aaa(v − u)), where ααα is the polar variable of L(ρρρf ). In other words,
∇h∗(ααα) = L(ρρρf ) By definition of M, M remains unchanged with the transformation
τ . So τ(G(f)) =M(φ∗)′(ααα · aaa(τ(v)− u), with

aaa(τ(v)− u) = (1, θ(v − u),
(v − u)2

2
− 3

2
kBT, θ(v − u)⊗ θ(v − u)− 1

3
(v − u)2 Id,

θ(v − u)(
(v − u)

2
− 5

2
).

This last vector can be written as

aaa(τ(v)− u) =
(
1, θ(v − u), a2(v − u), θA(v − u)θt, θb(v − u)

)
(66)
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A simple computation leads to ααα : aaa(τ(v − u)) = Θ(ααα) : aaa(v − u), with

Θ(ααα) = (ααα0, θ
tααα1, α2, θ

tααα3θ, θ
tααα4). (67)

And thus τ(G(f)) = M(φ∗)′(Θ(ααα) · aaa(v − u). Remark that τG(f) has the form of
the solution of Theorem 9 for some moment. Let us compute this moment. ρρρτG(f) is
defined by

ρρρτG(f) =

∫
R3

τG(f)(v)aaa(v − u)dv

=

∫
R3

G(τv)aaa(v − u)dv.

By using the change of variable www = τ(vvv) = θ(vvv − uuu) + uuu,

ρρρτG(f) =

∫
R3

G(w)aaa(θt(w − u))dw.

But as Θ(aaa(v − u)) = aaa(θt(v − u)). Then

ρρρτG(f) = Θ

(∫
R3

G(w)aaa(w − u)dw

)
= Θ (ρρρG) .

Likewise with the same computations gives ρρρτ(f) = Θ(ρρρ(f)). Thus G(τ(f)) is the
solution of Theorem 9 for ρρρ = L(ρρρf ). Now remark for the definition of L and Θ that
ΘL(ρρρf ) = L(Θ(ρρρf )). As a conclusion τG(f) = G(τf).
It remains to prove the result for the translations i.e. τzzzG(f) = G(τzzzf). There is
G =M(φ∗)′ (ααα · aaa(v − u)). Moreover

τzG(f) =
n

(2πT )
3
2

exp

(
− (v − u− z)

2T

)
φ∗ (ααα · aaa((v − u− z)))

G(τzzzf) is the solution of the minimization problem when changing the Grad basis into
the framework related to τzf which is precisely moving at velocity u + z.∫

R3

τzf(1, v, v2) dv = (n, n(u + z),
1

2
n(u + z)2 +

3

2
nT ).

In the corresponding Grad basis τzf has the same macroscopic value ρρρf as f in aaa(v−
u− z). Namely

ρρρf =

∫
R3

f(v)aaa(v − u)dv =

∫
R3

τzf(v)aaa(v − u)dv

40



So

L(ρρρf ) =

∫
R3

M(v − z)(φ∗)′(ααα · aaa((v − u− z)aaa(v − u− z)dv.

This means that the relation between ααα and L(ρρρf ) is valid whatever is framework.
The minimisation problem remains unchanged by changing both M and f in τzM
and τzf .

Proof. (Theorem 13). Remark that M is the unique minimizer of H just under the
constraints of conservation laws. Indeed there is M = M× 1 = Mφ∗′(α0) for some
α0 ∈ R since φ∗′ is a bijection from R+ to R+. ThusM has the form of the solution of
the primal problem given by theorem 9 when m(v) = {1, v, v2} and the constraint
is
∫
Gmmmdv = (n, 0, 0). Adding more constraints (w.r.t. A(v−u) and bbb(v−u)) prove

that H(M) = h(ρρρeq) since again M has the shape of the solution and satisfies the
constraints. We have

(∀ρρρ ∈ R+
aaa ), with ρρρ = (n, 0, 0, 0, 0), ha(ρρρeq) ≤ ha(ρρρ)

with equality ha(ρρρeq) = ha(ρρρ) iff ρρρeq = ρρρ (68)

thanks to the strict convexity of h in R+
aaa (Theorem 9). In other words, M is the

unique minimizer of H of all functions in L1(aaa) having the same mass, momentum
and energy as f .
We define the function F which satisfies∫

Fa(v − u)dv = ρρρf and H(F ) = haaa(ρρρf ). (69)

F is unique thanks to Theorem 9 and reads F =M(φ∗)′(αααF · a(v − u)). Consider as
in the proof of Lemma 12 τf with τ = τ−uτ−Idτu. Then

Θ(ρρρf ) =

∫
R3

τf(v)a(v − u))dv = (n,0, 0, nΠ,−nb) , h(ρ̃ρρ) = h(ρρρ).

There is τM = M in such a way that H(τf) = H(f) and haaa(Θρρρ) = haaa(ρρρ), since τf
is solution to the minimisation problem by changing ρρρ and Θρρρ.

From the strict convexity of ha, one finds

ha (n,0, 0, nΠ,0) = ha

(
1

2
ρρρ+

1

2
Θ(ρρρ)

)
≤ 1

2
ha (ρρρ) +

1

2
ha (Θ(ρρρ)) = ha (ρρρ) . (70)

with equality only if b = 0.
Let then λa, λb ∈ [0, 1]. Without a loss of generality, assume that λb ≤ λa and take
λ ∈ [0, 1] such that λb = λλa (if not, one sets λa = λλb). We have

(n,0, 0, nΠ, λb) = λ (n,0, 0, nΠ,b) + (1− λ) (n,0, 0, nΠ,0) ,
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and as a consequence ha (n,0, 0, nΠ, λb) ≤ ha (n,0, 0, nΠ,b) where we have used (70).
Again, the equality holds only if b = 0. Likewise, we have

(ρ1,0, 0, λAnΠ, λbb) = (1− λA) (n,0, 0,O,0) + λA (n,0, 0, nΠ, λb) ,

and finally (using former inequalities)

ha (n,0, 0, λAnΠ, λbb) ≤ ha (n,0, 0, nΠ,b) . (71)

with equality only if Π = O and b = 0 or λA = λb = 1. There is

I :=

〈
K (f) ∂xφ

(
f

M

)〉
=

∫
ν (G− f) ∂xφ

(
f

M

)
dv.

From the expression of G there holds

I =

∫ [
φ∗′ (ααα (L (ρρρf )) · a)− f

M

]
∂xφ

(
f

M

)
Mdv.

Use Young inequality for φ: φ (y)− φ (x) ≥ φ′ (x) (y − x) , with

x =
f

M
, y = φ∗′ (ααα (L (ρρρf )) · a) ,

multiply by M and integrate over R3 gives

I ≤
∫
ν

(
φ (φ∗′ (ααα (L (ρρρf )) · a))M−

∫
φ

(
f

M

)
M
)

= ν(H(G)−H(f))

= ν(ha (L (ρρρf ))−H(f)).

Hence I ≤ ν(ha (L (ρρρf ))−H(f)). This reads also

I ≤ ν (ha (L (ρρρf ))− ha (ρρρf ) + ha (ρρρf )−H(f)) .

By definition of the entropy ha (ρρρ) there is ha (ρρρf )−H(f) ≤ 0. But on the other hand
we have by computing the moments on a (v − u)

ρρρf = (n,0, 0, nA, nb) , L (ρρρf ) = (n,0, 0, λAnA, λbnb) , λA, λb ∈ [0, 1) .

As ha (L (ρρρf )) ≤ ha (ρρρf ), the entropy theorem is proved.

From (71) and (69) I = 0 iff L (ρρρf ) = ρρρf and f = F . But L (ρρρf ) = ρρρf iff ρρρf = ρρρeq that
is f =M.

Proof. (Proposition 14). Remark that thanks to Galilean invariance in the Grad space,
the choice of the basis functions for defining the constraints does not change the result
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of the minimization problem. This means that we may write

G [f ] (v) =M (µ̃µµ (f) · a (v))φ∗′ (α̃αα (f) · a (v)) .

But it is more convenient to write those Lagrange multipliers when the basis is
a (v − u). That is

G [f ] (v) = exp (µµµ (f) · a (v − u))φ∗′ (ααα (f) · a (v − u)) .

Then there is

exp (µµµ (M) · a (v − u))φ∗′ (ααα (M) · a (v − u)) =M,

sinceM is the unique solution to the variational problem with the moment constraints∫
f m(v) dv = (n,0, 0, 0, 0) = ρρρM.

In the above equation φ∗′ (ααα (M) · a (v − u)) = 1 implies ααα (M) · a (v − u) = α for
some constant α because φ∗′ is a bijection from [p0,+∞) into R+. So finally there
holds also

φ∗′′ (ααα (M) · a (v − u)) = c,

for some constant c if φ∗ is twice differentiable.
Note that the properties of G [f ] implies that G [M] = M so K (M) = 0. Let us

consider f =M (1 + εg). Differentiating formally the function ααα and µµµ there holds :

ααα (f) = ααα (M) + εdαααM (g) +O(ε2), µµµ (f) = µµµ (M) + εdµµµM (g) +O(ε2)

Then we compute for f =M (1 + εg) the following approximation:

exp (µµµ (f) · a (v − u)) = exp (µµµ (M) · a (v − u)) (1 + εdµµµM (g) · a (v − u) + o(ε))

= M (1 + εdµµµM (g) · a (v − u) + o(ε))

φ∗′ (ααα (f) · a (v − u)) = φ∗′ (ααα (M) · a (v − u) + o(ε))

+εdαααM (g) · a (v − u)φ∗′′ (ααα (M) · a (v − u) + o(ε)) .

so that

G [f ] (v) = M (v) (1 + ε (dµµµM (g) + c dαααM (g)) · a (v − u) + o(ε))

= M (v) (1 + εΛM (g) · a (v − u) + o(ε))

Finally, there is

K (M(1 + εg)) = = ν [M+ εΛM (g) · a (v − u)M (v)−M (1 + εg) + o(ε)]
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and by definition of L (6)

L (g) = ν (ΛM (g) · a (v − u)− g) . (72)

It is convenient to write this relaxation equation with ai being a scalar function of
v − u rather than tensors. We need now to focus on ΛM (g) in order to identify the
expression of LM. To do that we use the prescribe condition on moment:∫

G [M (1 + εg)] ai (v − u) =
(

1− νi
ν

)∫
M (1 + εg) ai (v − u)

So with K (f) = ν (G [f ]− f) we conclude that:∫
K (M (1 + εg)) ai (v − u) = −ενi

∫
gM (v) ai (v − u)

using the linear approximation for K we have

ε

∫
ν (ΛM (g) · a (v − u)− g) ai (v − u)M = −ενi

∫
gM (v) ai (v − u) .

That is finally for any component i we have:∫
(ΛM (g) · a (v − u)) ai (v − u)M =

(
1− νi

ν

)∫
gM (v) ai (v − u)

by expanding the dot product, we have formally:∑
j

∫ (
ΛjM (g) · aj (v − u)

)
ai (v − u)M =

(
1− νi

ν

)∫
gM (v) ai (v − u) .

So, by using orthogonality relations

ΛiM‖ai‖2 = (1− νi
ν

)

∫
R3

gMai(v − u).

Then, according to formula (72) we conclude that

Lg = ν

(∑
i

(
1− νi

ν

)
Paig − g

)

where νi = 0 if ai ∈ K. From this, it is easy to see that L is self adjoint, Fredholm
with Ker(L) = K.
We end this proof by showing that

∀f,
[∫

K (f)φ = 0

]
⇔ φ ∈ K
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The right implication is just a consequence of (10). Assume now that

∀f,
∫
K (f)φ(v) dv = 0

Expanding K(M(1 + εg)), we have for any g ∈ L2(M)

∀g,
∫
ML (g)φ(v) dv = 0

Since L is self adjoint, we have

∀g,
∫
MgL (φ) dv = 0

which proves that φ ∈ K.

7 Conclusion

In the present article, we have proposed a methodology to construct relaxation opera-
tors. The derivation is performed in three steps. We first consider the projection of the
inverse linearized Boltzmann operator L−1

B on a polynomial space of finite dimension.
We then state relaxation equations on the moments of the probability distribution f
basing on its diagonalization. The model must satisfy those equations together with
the conservation laws. From this one derives linear relations between the moments of
f and the target function G to be found. The later is then found by solving a vari-
ational problem. Different mathematical problems related to this construction have
been addressed. We have firstly revisited a theorem by Junk [30] relating realizable
moments (i.e moments of nonnegative integrable functions) to nonnegative polynomi-
als. From this we have derived necessary conditions for the realizability of the moments
of G and proved that it allows to specify the admissible relaxation equations on the
Grad thirteen moments. The variational problem has been studied in detail by using
different functional to be minimized under moment constraints. We have reestablished
a theorem of Csiszar [20] on the existence of solution to such minimization problems
by using convex analysis and exactly derived the shape of the solution by duality.
In the last part of the article, we have proposed different models from this construc-
tion and analyzed their well-posedness. In particular, when relaxations occur on the
Grad thirteen moments, the model satisfies almost all properties of the original Boltz-
mann equation: nonnegativity of the solution, conservation laws, H theorem, Galilean
invariance and the right hydrodynamic limit up to Navier-Stokes level. However, the
control of the entropy defined by the φ-divergence is only local. In the general case,
those properties are also preserved but the control of the entropy is not yet proved.
Finally, the present approach encompasses the derivation of many known models and
for some of them their generalization.

There are many perspectives and questions related to this work. In principle the
new model based only on Grad thirteen moments should not bring more than the
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ESBGK or Shakhov models. It remains however to compare them. We also intend to
study the generalization of those relaxation operators beyond the Grad case. In such
cases, the present method does not require the effective computation of the relaxation
operator if moment methods such as in [2, 33] are used. The computation of the
approximate inverse linearized Boltzmann operator is of the same order of complexity
than that of the transport coefficients for multicomponant fluids for which there exists
plenty efficient methods. One may then in a first time compare from a numerical point
of view the solution of this general model to that of the linearized Boltzmann equation
and in a second time compare it to that of the known relaxation models and to the
Boltzmann equation itself. Also, some study related to existence of solutions to the
generalized Shakhov model can be addressed the framework of Bae and Yun [5].
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