
HAL Id: hal-04561299
https://hal.science/hal-04561299

Submitted on 26 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online B-spline based trajectory planning for swarm of
agents using distributed model predictive control

Cong Khanh Dinh, Ionela Prodan, Florin Stoican

To cite this version:
Cong Khanh Dinh, Ionela Prodan, Florin Stoican. Online B-spline based trajectory planning for swarm
of agents using distributed model predictive control. 2024 International Conference on Unmanned
Aircraft Systems, ICUAS’24, Jun 2024, Chania Crete, Greece. �hal-04561299�

https://hal.science/hal-04561299
https://hal.archives-ouvertes.fr

Online B-spline based trajectory planning for swarm of agents using
distributed model predictive control

Cong Khanh Dinh1, Ionela Prodan1 and Florin Stoican2

Abstract— This paper deals with the motion planing in real-
time for swarm of agents using distributed Model Predictive
Control (DMPC). Optimization-based control helps both to
stabilize the motion dynamics of the robots and to enforce
the system’s constraints. However, the price is a significant
increase in complexity as the scale of the system surges. To
improve the scalability for a large formation, we propose a
DMPC framework that considers B-spline parameterizations
for the agents’ trajectories. The proposed approach has great
promise for multi-drones system, as illustrated with simulation
examples using a state of the art quadcopter model.
Index Terms– Motion planning, Collision avoidance, B-splines
parametrization, Multi-agent dynamical systems, Distributed
Model Predictive Control (DMPC).

I. INTRODUCTION

Generating trajectories for a group of dynamic agents is
a challenging problem. This issue is becoming increasingly
prominent in today’s world as advancements in sensor, net-
work, and information technologies raise a substantial need
for effectively managing a huge number of interconnected
systems. Examples include formation control of swarms
of UAVs to perform cooperative tasks [1], coordination of
multi-robots in warehouses [2], [3]. Among these, smart
navigation of multiple UAVs, inspired by the biological
behavior of swarms, has recently received extensive attention
from both academics and professionals [4], [5]. Owing to
their flexibility and autonomy, they have widely been applied
in various civil and military fields, such as 3D inspection of
constructions [6], [7], [8], collecting data in agriculture [9],
[10], search and rescue mission in danger zones [11].

One of the primary difficulties is handling the associated
constraints among several robots simultaneously [12], [13].
This is not readily accomplished by a centralized method
where all data is gathered by a single central processor which
sends the control decisions for the whole network. Since the
number of agents rises, the solution time quickly becomes
impractical. Nonetheless, the decentralized control appears to
address the issue of speed by integrating parallel processing

1C. K. Dinh and I. Prodan are with Univ. Grenoble Alpes, Greno-
ble INP†, LCIS, F-26000, Valence, France, (email:{cong-khanh.dinh,
ionela.prodan}@lcis.grenoble-inp.fr), † Institute of Engineering and Man-
agement Univ. Grenoble Alpes.

2F. Stoican is with the Faculty of Automation Control and Com-
puter Science, University Politehnica of Bucharest, Romania, (e-mail:
florin.stoican@upb.ro).

The work of the first two authors is supported by La Région Auvergne-
Rhône-Alpes, Pack Ambition Recherche 2021 - PlanMAV, RECPLAMAL-
CIR and Ambition Internationale 2023, Horizon-TA C7H-REG24A10,
France. The third author is supported by a grant from the National Program
for Research of the National Association of Technical Universities - GNAC
ARUT 2023; Project ID: 207, UNSTPB, Romania.

units to reduce computation time [14], [15]. However, since
there is no communication, the constraints are not guaran-
teed. As a compromise, the distributed controller proves to be
of great use as it can ensure scalability over a large number
of agents in addition to guaranteeing the constraints.

Our goal in this paper is to design a reliable distributed
trajectory generation algorithm that can handle multiple
UAVs on a transition task while avoiding collisions and
respecting operating constraints.

It is fundamental that the on-line trajectory generation
mechanism takes into account collision avoidance conditions.
The key for real-time planning is to execute the tasks quickly
in dynamic and shared environment. A wide variety of
techniques are currently proposed to deal with the target
tracking problem with collision avoidance. First, direct meth-
ods that generate trajectories with no collision for point-to-
point flying scenarios are thoroughly studied and come with
many complete general solutions. One classical approach
uses Mixed Integer Programming (MIP), where non-convex
operation space are modeled through binary variables [16],
[17]. This method is difficult to solve in real time due to
high computational effort, hence not suitable for a large
group of agents. Second, artificial potential field technique
[18] assumes a repulsive and attractive field exists around
the bodies so that it creates forces that prevent collision.
In addition, control barrier functions (CBFs) are frequently
employed in safety-critical scenarios to enhance safety by
enabling robots to make decisions early, thereby avoiding
getting too near to collisions [19], [20], [21]. Subsequently,
learning-based methods [22], [23] are increasingly employed
in solving trajectory planning problems that take into account
interactions among robots. To generate appropriate behav-
iors, however, a significant amount of high-quality training
data is needed, and this is difficult to generalize for different
system sizes. Sometimes all the above methods are included
in a distributed setting of Model Predictive Control (MPC)
[24], known for its ability to handle complicated constraints.

Furthermore, diverse geometrical aspects are taken into ac-
count by numerous discrete and continuous planning strate-
gies when implementing the collision algorithm for multi-
agent systems in real time. The On-demand(OD) collision
avoidance replans the trajectory when a future collision is
detected as proposed in [25]. This very fast planning strategy
for multiple quadcopters task assignment with high success
rate is compared to the well-studied Buffered Voronoi Cell
method [26]. Another method is to parameterize the control
flat output describing the agent model with multiple polyno-
mials concatenated [25], [27] using Bézier representation. It

has the advantage of smoothness of the trajectory and that the
constraints of input and its derivatives can be imposed with
ease using the control points describing the Bézier curve.

Leveraging the idea of control point space mapping, we
build upon the properties of the B-splines [28] and distributed
MPC for collision and constraints handling. Hence, in this
paper, we propose the following contributions:

i) a novel distributed algorithm that addresses the need
for real-time trajectory generation for multiple agents
systems while maintaining a balance between the ra-
pidity and reliability of decentralized and centralized
approaches;

ii) B-spline parameterization for distributed MPC that of-
fers enhanced control over the decision variable and
decreases the complexity associated with enforcing
continuity constraints on the optimization problem,
compared to conventional power basis functions (e.g.,
polynomials);

iii) a fast collision avoidance formulation based on Buffered
Voronoi Cell (BVC) that can be possibly implemented
online using the B-spline framework.

The remain of this paper is organized as follows. In
section II, we introduce the model and theories about B-
spline and Buffered Voronoi Cell (BVC). Section III provides
the distributed algorithm under the MPC framework. We
present several simulation results and analysis in Section IV
followed by conclusions in Section V.

Notation

Vectors are represented by bold letters. Capital letters in
bold represent the matrices. In and 0n are identity and
zeros matrix with dimension n ˆ n. ||x||Q fi

?
x⊺Qx.

Otherwise, if not specified in the subscript, ∥ ‚ ∥ represents
the Euclidean norm.

With notation ˆp‚qrk|kts denoting the predicted value of
p‚q at time step k ` kt from information known at time kt,
an agent’s prediction model used inside the MPC problem is
x̂i rk ` 1|kts “ Ax̂i rk|kts ` Bûi rk|kts, where x̂i r0|kts Ð[
xi rkts denotes the vector of measured states.

II. PRELIMINARIES

A. Agents dynamics

While the approach followed in the rest of the paper works
for arbitrary dynamics, for illustrations purposes, hereinafter
the agent dynamics are those of a quadcopter. Such a model
exhibits strong nonlinearities which are canceled1 through a
flatness-based linearization as in [29]. After a discretization
step, we arrive at the decoupled stacking of three double
integrators:

xi rk ` 1s “ Axi rks ` Bui rks , (1)

where A “

„

I3 hI3
03 I3

ȷ

, B “

„

h2I3{2
hI3

ȷ

and h is the

discretization time. The state of the ith agent xi rks is defined

1The price of linearizing the dynamics in the flat output space is the
strongly nonlinear coupling of the input constraints. See [29] for further
details.

by the position and velocity of the vehicle, i.e xi rks “

pp⊺
i rks ,v⊺

i rksqJ P R6, the control input ui rks “ ai rks P

R3 is the acceleration of the vehicle. In case of different
agent nonlinear dynamics, we can obtain its linear model
either by feedback linearization or Taylor approximation.

B. B-spline definition and properties

The use of B-splines for trajectory generation has became
popular due to the many properties among which, conti-
nuity and locality ensure smooth curve generation and fast
reconfiguration, [28]. Convexity and end point interpolation
also play important roles in constraint validation. Specifi-
cally, a family of B-spline basis functions tBi,pptqu with
i P t0, . . . Nu characterized by cardinality N , order p and
knot-vector τ “ tτ1, . . . , τmu weighted by control points
tPiu gives the curve

zptq “

N
ÿ

i“0

PiBi,pptq “ PBpptq, @t P rτ1, τms. (2)

In (2), the column vector Bpptq and control matrix P come
from stacking the B-spline basis functions tBiptqu vertically
and, respectively, the control points tPiu as columns.

Considering the dynamics (1), zptq P R3ˆ1 denotes the
reference position which has to be tracked by the position
component of the state, i.e., Cxirks “

“

I3 03

‰

xirks.
Without detailing all the steps (see [28] for further details)

note that derivatives of (2) may be written as B-spline curves
of lower order (order p ´ r for the r-th order derivative
of zprqptq) weighted by new control points which depend
linearly on the original ones. For example, we may write

zp2qptq “ Pp2qBp´2ptq, (3)

where Pp2q :“ PM2 and M2 is a matrix suitably computed
(see [30]).

C. Buffered Voronoi Cell partitioning

Voronoi decomposition is often used in collision-free
path finding for robotics [31]. By partitioning the space
into regions based on proximity to given points (the “cen-
ters”), Voronoi diagrams help create a road map for motion
planning. It is particularly beneficial for scenarios where
adaptability to a changing environments is crucial.

We recall here some key definitions of Buffered Voronoi
Cell (BVC) which allow accounting for physical dimensions
of the agent, [26].

Definition 1 ([31]): For a group of Na agents with posi-
tion tpiuiPNa

P R3, the general Voronoi cell for i-th agent
is defined as:

Vi “ tp P Rn |∥ p ´ pi ∥ď∥ p ´ pj ∥,@j ‰ iu (4)

Equivalently, (4) can be rewritten as

Vi “ tp P Rn |

ˆ

p ´
pi ` pj

2

˙J

dij ď 0,@j ‰ iu (5)

where dij “ pj ´ pi.

Fig. 1: Buffered Voronoi Cell in 2-D plane

Furthermore, to incorporate a safety distance between agents,
denoted by rmin (e.g., corresponding to their physical sizes),
the notion of BVC is employed.

Definition 2 (Buffered Voronoi Cell): For groups of Na

agents with position tpiuiPNa P R3, the Buffered Voronoi
Cell (BVC) of the i-th agent is defined as:

V̄i “ tp P R3 |

ˆ

p ´
pi ` pj

2

˙J

dij

`
rmin

2
||dij || ď 0,@j ‰ iu. (6)

Note that in (6), the agents are confined to stay within their
individual Buffered Voronoi Cell V̄i.

We utilize a BVC based on the definition provided in
reference [26], enhanced by the incorporation of the scaling
matrix Θ P R3ˆ3 as described in [25].

V̄i “ tp P R3 |
ppi ´ pjqJΘ´2pp ´ piq

||dij ||

ě
rmin ´ ||dij ||

2
,@j ‰ iu (7)

where dij “ Θ´1ppj´piq, pi and pj denote the coordinates
of agents i and j respectively.

When considering the collision avoidance constraints
among the agents using BVC, we can obtain linear matrix
inequalities as showed in (7). This will be further integrated
in our motion planning algorithm denoted as a constrained
quadratic programming problem (see, later on, (9g)).

III. ONLINE DISTRIBUTED ARCHITECTURE FOR MPC

Due to the inherently high computational complexity of
real-time centralized controllers’ implementation, we pro-
pose in this section a distributed MPC architecture which
accounts for collision avoidance.

A. Distributed MPC optimization

Note that, in the control loop, the optimization problems
of every agent are solved in parallel using the preceding
prediction data broadcast among the agents. The following
cost function is minimized:

min
Pi,tΦi,jujP1,...,Na

Np´1
ÿ

s“0

∥ p̂irs|ks ´ pf
i ∥Qp

loooooooooomoooooooooon

Tracking error cost

(8a)

` ∥ ûirs|ks ∥R
loooooomoooooon

Control effort cost

(8b)

` ||p̂irNp|ks ´ pf
i ||P

loooooooooomoooooooooon

Terminal cost

(8c)

`

Na
ÿ

j“1

`

η2 ∥ Φi,j ∥2 ´η1Φi,j

˘

,

loooooooooooooooomoooooooooooooooon

Augmented cost in collision avoidance case

(8d)

such that the following constraints are respected:

ûirs|ks “ P
p2q

i Bp´2ptsq, (9a)

v̂irs|ks “ P
p1q

i Bp´1ptsq, (9b)
p̂irs|ks “ PiBpptsq (9c)
umin ď ûirs|ks ď umax, (9d)
vmin ď v̂irs|ks ď vmax, (9e)
pmin ď p̂irs|ks ď pmax (9f)

Acollp̂irℓ ` 1|ks `
||dℓ

ij ||

2
Φi,j ď bcoll (9g)

where:
‚ ℓ is the nearest prediction step where the collision

occurs;
‚ ||dℓ

ij || is the distance between agents i, j at time step
ℓ;

‚ pAcoll, bcollq denote the inequality constraint tuple con-
sidered for collision avoidance;

‚ Φi,j is the penalty term for the soft constraint:
"

Φi,j “ 0 if j R Wℓ
i ;

Φi,j ă 0 if j P Wℓ
i ;

‚ Wℓ
i denotes the set of neighbours of agent i when a

collision is detected at time step ℓ.
In the above optimization problem, several terms are

incorporated into the cost function (8) to address different
aspects of the problem and achieve the desired objectives:

i) (8a) aims to penalize the tracking error. This is partic-
ularly relevant in target tracking scenarios, where the
drones need to closely follow a desired trajectory or
maintain proximity to a moving target. By minimizing
the tracking error, the optimization problem ensures
accurate and precise tracking performance.

ii) (8b), known as the control effort cost, is introduced
to encourage energy efficiency. By minimizing this
term, the optimization problem forces the drones to use
their control inputs optimally, thus reducing unnecessary
energy consumption. This leads to improved energy
efficiency and longer flight times.

iii) (8c) serves to penalize deviations from stability in the
final position. By including this term, the optimization
problem tends to steer the drones to reach and maintain
the desired final position with greater stability. This is

particularly useful when it is essential for the drones to
remain stationary or maintain a specific pose at the end
of their trajectory.

To enforce collision avoidance, the optimization problem
includes linear constraints. If over the prediction horizon Np,
the agent i-th detects a collision at the nearest time step ℓ,

||p̂irℓ ` 1|ks ´ p̂jrℓ ` 2|k ´ 1sq|| ă rmin

we construct a Buffered Voronoi Cell V̄i as defined in (7)
around the i-th robot with its neighbouring agents Wℓ

i at time
k ` ℓ.

V̄i “ tp P R3 |

pp̂irℓ|ks ´ p̂jrℓ ` 1|k ´ 1sqJΘ´2pp̂irℓ ` 1|ks ´ p̂irℓ|ksq

ě ||dℓ
ij ||

rmin ´ ||dℓ
ij ||

2
,@j P Wℓ

i u (10)

To deal with infeasibility when resolving the optimization
problem, we introduce a relaxation term for collision avoid-
ance Φi,j so that

||Θ´1pp̂irℓ ` 1|ks ´ p̂jrℓ ` 1|k ´ 1sq|| ě rmin ` Φi,j (11)

The constraint in (11) can be obtained using BVC formu-
lation as in (10), which lead to the final constraint in the
QP problem above (9). The matrices of collision constraints
Acoll and bcoll are defined as:

Acoll “ ´pΘ´2pp̂irℓ|ks ´ p̂jrℓ ` 1|k ´ 1sqqJ, (12a)

bcoll “ Acollp̂irℓ|ks ´
prmin ´ ||dℓ

ij ||q||dℓ
ij ||

2
. (12b)

The relaxation variable Φi,j in the collision soft constraint
is then minimized in the optimization as an augmented cost
term (8d). This additional term assists in handling collision
avoidance while reducing the complexity of the Quadratic
Programming (QP) problem. By incorporating the augmented
cost, the optimization problem adds flexibility, thus ensuring
safe and efficient navigation in the presence of potential
collisions.

The main decision variables in this QP are the control
points Pi of the B-spline trajectory. By formulating the
prediction model solely based on these control points, col-
lision detection and path reconfiguration can be performed
in continuous time, enabling faster response and avoidance
of collisions. In the real implementation, we may implement
a two-layer sampling: large sample time, h, for the MPC
problem update, and small sampling time, ts for the low-
level UAV control.

B. Asynchronous algorithm

The goal of this part is to introduce the asynchronous
optimization-based distributed scheme collision avoidance
strategy. Every agent will broadcast its previously estimated
trajectory to all of its neighbor agents at a given discrete time
step, k. The information can then be used by others agents
to establish an alternative path in the next step(see Fig. 2).

Fig. 2: Distributed MPC strategy for collision avoidance

At discrete time step k, each agent execute the subsequent
operations in order to generate a set of B-spline control
points that parameterizes the control input:

1) Evaluate potential future collisions by referencing the
most recent predicted positions of neighboring objects
from the prior time step k ´ 1.

2) Formulate an optimization problem, selectively incor-
porating collision avoidance constraints as needed.

3) Determine the subsequent optimal sequence and apply
its initial element to the model.

4) Distribute the anticipated states among the agents.

Algorithm 1 Distributed MPC for target tracking

Require: x̄0 - initial states, pf - final positions
tx̄0

i uiPS , tpf
i uiPS , S “ 1, ..., Na

Ensure: Control input trajectories tuiptquiPS
1: k Ð 1
2: while k ď Nsim and not ReachTarget do
3: resetTargetLocation(pf)
4: Σk´1 Ð BroadcastLastPrediction()
5: for all agent i P S “ 1, ..., Na do
6: uirks Ð ResetInput(x̄irks,Σk´1)
7: if T l

i X T l
j ‰ H then

8: W l
i Ð FindNeighbour()

9: BuildCollisionConstraint(W l
i)

10: Pirks,Φi,jrks Ð SolveDMPC(L̄ipPi, tΦi,juq)
11: else
12: Pirks ÐPmain SolveDMPC(L̄ipPiq)
13: end if
14: ūirks Ð UpdateControlInput(Pirks)
15: end for
16: ReachTarget Ð CheckArrival(x̄rks,pf)
17: k Ð k ` 1
18: end while

In Fig. 3, the two UAVs detect collision at step ℓ “ 4 in
the future based on the information from previous prediction
step k´1 from their neighbour. The BVC is thus constructed
specifically to the positions of them on one step ahead at
ℓ ´ 1 and collision constraints are imposed on the collision
step ℓ in the planning algorithm. By generating the BVC

Fig. 3: 2-agent transition scenario in 2D using Algorithm
1. The circles in red and blue represent the safety region
of the UAV with radius rmin. The diamonds and squares
represent initial and final positions respectively. The dashed
lines represent the prediction trajectory over the horizon.

at only one step over the prediction horizon with relaxation
constraints, the proposed planning strategy becomes less con-
servative compared to traditional BVC method which reduce
significantly computational burden in the optimization-based
scheme.

IV. SIMULATION SCENARIOS AND PERFORMANCE
ANALYSIS

A. Simulation scenarios

To demonstrate the applicability of the proposed dis-
tributed algorithm, we show the simulation results for scenar-
ios of multiple UAVs performing transition tasks in a limited
space. The implementation was conducted in MATLAB
2023a and executed on a PC with Intel Core i7 CPU with 16
cores and 16 GB of RAM. The model of quadcopter used
is based on the Crazyflie 2.0 nano-drone using the safety
distance rmin “ 0.2 corresponding to its physical size. The
scaling matrix is chosen as Θ “ diagpr1, 1, 1sq.

Example 1 (UAVs swapping positions): On the first sce-
nario, we examine the swapping position task of 4 drones
using our distributed algorithm. Each drone starts at a
symmetrical position on a circle of radius rc “ 1m at altitude
h “ 1m. The two opposite drones swap their positions while
avoiding collision. The UAVs are constrained to stay inside
the bounded volume with dimension 3.6 ˆ 3.6 ˆ 2m. The
simulation results and parameters setup is specified in the
Fig. 4 and Table. I respectively.

As can be seen in Fig 5, the minimum distance between
the UAVs is about dmin “ 0.3m which indicates that our
algorithm are able to plan the trajectory on the fly with no
collision. We count the flying task as successful if all the
drones reach their targets within a distance of 0.1m.

Example 2 (Transition task for large group of UAVs):
In this scenario, we want to evaluate the feasibility of the
distributed planning algorithm for a group of 10 UAVs

TABLE I: Tuning parameters for 4 drones swapping scenario

Sampling time h(s) 0.2
Degree of B-spline p 3

Control points N 5
No. of agents Na 4

Prediction horizon Np 15
Safety distance rmin 0.2

Qp diagp100, 100, 100q

R diagp50, 50, 200q

P diagp50, 50, 50q

pη1, η2q p50, 100q

Transition time (s) 5.8
Computation time (s) 3.2751

Average QP solving time (s) 0.039

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4: 4 drones swapping position online

spawned at random positions in a bounded volume defined
as in Example 1. The specifications and setup parameters
for simulations are detailed in Table II. We observed that
the agents can navigate safely, as shown in Fig. 7.

With an increasing number of UAVs, the algorithm’s
feasibility becomes expectedly more challenging due to the
limited workspace. One can notice that even when the pre-
diction horizon of the MPC scheme is changed, the number
of decision variables remains.

TABLE II: Tuning parameters for 10 drones in transition task

Sampling time h(s) 0.2
Degree of B-spline p 3

Control points N 5
No. of agents Na 10

Prediction horizon Np 10
Safety distance rmin 0.2

Qp diagp100, 100, 100q

R diagp50, 50, 200q

P diagp50, 50, 50q

pη1, η2q p50, 100q

Transition time (s) 6.4
Computation time (s) 5.4604

Average QP solving time (s) 0.0427

B. Analysis of the performance of the proposed method

A Monte Carlo simulation is conducted for various ap-
proaches to compare the efficiency in terms of probability

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Fig. 5: Inter-UAV distance of 4 drones with safety distance
rmin “ 0.2m

-2

0.5

-1

1

2

1.5

0 1
0

2

1
-1

2 -2

-2

0.5

-1

1

2

1.5

0 1
0

2

1
-1

2 -2

-2

0.5

-1

1

2

1.5

0 1
0

2

1
-1

2 -2

-2

0.5

-1

1

2

1.5

0 1
0

2

1
-1

2 -2

Fig. 6: 10 drones tracking the target position online

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 7: Inter-agent distances among 10 agents

of success and transition time. The following situations are
considered. In a fixed area of 26m3p3.6 ˆ 3.6 ˆ 2.0q, we
generate 50 different random test cases for various swarm

sizes from 10 to 60 and compute their average. The following
control algorithms are investigated in simulation:

1) Our approach: Soft constraint using B-spline in Dis-
tributed MPC: Soft-B-DMPC

2) Soft constraint using B-spline in Centralized MPC: Soft-
B-CMPC

3) Bspline parameterization in Distributed MPC: B-DMPC
4) On Demand collision avoidance using Bézier in Dis-

tributed MPC [25]

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100 Soft-B-DMPC
Soft-B-CMPC
B-DMPC
OnDemand-DMPC

Fig. 8: Success rate in transition tasks

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Soft-B-DMPC
Soft-B-CMPC
B-DMPC
OnDemand-DMPC

Fig. 9: Transition time of different methods of trajectory
planning

To find out how the environment’s density can affect the
algorithms, various swarm sizes are examined. When no
UAV collides and every target is tracked in less than 20
seconds, we consider the simulation to be terminated.

The performance achieved through each technique is
demonstrated. In Fig. 8, the success probability for each
swarm size is highlighted. With an increasing number of
agents, the effectiveness of centralized method notably de-
creases. While soft constraints offer advantages, their lack of

scalability limits their applicability in large UAV systems.
With our approach using the idea of B-spline and dis-

tributed MPC, the performance is shows improvements when
testing for swarm size larger than 30. This is a promising
solution for fast online trajectory generation as the number
of control points required for the problem decrease thanks
to the continuity property.

V. CONCLUSIONS

This paper introduced a distributed MPC (Model Predic-
tive Control) algorithm for trajectory generation of multi-
agent systems by using B-spline parameterization. The col-
lision avoidance constraints involving multiple agents are
resolved with a relaxed BVC (Buffered Voronoi Cell) im-
plementation. Simulation examples and performance analysis
are conducted to validate the applicability in real time for
multiple drones. The undergoing work concentrates on the
experimental implementation of the proposed algorithm.

REFERENCES

[1] J. J. Roldán-Gómez, E. González-Gironda, and A. Barrientos, “A
Survey on Robotic Technologies for Forest Firefighting: Applying
Drone Swarms to Improve Firefighters’ Efficiency and Safety,” Ap-
plied Sciences, vol. 11, no. 1, p. 363, Jan. 2021.

[2] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and
S. Koenig, “Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses,” AAAI, vol. 35, no. 13, pp. 11 272–11 281, May 2021.

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[4] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A
tutorial on UAVs for wireless networks: Applications, challenges, and
open problems,” IEEE communications surveys & tutorials, vol. 21,
no. 3, pp. 2334–2360, 2019, publisher: IEEE.

[5] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm
Robotic Behaviors and Current Applications,” Front. Robot. AI, vol. 7,
p. 36, Apr. 2020.

[6] S. Siebert and J. Teizer, “Mobile 3d mapping for surveying earthwork
projects using an unmanned aerial vehicle (uav) system,” Automation
in construction, vol. 41, pp. 1–14, 2014.

[7] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon path planning for 3d exploration and surface
inspection,” Autonomous Robots, vol. 42, pp. 291–306, 2018.

[8] M. Petrlı́k, T. Báča, D. Heřt, M. Vrba, T. Krajnı́k, and M. Saska, “A
robust uav system for operations in a constrained environment,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2169–2176, 2020.

[9] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
uav enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, 2017.

[10] Z. Wang, R. Liu, Q. Liu, J. S. Thompson, and M. Kadoch, “Energy-
efficient data collection and device positioning in uav-assisted iot,”
IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1122–1139, 2019.

[11] N. Zhao, W. Lu, M. Sheng, Y. Chen, J. Tang, F. R. Yu, and K.-K.
Wong, “Uav-assisted emergency networks in disasters,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 45–51, 2019.

[12] P. Di Lillo, F. Pierri, G. Antonelli, F. Caccavale, and A. Ollero, “A
framework for set-based kinematic control of multi-robot systems,”
Control Engineering Practice, vol. 106, p. 104669, 2021.

[13] G. Notomista, S. Mayya, M. Selvaggio, M. Santos, and C. Secchi,
“A set-theoretic approach to multi-task execution and prioritization,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 9873–9879.

[14] G. Demesure, M. Defoort, A. Bekrar, D. Trentesaux, and M. Djemai,
“Decentralized motion planning and scheduling of agvs in an fms,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1744–
1752, 2017.

[15] I. Prodan, S. Olaru, C. Stoica, and S.-I. Niculescu, “Predictive control
for trajectory tracking and decentralized navigation of multi-agent for-
mations,” International Journal of Applied Mathematics and Computer
Science, vol. 23, no. 1, pp. 91–102, 2013.

[16] R. J. Afonso, R. K. Galvão, G. A. Souza, M. R. Maximo, and
A. Caregnato-Neto, “Linear constraints for ensuring k-hop connec-
tivity using mixed-integer programming for multi-agent systems,”
International Journal of Robust and Nonlinear Control, vol. 34, no. 2,
pp. 1433–1447, 2024.

[17] I. Prodan, F. Stoican, S. Olaru, and S.-I. Niculescu, Mixed-integer
representations in control design: Mathematical foundations and ap-
plications. Springer, 2016.

[18] N.-Q.-H. Tran, I. Prodan, E. Grøtli, and L. Lefèvre, “Potential-field
constructions in an mpc framework: application for safe navigation in
a variable coastal environment,” IFAC-PapersOnLine, vol. 51, no. 20,
pp. 307–312, 2018.

[19] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in 2021 American
Control Conference (ACC). IEEE, 2021, pp. 3882–3889.

[20] V. K. Adajania, S. Zhou, A. K. Singh, and A. P. Schoellig, “Am-
swarm: An alternating minimization approach for safe motion plan-
ning of quadrotor swarms in cluttered environments,” arXiv preprint
arXiv:2303.04856, 2023.

[21] V. Freire and X. Xu, “Flatness-based quadcopter trajectory planning
and tracking with continuous-time safety guarantees,” IEEE Transac-
tions on Control Systems Technology, 2023.

[22] C. Wang, J. Wang, Y. Shen, and X. Zhang, “Autonomous navigation of
uavs in large-scale complex environments: A deep reinforcement learn-
ing approach,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 3, pp. 2124–2136, 2019.

[23] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
reinforcement learning and control, pp. 321–384, 2021.

[24] A. Grancharova, E. I. Grøtli, D.-T. Ho, and T. A. Johansen, “Uavs
trajectory planning by distributed mpc under radio communication
path loss constraints,” Journal of Intelligent & Robotic Systems,
vol. 79, pp. 115–134, 2015.

[25] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604–611, 2020.

[26] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[27] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[28] I. Prodan, F. Stoican, and C. Louembet, “Necessary and sufficient lmi
conditions for constraints satisfaction within a b-spline framework,” in
2019 IEEE 58th Conference on Decision and Control (CDC). IEEE,
2019, pp. 8061–8066.

[29] H.-T. Do, I. Prodan, and F. Stoican, “Analysis of alternative flat
representations of a uav for trajectory generation and tracking,” in
2021 25th International Conference on System Theory, Control and
Computing (ICSTCC). IEEE, 2021, pp. 58–63.

[30] L. Piegl and W. Tiller, The NURBS book. Springer Science &
Business Media, 1996.

[31] B. Boots, K. Sugihara, S. N. Chiu, and A. Okabe, “Spatial tessella-
tions: concepts and applications of voronoi diagrams,” 2009.

