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Interval Shading: using Mesh Shaders to generate shading
intervals for volume rendering

THIBAULT TRICARD,Maverick, INPG, LJK, Inria, France

Fig. 1. Example of results of our method for transparency rendering. From left to right: wireframe of a
tetrahedron, the difference in depth between the front and back faces of the tetrahedron, wireframe of the
Stanford bunny tetrahedrized (61 042 tetrahedrons), the sum of the depth difference between front and back
faces of the tetrahedrons of the bunny rendered in a single pass in 3.30 milliseconds.

We propose to use tetrahedrons as primitives for volume rendering and a pipeline to rasterize them. Our work
relies on the recently introduced mesh shaders to encode each tetrahedron such that the rasterizer computes
the depths of the front and back faces at the same time when interpolating vertices attributes. Then, the
fragment shader receives the two depths and can compute its shading in the interval. Our method is simple to
implement, efficient, and opens new possibilities for the rasterization pipeline.

CCS Concepts: • Computing methodologies→ Rasterization.

Additional Key Words and Phrases: Rasterization, Mesh Shader, Volume Rendering

1 INTRODUCTION
In computer graphics volume rendering is an essential tool for representing complex scenes. Volume
rendering can be used to represent complex phenomena (clouds [Bouthors et al. 2008], particle
effects [Cha et al. 2009], etc.) for the creation of VFX in movies or video games. It can also be used
for the visualization of complex mechanical systems in CAD [Huang and Carter 2005], for scientific
visualization [Anderson et al. 2007], and for representing transparent materials [Everitt 2001].

Nowadays graphic cards are optimized to render surfaces and support the rendering of points,
edges, and triangles. However, despite the popularity of volume rendering, there is no hardware
acceleration for the rasterization of 3D primitives. As a result, volume rendering methods do not
take full advantage of the graphic card and the vast majority of these algorithms are executed
in fragment shaders. This can be explained by the similarity of the rasterization for 0, 1, and 2D
primitives as solving their on-screen projection create a single solution per pixel: a fragment with a
depth, interpolated attributes, etc. In comparison, solving the on-screen projection of a 3D primitive
creates multiple solutions for each pixel that have to be solved simultaneously, stored contiguously,
and sorted according to their depth. Doing so naively would create a bottleneck in the rendering
pipeline by introducing synchronization points.
However, the recent introduction of the mesh shading pipeline ([Kubisch 2018; Moore 2023;

Oberberger et al. 2023]) allowed for the use of more complex rendering primitives as long as they
could be expressed as points, lines, or triangles at the end of the mesh shading stage. The mesh
shading pipeline replaces the vertex, geometry, and tesselation stage with an optional task stage
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and mesh stage. The mesh stage resembles the compute stage and supports the same kind of inputs,
but its outputs are geometric primitives that are directly fed to the rasterizer. Similar to the compute
shader, the mesh shader uses a workgroup to distribute complex operations on multiple threads
that share parts of their memory. This grants more control over the geometry than the geometry
and tesselation stages.
In the context of explicit surface rendering, mesh shading pipeline opened new possibilities

for continuous level-of-detail approaches [Englert 2020], for on-the-fly tesselation [Santerre et al.
2020], and for early culling of geometry [Unterguggenberger et al. 2021] by using tailored meshlet
generation strategies [Jensen et al. 2023]. Mesh shading can also be used to decompress meshlet in
real-time [Kuth et al. 2024]. Recently mesh shaders have been used to mesh implicit representation
using amarching cube approach to render them using rasterization rather than amarching algorithm
[Kreskowski et al. 2022]. While this greatly reduces the cost of isosurface rendering, this method
cannot be used in volume rendering. However, to the best of our knowledge, no method has been
proposed to process volume primitives.

In this article, we propose to use tetrahedrons as a rendering primitive. Tetrahedrons are already
popular among the computer graphics community: they support being deformed [Gascon et al.
2013], and they are used in mechanical simulation [Koschier et al. 2014] and fluid simulation [Ando
et al. 2013].

We propose a method that takes advantage of the new possibilities offered by the mesh shading
pipeline to process tetrahedrons and use them to invoke Interval Shaders. Here, we introduce an
Interval Shader as a fragment shader that receives a depth interval for a single fragment. The
first value corresponds to the depth of the front faces of the tetrahedron and the second to the
back faces. The interval shader uses this depth interval to compute the current fragment’s color
for volume rendering. As a fragment can only have one depth on current hardware, we propose a
method to process tetrahedrons using mesh shaders to coerce the rasterizer to compute two depths
per fragment.

2 METHOD
In this section, we propose a method to invoke an interval shader using a mesh shader. First, we
address the generation of depth intervals in a simple case with strict constraints (Section 2.1), then
we show a method to process tetrahedrons so they match these constraints (Section 2.2).

2.1 Generating Depth Intervals: Simple Case
Let’s consider a triangular prismoid 1 in projected space composed of six vertices 𝑣𝑛 with 𝑛 ∈ [0, 5],
with 𝑣0, 𝑣1, 𝑣2 forming the first triangular base, and 𝑣3, 𝑣4, 𝑣5 forming the second (see Figure 2). We
1a prism whose bases are not parallel

Fig. 2. Illustration of a prismoid. Left: in projected space. Right: in world space .
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place ourselves in the case where both bases of the prismoid project to a single triangle in screen
space such that :

𝑣0.𝑥𝑦

𝑣0.𝑤
=
𝑣3.𝑥𝑦

𝑣3.𝑤
,
𝑣1 .𝑥𝑦

𝑣1.𝑤
=
𝑣4.𝑥𝑦

𝑣4 .𝑤
,
𝑣2 .𝑥𝑦

𝑣2.𝑤
=
𝑣5.𝑥𝑦

𝑣5 .𝑤

Any point 𝑝 on this triangle is defined as follows :

𝑝.𝑥𝑦 =
𝑣0 .𝑥𝑦

𝑣0.𝑤
· _0 +

𝑣1 .𝑥𝑦

𝑣1.𝑤
· _1 +

𝑣2.𝑥𝑦

𝑣2.𝑤
· _2

=
𝑣3 .𝑥𝑦

𝑣3.𝑤
· _0 +

𝑣4 .𝑥𝑦

𝑣4.𝑤
· _1 +

𝑣5.𝑥𝑦

𝑣5.𝑤
· _2

(1)

with _0, _1, and _2 being the screen space barycentric coordinates of the point p. Note that as
we are using screen space barycentric coordinates we can use the same set for the first and
second bases of the prism. We then find the z coordinates of 𝑝 using:

1
𝑝.𝑧0

=
𝑣0 .𝑤

𝑣0.𝑧
· _0 +

𝑣1 .𝑤

𝑣1.𝑧
· _1 +

𝑣2 .𝑤

𝑣2.𝑧
· _2 (2)

1
𝑝.𝑧1

=
𝑣3.𝑤
𝑣3.𝑧

· _0 +
𝑣4.𝑤

𝑣4.𝑧
· _1 +

𝑣5.𝑤

𝑣5.𝑧
· _2 (3)

with 𝑝.𝑧0 the z coordinate of the point 𝑝 on the first base of the prism and 𝑝.𝑧1 the z coordinate of
the point 𝑝 on the second. We finally obtain, 𝑧𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑝.𝑧0, 𝑝.𝑧1) and 𝑧𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑝.𝑧0, 𝑝.𝑧1).
Now that we know how to compute 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 , we propose to coerce the rasterizer into

computing them for us, so as to have them as input variables in the fragment stage. To do so, we
emit a triangle proxy for the prismoid with the following vertices coordinates:{

𝑣0.𝑥

𝑣0 .𝑤
,
𝑣0.𝑦

𝑣0 .𝑤
, 0, 1

}
,

{
𝑣1 .𝑥

𝑣1.𝑤
,
𝑣1.𝑦

𝑣1.𝑤
, 0, 1

}
,

{
𝑣2 .𝑥

𝑣2.𝑤
,
𝑣2.𝑦

𝑣2.𝑤
, 0, 1

}
and with the following vertices attributes 𝑍 :{

𝑣0.𝑤

𝑣0.𝑧
,
𝑣3.𝑤

𝑣3 .𝑧

}
,

{
𝑣1.𝑤

𝑣1 .𝑧
,
𝑣4 .𝑤

𝑣4 .𝑧

}
,

{
𝑣2 .𝑤

𝑣2 .𝑧
,
𝑣5 .𝑤

𝑣5.𝑧

}
By setting the z coordinates to 0 we force the rasterizer to use the screen space barycentric

coordinates to interpolate the vertices attributes. The interpolation of the 𝑍 by the screen space
barycentric coordinates is equivalent to the equation 2 and 3. Thus we have 1/𝑧𝑚𝑖𝑛 and 1/𝑧𝑚𝑎𝑥

as input of the fragment shader. We can now use this interval for our shading.

2.2 Tetrahedrons
This approach is only valid for a prismoid whose bases project onto a single triangle in screen space,
or for a shape that has been decomposed into such prismoids. While a prismoid decomposition
would be a complex task in a general case, in the specific case of a tetrahedron, this operation can
be solved analytically in real time in a mesh shader. For a tetrahedron, there are only two cases to
consider (Figure 3):

• Case 1: when the tetrahedron projects onto a single triangle in screen space, the decomposi-
tion creates three triangle prismoids.

• Case 2: when the tetrahedron projects onto a quad in screen space, the decomposition
creates four triangle prismoids.

Specific cases where one or two faces of the tetrahedron have a null area in screen space can be handled
by the first case with a numerically stable implementation.
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Fig. 3. Illustration of two possible cases of the prismoid decomposition for a tetrahedron. Left: Wireframe of
the tetrahedron. Right: Proxy generated by the mesh shader with the vertex indices used. Top: First case,
three triangles and and four vertices are created. Bottom: Second case, four triangles and five vertices are
created.

2.2.1 Emitting the proxy. As, in Section 2.1 we emitted one triangle proxy for the prismoid we
processed, here we need to emit proxies composed of as many triangles as we have prismoid: 3 in
case 1 and 4 in case 2. To create the proxies we must compute the position of all required points in
screen space, and their depths in the projected space. We start by defining 𝑡𝑖 the 𝑖𝑡ℎ vertices of the
tetrahedron with 𝑖 ∈ {0, 3}, and 𝑝 𝑗 the 𝑗𝑡ℎ vertices of the proxy.

Case 1. In this case, we define 𝑝0:2 as the points on the silhouette of the proxy and 𝑝3 as the point
not on the silhouette. With:

𝑝0:3 = 𝑡𝑎:𝑑 .𝑥𝑦/𝑡𝑎:𝑑 .𝑤
with 𝑎,𝑏,𝑐 , and 𝑑 the indices of the vertices on the tetrahedron, chosen such that 𝑝0:2 are ordered in
a clockwise manner as shown in Figure 3. For all vertices 𝑝0:2 on the silhouette, we define:

𝑧𝑚𝑖𝑛0:2 = 𝑧𝑚𝑎𝑥 0:2 =
𝑡𝑎:𝑐 .𝑧

𝑡𝑎:𝑐 .𝑤

For the vertices 𝑝3, we compute its screen space barycentric coordinates _ on the triangle 𝑝0:2 using
the edge function [Pineda 1988] such that:

𝑝3.𝑥𝑦 =
𝑡𝑎 .𝑥𝑦

𝑡𝑎 .𝑤
· _0 +

𝑡𝑏 .𝑥𝑦

𝑡𝑏 .𝑤
· _1 +

𝑡𝑐 .𝑥𝑦

𝑡𝑐 .𝑤
· _2

Then we project back 𝑝3 on both the front and back faces to find its depths. As 𝑝3 is the screen
space projection of 𝑡𝑑 we find:

𝑧0 = 𝑡𝑑 .𝑧/𝑡𝑑 .𝑤
To find the second projection of 𝑝3 on either the front face or back face: we follow the Equation 2:

1
𝑧1

=
𝑡𝑎 .𝑤

𝑡𝑎 .𝑧
· _0 +

𝑡𝑏 .𝑤

𝑡𝑏 .𝑧
· _1 +

𝑡𝑐 .𝑤

𝑡𝑐 .𝑧
· _2

Then we have 𝑧𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑧0, 𝑧1).
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Finally, we emit three triangles proxies as described in Section 2.1: {𝑝0, 𝑝1, 𝑝3}, {𝑝1, 𝑝2, 𝑝3}, and
{𝑝2, 𝑝0, 𝑝3} (see Figure 3).

Case 2. In this case, we start by defining 𝑝0:3 as the point on the silhouette of the proxy and 𝑝4 as
the point not on the silhouette. Similarly, as in the first case, we define:

𝑝0:3 = 𝑡𝑎:𝑑 .𝑥𝑦/𝑡𝑎:𝑑 .𝑤
and:

𝑧𝑚𝑖𝑛0:3 = 𝑧𝑚𝑎𝑥 0:3 =
𝑡𝑎:𝑑 .𝑧

𝑡𝑎:𝑑 .𝑤

with 𝑎,𝑏,𝑐 , and 𝑑 the indices of a vertex on the tetrahedron chosen such that 𝑝0:3 are ordered in a
clockwise manner as shown in Figure 3. We can find 𝑝4 by solving the intersection of the segment
𝑝0𝑝2, and 𝑝1𝑝3 such that:

𝑝4 = 𝑝0 + (𝑝2 − 𝑝0) · 𝑡 = 𝑝1 + (𝑝3 − 𝑝1) · 𝑠
with 𝑡 and, respectively, 𝑠 , the linear interpolation weight on the segment 𝑝0𝑝2, and respectively
𝑝1𝑝3. We adapt Equation 3 to segments to find 𝑧0 and 𝑧1 giving us:

1
𝑧1

=
𝑡𝑎 .𝑤

𝑡𝑎 .𝑧
· (1 − 𝑡) + 𝑡𝑐 .𝑤

𝑡𝑐 .𝑧
· 𝑡

and:
1
𝑧0

=
𝑡𝑏 .𝑤

𝑡𝑏 .𝑧
· (1 − 𝑠) + 𝑡𝑑 .𝑤

𝑡𝑑 .𝑧
· 𝑠

Then we have 𝑧𝑚𝑖𝑛4 = 𝑚𝑖𝑛(𝑧0, 𝑧1) and 𝑧𝑚𝑎𝑥 4 = 𝑚𝑎𝑥 (𝑧0, 𝑧1). Finally, we emit four proxies as
described in Section 2.1: {𝑝0, 𝑝1, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, {𝑝2, 𝑝3, 𝑝4}, and {𝑝3, 𝑝0, 𝑝4} (see Figure 3).

Fig. 4. Clipping of a tetrahedron by a plane. Top: the tetrahedron, the clipping plane, and its intersection
with the tetrahedron in red, in yellow the clipped vertices. Bottom: The clipped tetrahedron and the indices
we use to describe them. Left: one vertex clipped by the plane. Center: two vertices clipped by the plane.
Right: three vertices clipped by the plane.
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Fig. 5. Rendering of the tetrahedrized Armadillo with the camera progressively moving forward. a: the camera
is far away. b: the camera is close but outside of the model. c: the camera is inside the model.

2.3 Clipping
As explained in Section 2.1, when creating the proxy, we store the inverse of the depths as vertex
attributes. Thus, if the 𝑧𝑚𝑖𝑛 value gets too close to zero (when the tetrahedron is too close to the near
plane), the interpolation 1/𝑧𝑚𝑖𝑛 will create numerical instability. To avoid this effect, we propose
to clip the tetrahedrons before the near plane (at 𝑛𝑒 = 𝑛𝑒𝑎𝑟 + 𝜖 in camera space). Depending on
the number of vertices having a z coordinate inferior to 𝑛𝑒 this operation can create two shapes:
either a prism-like shape (two triangles, three parallelograms), or a tetrahedron (see Figure 4). If
the output is a prism-like shape we decompose it into three tetrahedrons and process them as
described in Section 2.2. There are multiple valid ways to split this shape into tetrahedrons. Given
the indexing shown in Figure 4 we split it as follows: {0, 1, 2, 3}, {1, 2, 3, 5}, {1, 3, 4, 5}. In addition to
avoiding unexpected behavior, clipping the tetrahedron before the near plane allows us to place
our camera inside a (or a set of) tetrahedron, as can be seen in Figure 5.

3 RESULTS
In this Section, we show some results obtained with our method. Figure 6 shows the result of our
method while dealing with a single tetrahedron. Figure 6 Left shows the depth of the front faces,
Figure 6 Center shows the depth of the back faces, and Figure 6 Right shows the difference in depth
between the front and the back faces. This computation is done in one draw call as the fragment

Fig. 6. Single tetrahedron processed by our method. Left: depth of the front face, Center: depth of the back
faces, Right: difference in depth in world space
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Fig. 7. Crystal rendered using our method. a: sum of interval length. b: Light transmittance where each
tetrahedron has a different absorption color. c: Light transmittance where each tetrahedron absorbs the same
color. d: Light transmittance and reflection based on an environment map.

Fig. 8. Rendering of multiple parts of a tetrahedrized jet engine. Left: assembled view. Right: randomly
generated exploded-view. Here both view can be achieved without having to reconstruct any acceleration
structure. On the exploded we can see parts of the mechanism overlapping without creating any issues.

shader receives the depth of the front and back faces. This allows us to exploit the depth intervals
in two main ways :

• To compute the optical depth of a tetrahedral mesh as described in Section 3.1
• As bounds for a marching algorithm as described in Section 3.2

3.1 Optical Depth
Figure 7 demonstrates how our method can be used to compute the optical depth in tetrahedral
meshes. To achieve this result we chose a mesh from cgtrader [The-Ni11 2018] and converted it
into a tetrahedral mesh using the Geogram library [Levy 2015]. The resulting mesh was directly
fed as an indexed tetrahedron list to our mesh shaders without modification or reordering. Then
in the fragment shader, given the difference in depth generated for each fragment, we compute
the position of the front and back faces in world space, and output the norm of their differences.
Following that, we rely on the blending phase of the pipeline to sum those lengths (using the add
blend function and blending parameter equal to one) which gives us the distance spent in the
model for each pixel. Finally, we apply the Beer-Lambert law as a post-process to evaluate the
light transmitted by the model. This allows us to evaluate the transmittance in any tetrahedron
mesh in one draw call followed by a simple post-process. Our method is not limited by the number
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Fig. 9. Field of asteroids evaluated with our method inspired by [Neyret 2024]. Top left: asteroid shaded using
the number of steps of sphere marching before reaching the surface. Top right: rendering of the bounding
tetrahedron shaded using the interval length to march. Bottom left: cost of the visible fragment (black
means 0 sphere marching steps, white means 60 sphere marching steps). Bottom right: sum of the cost of all
fragments evaluated (black means 0 sphere marching steps, white means 60 sphere marching steps).

of intersections between the camera ray and the surface as opposed to A-Buffer-like approaches
[Everitt 2001] and gives exact results. Furthermore, as our method does not depend on accelerating
structures, we can freely move or deform tetrahedrons as showed in Figure 8 that represent the same
mechanical system assembled (Figure 8 Left) and as randomly generated exploded-view (Figure 8
Right). Our method allow us to go from one view to the other without having to reconstruct an
acceleration structure such as BVH [Gu et al. 2013] or a voxelization [Museth et al. 2013].

3.2 Ray Marching
Our method can also be used to render signed distance fields. In Figure 9 we show an asteroid field
ray-marched with a sphere tracing algorithm [Hart 1996]. To achieve this we instantiate multiple
tetrahedrons, each bounding a procedural signed distance field defined using Hypertextures [Perlin
and Hoffert 1989] in a frame centered on the tetrahedron.

In this case, each fragment only computes the ray-SDF intersection for only one asteroid, and we
rely on the depth buffer to choose which fragment to show on screen. This allows us to distribute
the computation of the ray-SDF intersection on multiple fragments per ray, thus limiting the
complexity of the marching done in each fragment, but preventing us from stopping the marching
at the first intersection. As, in most cases, the cost of an image is determined by the most expensive
fragment, splitting the computation of one ray into multiple fragments reduces the overall cost of
the rendering. This is particularly useful in the case of sphere tracing [Hart 1996] where the cost
of a fragment increases greatly for grazing rays. Here the worst-case scenario would be rays that
closely miss multiple surfaces. Our method distributes those close misses on various fragments
that can be executed in parallel depending on warp availability.
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4 PERFORMANCES
All our examples have been rendered on an NVIDIA GeForce RTX 4080 and are rendered in 4K
resolution (3 840 × 2 160) using Vulkan 1.3.242. Each mesh shading work group processes one
input tetrahedron, using one thread per work group. Performances are described in Table 1. Our
measure shows that our method remains real-time even when used to invoke ray marching (see
Section 3.2). When comparing the rendering time of the crystal to the asteroids that use a similar
amount of tetrahedrons we can see that most of the time is spent in the ray marching algorithm.
Our example, in Figure 5, shows that our method can handle large amounts of primitive while
remaining real-time even when clipping is required. The source code to generate our figures is
available on here.

Model Figure tetrahedron count cost (ms) Frame rate (FPS)
Bunny 1 61 042 3.30 303

Single tetrahedron 6 1 0.17 5882
Crystal 7 8 580 0.71 1408

Armadillo 5 a 959 042 3.88 257
Armadillo 5 b 959 042 11.8 84
Armadillo 5 c 959 042 12.7 78
Jet Engine 8 2 379 700 8.6 116
Asteroids 9 10 000 7.45 134

Table 1. Performances measures of our examples, asteroid is separated as it is rendered with sphere marching.

5 LIMITATIONS
The method we propose allows us to generate shading intervals that can be evaluated in parallel
and then recombined in the blending phase. As a result, it can only be applied to render volume
information that is not order-dependent.
Our method uses screen space proxies to force the rasterizer to use screen space barycentric

coordinates to interpolate depths correctly. In consequence, the interpolation of vertices attributes
cannot be computed correctly by the rasterizer. Hence, our methods can not be applied to render
tetrahedrons with vertex attributes, only per tetrahedron information can be used for the shading.
An example of this can be shown in Figure 7 Center Left where each tetrahedron has a different
absorption color, and in Figure 9 where each tetrahedron has a different model matrix that is
inverted in the fragment shader.
Currently, our method can only handle one tetrahedron per mesh shading work group which

limits the number of tetrahedrons that can be drawn at the same time. Attempts at processing more
tetrahedrons per work group resulted in lower performances either due to branch divergence in
the mesh shader or to inconsistent memory access when fetching tetrahedrons. This limitation
could potentially be addressed by reorganizing tetrahedrons in meshlet-like structures.

6 CONCLUSION
We proposed to use tetrahedron as a volume rendering primitive and a pipeline to rasterize them.
This allows for rendering transparent objects accurately in a single pass and for invoking the ray
marching algorithm with marching intervals. Our method can render volumic data as long as we
can bind them by one or multiple tetrahedrons and their rendering can be done in an unordered
fashion. We believe our method can open new possibilities for volume rendering. Moreover, if

https://github.com/ThibaultTricard/Interval-Shading
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our method for processing tetrahedrons is implemented in future hardware it could widen the
possibility for interval shading and volume rendering in general.
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