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ABSTRACT As data-driven solutions will become an important component of next-generation networks,
we were faced with the difficulty of developing cross-domain datasets for training machine learning models.
In order to understand how external sources of data should be associated with mobile network data at cell
level, we have derived a method for splitting simple geometric coverage models for base stations to obtain
coverage models for sectorized cells. Then, we developed a method to compare the coverage models with
a ground truth of real measurements. We also proposed to use the notions of convex and concave hulls to
quantify when a geometry is undersized or oversized. The two types of geometry that were evaluated were
the Voronoi polygons and circular shapes, with sector split. All frequency bands considered, the results have
shown that Voronoi sector split model combined with upscaling the coverage shapes was the closest to the
ground truth, with an average recall of 0.74. Since upscaling Voronoi polygons should be a good practice
to improve coverage modelling, we have also proposed an approach using more affordable data (i.e. cell
level aggregates) instead of user locations to find the best scaling factor. All frequencies combined, we have
observed an average increase of 0.13 points in the recall between the diagram with the default scale and the
scale-tuned diagram.

INDEX TERMS Mobile network, cell coverage, geometric modeling, Voronoi, budget link.

I. INTRODUCTION
In the recent years, the ever growing usage of mobile
networks in the professional sector and for individual usages
have driven the development of new technology standards.
The 5G and 6G technologies are designed to integrate
data-driven models that make use of the big data collected by
mobile network operators. Machine learning (ML) solutions
are thoroughly investigated to propose intelligent compo-
nents integrated to network optimization, anomaly detection,
time series forecasting, planning tools or energy efficiency
systems [1]. By definition, these algorithms are built to learn
from a large dataset of real data. Their strength reside in their
ability to extract latent variables embedded in the data, and to
draw relationship out of complex phenomenons that may be
difficult or time-consuming to notice for an expert.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

A problem in particular retained our attention and
motivated this study on cell coverage: the crossing of
radio network configuration data with exogenous features.
Exogenous data, also called ‘‘cross-domain’’ data [2] or
‘‘external information’’ [3] are data coming from sources
that are unrelated to telecommunications, but are important
to represent phenomenons in a way that mobile data
cannot. The existing work combining exogenous and mobile
network features is mainly dedicated to predict the network
performance at user level or at base station level (see
Section II for further details on the applications).

The quality of learnable information embedded in external
features highly depend on the way they are processed. For
example, what type of features should be kept? How do we
cross external data with network infrastructure such that it
is geographically relevant? The scope of this paper focuses
on the second question, where a reasonable idea is to extract
information specific to each base station (BS) or cell so
that only objects spatially located in the vicinity of the
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equipment are kept. To maximize the correlation between
mobile traffic activity, human activity and urban fabric, the
ideal extract area would correspond to the coverage of the
said equipment. In theory, the exact coverage model for each
cell is obtainable using electromagnetic propagation formula
[4] combined with perfect knowledge of the environment
(terrain elevation, 3D buildings). This is a time consuming
process, both in terms of data acquisition and simulation.
To keep it close to reality, a reasonable approximation can
be derived from measurements of User Equipment (UE)
locations and the cell of attachment. However it is difficult to
obtain an exhaustive sampling with drive-test campaigns, and
the treatment of the personal data that is collected can cause
privacy issues. Therefore, coverage related studies often opt
for simple geometries that require minimal parameters to
model BS or cell coverage.

The most popular way to partition the geographic space
into a map of BS coverage is the Voronoi diagram (or
tessellation). The Voronoi diagram takes the location of all
the BS in order to draw the regions of UE attachment. The
underlying assumption is to consider that a UE is attached
to the closest BS. However, studies about the validity of
the Voronoi model seem almost non existent. Furthermore,
while the recent radio infrastructure is tri-sectored and the
urban fabric can be very heterogeneous, there is also very
literature modelling sectorized cell coverage. This issue is
particularly relevant for machine learning, because having
a reliable cell coverage model would allow the training of
models at a finer granularity than BS level, with a larger
dataset available. Roughly, the training dataset could be at
least three times larger with tri-sectored cells, and even more
if we differentiate the coverage by band. Finally, to best of our
knowledge, no study comparing Voronoi model with other
types of geometries has been done before.

The final objective of this paper is to investigate if the
Voronoi model, with or without variations, is in fact a sound
simplification, or if another simple and naive model such
as the circular shape could have been more adequate to use
in the literature. The variations proposed do not constitute
fundamentally new models, but we believe they may be good
parameter tuning practices to adopt in order to be closer to the
reality of cell coverage. With this being said, we propose the
following two contributions.

The first contribution is to study the coverage accuracy
of two simple geometric coverage models rescaled at
different scaling factors. We compared how much the
models overlapped a ground truth dataset describing the
users locations and cell of attachment. The objective is
to quantify how much a geometry modelling the coverage
of a cell really overlaps with the locations of the UEs
attached to the said cell. The geometric shapes are Voronoi
polygons and circular shapes, split into sectors to model
the cells coverage. The scaling factors are obtained through
different strategies. For example, we tested whether the use
of semi-empirical propagation models (Hata, UMa, RMa)

to compute the radius of circular shapes for each cell was
more accurate than re-scaling all the Voronoi polygons
with the same scaling factor. The dataset of user location
is geographically sampled in the French region of Île-de-
France, and is comprised of 526, 000 user locations and
3, 255 cells of attachment. The data was collected between
2022-10-01 and 2023-03-01 and only concerned 4G users
because it was the dominant technology at the time of the
study. Therefore, it provided the empirical user distribution
closest to reality. The location and serving cell measurements
can be obtained via the Minimization of Drive Tests (MDT)
mechanism [5]. Figure 1 shows the spatial distribution of the
measurements colorized by geographical context. Details on
the number of observations by context is given in Table 1. We
propose a novel approach to study models accuracy, notably
by introducing baselines to filter out under-scaled and over-
scaled coverage shapes. With the ground truth measurements
described previously, the results show that Voronoi-based cell
shapes better approximate the spatial distribution of user-cell
attachment than the circular shape, and uniform scaling of
Voronoi polygons yielded better results than scaling each
cell based on propagation models. The repository with the
library for generating synthetic random cell topographies and
coverage models is publicly available.1

The second contribution is to evaluate the efficiency of
tuning Voronoi polygons on data aggregated at cell level that
roughly approximate the distance distribution of the attached
users. It is motivated by the awareness that the previous
contribution requires difficult to acquire user measurements,
which limits the possibility to apply the previous method to
scale tune models. Cell radius estimations through user data
aggregations are less accurate because we lose information
about geographic positioning, however there are less privacy
issues and it requires lesser data manipulation. The estimates
of the cells maximum radius are computed from distance
distributions obtained with timing advance data. Using the
metrics of the previous contribution, the results show that
polygons scale-tuned on partial information are always
up-scaled to increase the number of overlaps with user
locations.

TABLE 1. Size of the collected data used for ground truth.

II. RELATED WORK
Having a simple coverage model is useful for merging
different sources of spatial data with network equipment

1Available at: https://github.com/qiuda22/GeoLibCov.
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TABLE 2. Methods applied and questions addressed.

FIGURE 1. Heatmap of the user measurements collected to serve as
ground truth in Île-de-France, France. Yellow: users attached to urban
sites, Blue: to suburban sites, Purple: to rural sites. Orange line:
Île-de-France boundary.

to create training datasets for ML models. The external
sources are mainly related to topography (land uses, points of
interests,. . . ) or populations (distribution, demography). The
existing literature on cross-domain ML training are focused
on network performance prediction, either at user level [2],
[6] or at base station level [3]. For each level of granularity,
the method for merging exogenous features is different.

At user level granularity, the geographic space is dis-
cretized into a grid of small spatial units. Each unit is
associated with the predicted network performance received
by users inside it. In this case, there is no need for a coverage
model: the exogenous data can be directly merged with the
units using spatial intersection operations. The strength of this
method lies in the fine-grained spatial accuracy, but it requires
important resources to store, process and anonymize the data.

The second possibility is to study the network performance
at base station level. While the spatial granularity is lower,
it requires a smaller training dataset and preserves user
privacy. The association of exogenous data with each
equipment is less trivial than the previous case, and requires
a coverage model to make the merge. As mentioned in the
introduction, the Voronoi diagram is a widespread model
of Base Station (BS) coverage. The diagram is the result
of associating each point in space (location of a UE) to
the closest BS. The notion of closeness is defined by the
distance function chosen for the task. The default function
is the Euclidean distance, but variants using the transmitting
power of the BS or of a sectorized cell have been studied
in [7]. In our previous work [8], we used the Voronoi
diagram to associate relevant land use and PoI features to
the base stations (BS). Outside of machine learning, Voronoi
diagrams are widely used in stochastic geometry, where work
references can be found in the survey [9]. Additionally,
studies on human activities also use this tessellation to
exploit mobile data. For example, the traffic of the mobile
network is crossedwith urban fabrics to estimate the real-time
population distribution by functional regions [10], or to
analyze the correlation with urbanization levels [11]. A few
work subdivide the Voronoi polygons into sectorized cells
regions: in [12], the authors split the Voronoi polygons using
the azimuth, the tilt and the height of the antenna, in order
to enhance the localization approximation of UEs. In [13],
the authors also split the Voronoi polygon into finer coverage
regions using the cells azimuth to assess the reliability of
using mobile data as a proxy for population density. In these
last two references, the studies consider that all cells on the
same sector, independently of frequency band, share the same
coverage.

Being very simple and not relying on radio configuration
and propagation properties, it is expected for the Voronoi
model to have accuracy limitations. However, it is not until
very recently that this problem has been addressed. In [14],
the authors show that on average, default scaled Voronoi
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polygons does not spatially match the whole simulated
probability distribution of user association to a base station.
Rather, there is only a correspondence of 50% between
the polygon area and the user distribution. In this paper,
we reach the same conclusion that Voronoi polygons should
be scaled to better reflect the reality of user distribution.
However, we use a different ground truth constituted of
real measurements, and a different approach to scaling
as our study is not oriented towards probabilistic spatial
diffusion. The accuracy of the ground truth in providing a
realistic approximation of areas of user-cell attachment is
assumed to be relatively high in urban areas. The quality
of the approximation depends on the distribution of user
locations, and will be higher if they are uniformly distributed.
From our observations of the measurements, user locations
overlapped with highways, residential roads and buildings
which form a dense and continuous fabric. The level of urban
fabric density is believed to be high enough to assume a
uniform distribution of the measurements. Figure 2 shows the
approximate shape (concave hulls) of the distribution of user
measurements attached to three tri-sectored sites. The hull of
user measurements is covering all the space, with a high level
of overlap and leaving few gaps.

FIGURE 2. Concave hulls (α-shapes) of the ground truth user
measurements attached to three tri-sectored LTE2600 sites (nine cells),
using normalized length parameter λP = 0.67.

Furthermore, another objective of our study was to verify
whether Voronoi was the best coverage shape, or if a circular
geometry could perform better. In order to filter out shapes
that are under-scaled or over-scaled, we propose to use the
convex and concave hulls of user locations by cell attachment.
The obtained hulls set a lower and upper bound for the
precision metric (Section V-D). The convex hull of a set is
unique [15] and the implementation that we used in PostGIS
[16] is based on the Graham scan algorithm [17], [18]. On the
contrary, a concave hull is not unique; different methods and

constraints will generate different kinds of hulls. Examples of
widespread hulls include α-shapes [19] and χ -shapes [20].
In the paper, χ -shapes were chosen because the algorithm
was simpler to understand and parameterize.

The circle geometry was another classic model in the
earlier days of cellular planning [21]. The idea is to make a
simplification and consider that base station antennas form
the same radiation pattern as an ideal isotropic antenna
pattern, then to use path loss expressions to determine the
limit coverage radius of the BS. There are several types of
path loss models, from semi-empirical models used since
GSM radio planning to analytical models developped in the
recent years [22]. The latter are however very complex to
integrate into research works because of the amount of terrain
and network knowledge required. Thus, we chose to use
simpler models that are classics in mobile planning: the Hata
model [23] is known to work well in French urban areas
[24] and the UMa and RMa models [25] which are suited for
frequencies in the range 0.5 − 100 GHz.
The coverage limit radius is defined as the distance at

which the received power is equal to the sensitivity of the
device. The method, detailed in Section VI-C is based on the
works of [26] for establishing the budget link.

Finally, regarding the second contribution, the scaling fac-
tor of Voronoi polygons is tuned on cell radius approximated
with timing advance (TA) data [27], [28]. Timing advance is a
discretizedmeasurement of the time taken by a signal to travel
from a BS to a UE. It is used to synchronize the transmissions
between both equipments.

III. METHOD
The objective of this work was to evaluate which shape was
more representative of a sectorized cell coverage (Section V).
Contrary to a map of best servers which gives the areas of cell
attachment such that UEs have the best quality of service,
in this study, the cell coverage is simply defined as the user
attachment area to the said cell. Therefore, the map of cells
coverage may present overlaps due to mechanisms such as
handover, or gaps due to building blockage. We propose
to scale the geometric shapes using different strategies
detailed in Section VI to evaluate if up-scaled or down-
scaled geometries increased the accuracy of the modelling on
average.

In order to compare the geometric models, we use the
precision and recall metrics also used in binary classification
(Section IV). We defined a lower and upper bound for the
precision using the precision of the convex and concave
hulls of users locations partitioned by cell attachment (see
Section V-D).
In Section VII we detail the method for finding the scaling

factor that scales Voronoi polygons to the same dimension as
the maximum user-cell distance estimated from TA data.

To summarize, our work can be structured around the
following questions:

1) Which geometric shape best model the cell coverage:
(a) Voronoi polygons, (b) circular shapes?

100100 VOLUME 11, 2023
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2) (a) How do the precision and recall vary between
BS coverage modelling and cells coverage modelling?
b) At cell level, what is the gain from splitting the BS
coverage into sectors compared to not splitting it?

3) Which metrics and reference values should be used to
compare the models?

4) Is it better to scale geometric shapes: (a) if Voronoi
polygons, with a scaling factor identical for all the cells,
(b) if circular shape, with a scaling factor such that it is
resized to the dimensions of the corresponding Voronoi
polygon, (c) with a scaling factor different for each cell,
derived from a path loss formula, i.e. (i) Hata, (ii) or
UMa/RMa?

5) Do the results vary significantly across different
frequency bands?

6) What coverage efficiency can be obtained when tuning
Voronoi polygons with cell radius data estimated from
TA?

To answer these questions, we tested different combi-
nations of geometries and scaling strategies described in
Table 2. Note: The third and last row of the table shares the
same label because we used the same model, but for different
contributions. The interpretation and conclusions were given
by observing the precision and recall averaged over all the
cells.

IV. METRICS
A. NOTATION
For a combination of geometry and scaling strategy, the
modelled coverage is evaluated by computing the mean
precision and recall of the cells from the ground truth dataset.
The ground truth dataset is made of users locations and
their associated cells. We compute the precision/accuracy of
models for each frequency band and partition the dataset
accordingly.

Let C ⊂ N be the set of identifiers of the cells in the ground
truth dataset,M ⊂ R2 be the set of user locations attached
to any cell of C, F ⊂ N be the set of frequencies possibly
deployed on a BS.

For band f ∈ F , we define Cf ⊂ C as the set of cells
transmitting at frequency f , Mf ⊂ M the subset of user
locations attached to any cell of Cf . For cell c ∈ Cf ,Mc ⊂ Mf
is the set of user locations attached to that particular cell.
Finally, we use Covcell(c) ⊂ R2 to denote the region covered
by a cell as modelled by a geometric model.

B. PRECISION AND RECALL
We evaluate how a geometric model is close to the real
coverage by computing the precision and recall of the shapes
for each cell, then by taking the average. The precision and
recall are metrics borrowed from binary classification.

Let f ∈ F , c ∈ Cf . The precision is defined as the
ratio between the number of true positives and the sum of
true positives and false positives. In the present case, the true
positives are the locations of Mc contained inside Covcell(c).
The false positives are the locations contained in Covcell(c)

but not inMc. The union of the set of true positives and false
positives corresponds to Covcell(c). In mathematical terms:

precision(c) =
|{Q ∈ Mf |Q ∈ Mc ∩ Covcell(c)}|

|{Q ∈ Mf |Q ∈ Covcell(c)}|
(1)

The average precision over the cells of Cf is:

P =
1

|Cf |
∑
c∈Cf

precision(c)

The recall is the ratio between the number of true positives
and the sum of true positives and false negatives. The
false negatives are the locations contained in Mc but not in
Covcell(c). The union of the set of true positives and false
negatives corresponds toMc.

recall(c) =
|{Q ∈ Mf |Q ∈ Mc ∩ Covcell(c)∥

|{Q ∈ Mf |Q ∈ Mc}|
(2)

The average recall over the cells of Cf is:

R =
1

|Cf |
∑
c∈Cf

recall(c)

Since we want models to overlap with Mc as much as
possible, the recall is the most important metric to maximize
(Figure 3 (b)). However, only looking at recall may lead
to choosing oversized coverage (Figure 3 (c)). A precision
that is too low with respect to some threshold could detect
this problem, but not only. It could also be used to detect
undersized shapes (Figure 3 (a)) since the precision tends to
be higher for smaller coverage shapes. Geometric models that
have a precision too highwith respect to some threshold could
also be filtered out.

To fix a reasonable lower and upper precision bound,
we propose to use the precision obtained with the convex and
concave hulls ofMc (see Section V-D).

1) BASELINE VORONOI-SITE
To measure the loss in accuracy when going from BS to cell-
level, we compute the precision and recall of the Voronoi
tessellation. The precision and recall of a BS is expressed
with different sets of true positives, false positives and false
negatives. Let B be the set of BS identifiers. For a BS of id
b ∈ B, band f ∈ F ,M ′

f ,b is the set of locations such that UEs
are attached to any cell of b of frequency f , and CovBS(b) is
the modelled coverage of the BS (here a Voronoi polygon).

The precision and recall for a BS are given by:

precision′(b) =
|{Q ∈ Mf |Q ∈ M ′

f ,b ∩ CovBS(b)}|

|{Q ∈ Mf |Q ∈ CovBS(b)}|

recall′(b) =
|{Q ∈ Mf |Q ∈ M ′

f ,b ∩ CovBS(b)}|

|{Q ∈ Mf |Q ∈ M ′
f ,b}|

We then average the precision and recall over B restricted
to the frequency f .

VOLUME 11, 2023 100101



D. Qiu et al.: Study on Simple Geometries for Modeling User Equipment Geospatial Attachment to Mobile Cells

FIGURE 3. Coverage evaluation of one cell sector (in blue). (a) precision=1, recall=0.2; (b): precision=0.5, recall=0.8; (c): precision=0.23, recall=1. For
illustration purposes, the radio topography and users locations in the figure were randomly generated and are not representative of the real cell and
user distributions. The axes represent the axes of a map projection system for locating the cells, which were arbitrarily generated in the given range and
unitless. In the real world, Cartesian coordinates used for map projections are expressed in meters.

2) BASELINE VORONOI-CELL-NOSPLIT
To measure the accuracy gain from splitting BS geometries
into cell sectors, we compute the precision and recall of using
Voronoi tessellation to model cell-level coverage. Given a
band f ∈ F and a cell c ∈ Cf , let b ∈ B be the BS
where c is deployed. The expression of the precision and
recall are the ones given by Equations 1 and 2, only that
Covcell(c) = CovBS(b), since we do not split the coverage
of b.

V. SHAPES
To obtain cell coverage shapes, the first step is to create
the coverage of their BS. Depending on the model chosen,
BS coverage are either Voronoi regions or circles. Then,
the regions are split into sub-regions, one for each sector,
depending on antennas azimuth. Figure 4(a) illustrates the
Voronoi-based coverage model and Figure 4(b) the circular-
based model. Figure 4(c) and 4(d) respectively illustrate the
convex and concave hulls of user location by cell attachment.
Their use is developed in Section V-D.

A. VORONOI MODEL FOR BASE STATIONS
Let n ∈ N be the number of BS, S = {P1, . . . ,Pn} ⊂ R2 be
the set of their location coordinates.

The Voronoi region of a BS located at coordinates P is:

Vor(P) = {Q ∈ R2
|∀P′

∈ S ||QP|| ≤ ||QP′
||}

where ||QP|| is the two-dimension Euclidian distance
between Q and P.

B. CIRCULAR MODEL FOR BASE STATIONS
Let P be the point location of a BS. The circular model,
parameterized by radius Rl , defines the coverage region D:

D(P) = {Q ∈ R2
|||QP|| ≤ Rl}

The calculation of the limit radius Rl is explained in
Section VI-C.

C. SPLITTING THE BS COVERAGE INTO SECTORS
Reusing the notations presented previously, we divide the
BS modelled coverage into as many sub-regions as there are
sectors deployed on the site. For an easier following on the
notations, Figure 5 illustrates how a Voronoi polygon is split
into cells coverage.

The cell coverage map can vary from one frequency to
another, because not all frequencies are present on all the sites
or on all the sectors.

Let f ∈ F be a frequency band deployed on a BS of id
b located at coordinates P. CovBS(b) is the geometric region
modeling the coverage of b (Voronoi or circular).

The following explanations are given in an orthonormal
coordinate system with a basis (P⃗X; P⃗Y) (the location P of
the BS is taken as the point of origin).

For any vectors u⃗, v⃗ ∈ R2, we adopt the following notation:

• (̂u⃗, v⃗) denotes the geometric angle formed by two
vectors with P as the angle origin,

• θ (u⃗, v⃗) is the measure of the angle (̂u⃗, v⃗) in radians.
Angles are measured counterclockwise in the interval
[0, 2π [,

• (P, u⃗) denotes a ray (half-line) of direction u⃗, with initial
point P.

Let AP,b = {a⃗0, . . . , a⃗m−1} ⊂ R2 be the set of distinct
vectors representing the directions towards which the cells
identified by ids c0, . . . , cm−1 ∈ N are deployed at location
P, and transmitting at frequency f . The set AP,b is ordered
such that: θ (P⃗X, a⃗0) < . . . < θ(P⃗X, a⃗m−1).
The region CovBS(b) is partitioned into m subregions

{Covcell(c0), . . . ,Covcell(cm−1)}. Let b⃗k,k+1 be the direction
vector such that (P, b⃗k,k+1) is the angle bisector of ̂(a⃗k , ⃗ak+1).
Let Bk,k+1 (resp. Bk−1,k ) be the point of intersection of
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FIGURE 4. Figures (a) and (b) illustrate the geometric models that will be evaluated at different scales in the rest of the paper. Figures (c) and
(d) illustrate the convex and concave hulls of user locations by cell, computed on the ground truth data. For illustration purposes, the radio topography
and users locations in the figure were randomly generated and are not representative of the real cell and user distributions. The axis represent the axis
of a map projection system for locating the cells and users, which are arbitrarily generated in the given range and unitless. In the real world, Cartesian
coordinates used for map projections are expressed in meters.

FIGURE 5. Example of a fictive Voronoi BS polygon divided into three
sector areas in the Cartesian plane (P⃗X; P⃗Y). CovBS(b) is the polygon
N0N1N2N3N4N0, and Covcell(c0) is the polygon PB0N1N2B2P . The axis
ranges are arbitrary and unitless. In the real world, Cartesian coordinates
used for map projections are expressed in meters.

(P, b⃗k,k+1) (resp. (P, b⃗k−1,k )) with the boundary of CovBS(b),
denoted ∂CovBS(b).

Let ck be the id of the cell deployed on the k th sector, and
Covcell(ck ) ⊂ CovBS(b) be the modelled region covered by
ck . The boundary is defined as:

∂Covcell(ck ) = PBk−1,k ∪ PBk,k+1

∪ {Q ∈ ∂CovBS(b) |θ (P⃗X, b⃗k−1,k )

≤ θ (P⃗X, P⃗Q) ≤ θ (P⃗X, b⃗k,k+1)}

For simplicity of notation, we omitted the modulo m term,
but it applies when k = 0, i.e. k − 1 ≡ m − 1 (mod m) and
when k = m− 1, i.e. k + 1 ≡ 0 (mod m).

D. EMPIRICAL HULLS AS REFERENCES
Let c ∈ C be a cell id, and Mc = {m1, . . . ,mN } ⊂ R2 the
set of N user locations attached to c. Convex and concave
hulls ofMc are polygons that contains all the points of the set,

and which vertices are made of points from Mc. Following
this definition, the recall of these hulls is always 1, so their
precision can be used as a reference value. More precisely,
we can set a lower and upper precision thresholds. These
thresholds give indications of whether a modelled coverage
is too small or too large.

1) CONVEX HULL
The convex hull ofMc is the minimal convex set that contains
all the points ofMc (Figure 4(c)). In two dimension geometry,
a region is said to be convex if, for any pair of points in the
region, the line segment joining them is also contained in the
region.

The convex hull serves as a lower bound precision
indicator, because it has the largest area possible such that its
vertices belong to Mc. So a coverage model that has a global
precision P smaller than the precision of the convex hull is
likely to be oversized.

2) CONCAVE HULL
As indicated by the name, concave hulls ofMc are not bound
to be convex (Figure 4(d)). These hulls are used to capture
the shape of a scatterplot more precisely than the convex
hull. The χ -shapes form a family of concave hulls obtained
with an algorithm based on eroding the edges of a Delaunay
triangulation ofMc.

The function for creating χ -shapes is parameterized by the
normalized length parameter λP ∈ [0, 1], where a value of
0 produces maximal concaveness, and a value of 1 produces
a convex hull (Figure 6). For further explanation about the
algorithm, we refer the reader to [20], and to [29] for the
Delaunay triangulation.

The precision of the χ -shape obtained with λP = 0 is
one of the highest possible due to its maximal concaveness;
the hull is made of almost (if not all) every point of Mc.
Therefore, we use this definition of concave hull as an upper
bound precision indicator. Any geometric coverage that has
an average precision P higher than the precision of the
χ -shape is likely to be undersized.
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FIGURE 6. Illustration the impact of the normalized length parameter λP
on the concaveness of χ-shapes. The users locations in the figure were
randomly generated in an arbitrary range. The axis represent the axis of a
map projection system. In the real world, Cartesian coordinates used for
map projections are expressed in meters.

VI. SCALING STRATEGIES
The coverage models are scaled up and down to understand
which range of scale parameters should be used to be closest
to reality. The scaling is applied to the coverage model of the
BS, before making the sector splits.

We evaluated three ways of scaling the geometries, each
controlled by a hyperparameter:

1) For Voronoi polygons, we performed a uniform
scaling of the coverage of all the BS using a single
scaling factor, which is also the hyperparameter
(Figure 7(b) and (c)).

2) For circular shapes, we scaled each BS coverage
with a different scaling factor, such that the circle
radius is equal to the radius of the bounding circle of
the corresponding Voronoi polygon. When evaluating
different scales, the Voronoi polygons are first scaled
using the previous method. The hyperparameter is the
scaling factor of the Voronoi polygons (Figure 7(f)).

3) For circular and Voronoi shapes, each BS coverage is
scaled with a different scaling factor. The scaling factor
is chosen such that the radius of its bounding circle
is equal to the limit radius verifying the maximum
allowable path loss equation. The hyperparameter
controlling the maximum allowable path loss value is
the number of physical resource blocs (PRB) received
by the UE (Figure 7(e)).

A. VORONOI UNIFORM SCALING
Let s ∈ R be a scaling factor. Let b ∈ B be the id of
a BS with point location P ∈ R2 and modelled coverage

CovBS(b) ⊂ R2. Any point Q ∈ ∂CovBS(b) of the boundary
is transformed to Q′ to form the scaled boundary.

The scale function Fscale : R2
−→ R2 is in the form:

Fscale(Q) = P+ s(Q− P) = Q′

The transformation is done with the BS location P taken
as origin. Any s < 1 downscales a shape (Figure 7(b)), and
any s > 1 upscales it (Figure 7(c)). In our experiments,
we observed empirically that an adequate search interval for
s was [0.3, 3].

B. CIRCLE SCALING WITH VORONOI
Let rc be the initial radius of the circular model. For a BS
identified by id b, let rv be the radius of the bounding circle
of its corresponding Voronoi polygon at default scale. The
bounding circle is the smallest circle containing the vertices
of the polygon.

We first scale Voronoi polygons using the scale function
Fscale defined previously with the scaling factor s. The radius
of the scaled bounding circle equals srv. Let s′ ∈ R be the
scaling factor of the circular shape modelling the coverage
of b. The expression of s′ is:

s′ = s
rv
rc

The radius of the scaled circle is r ′
c = s′rc = srv, which

is equal to the bounding circle radius of the scaled Voronoi
polygon. Figure 7(f) is an example of scaling circles up to the
bounding circle radius of the default Voronoi diagram.

C. SCALING DERIVED FROM PATH LOSS EXPRESSIONS
For a BS identified by id b with a modelled coverage
CovBS(b), let r be the bounding circle of CovBS(b).We denote
by Rl the limit radius such that the power received by a UE is
equal to its sensitivity.

The coverage of b is scaled by a factor s where:

s =
Rl
r

In the study, we vary the sensitivity threshold by changing
the number of PRB nPRB allocated to the user at the cell
boundary. Figure 7(e) illustrates the scaling of circles with
nPRB = 1. In the rest of the section, we present the
expressions used to derive Rl from the maximum allowable
path loss. We adopt most of the notation and budget link
computation used in [26].

1) MAXIMUM ALLOWABLE PATH LOSS
The budget link is calculated on the constraint that the
received power Pr (R) at a distance R must be higher or
equal to the sensitivity S of the receiver. We assume that
the transmission is limited in the uplink direction, so the
transmitter is the UE and the receiver is the BS. The received
power Pr (R) is equal to the transmitting power Pt augmented
with the transmitter antenna gain GUE and subtracted from
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FIGURE 7. Geometric models (first row: Voronoi, second row: circular shape) scaled using different strategies. The axis represent the axis of a map
projection system for locating the cells, which are arbitrarily generated in the given range and unitless. In the real world, Cartesian coordinates used for
map projections are expressed in meters.

the path loss PL(R) and from the marginsM :

Pr (R) = Pt + GUE − PL(R) −M ≥ S

In reality, GUE varies depending on the direction of arrival
of the signal. In the study, the UE antenna is approximated as
isotropic antenna which emits an effective isotropic radiated
power EIRP = Pt +GUE in all directions. Consequently, the
previous equation is simplified as:

Pr (R) = EIRP − PL(R) −M ≥ S

The maximum allowable path loss (MAPL) is the value
such that the received power is equal to the sensitivity of the
device. The limit radius achieving the MAPL is denoted Rl .
In other words:{

PL(Rl) = MAPL
Pr (Rl) = EIRP − MAPL −M = S

(3)

Interested in finding Rl , we rearrange the previ-
ous expressions and take the inverse function of PL,
denoted PL−1:{

Rl = PL−1(MAPL)
MAPL = EIRP − S −M

(4)

The Table 3 indicates the values of EIRP, S, M as well as
the path loss models. Unless stated otherwise in the paper, the
default unit measurements in use are those indicated in the
table.

2) CELL CONTEXT ATTRIBUTION
The context of signal propagation (urban, suburban, rural)
is determined with the knowledge of the geography of the
region Île-de-France. We use the administrative departments
to separate the urban areas from the suburban areas, and
use the notion of urban unit slice [30] to identify rural
areas.

The urban unit slice (fr: tranche d’unité urbaine) is a
statistical data provided by INSEE. It is based on the concept
of urban unit. The urban unit is defined by INSEE as ‘‘a
commune or group of communes with a continuous built-up
area (no more than 200 metres between two buildings) with at
least 2,000 inhabitants.’’ [31] The ‘‘commune’’ is the smallest
level of administrative division in France, governed by a
municipality. Based on their population, an urban unit slice is
assigned to each urban unit. An urban unit slice is a numeric
category between 0 and 8, where the higher the number is,
the more populated the urban unit is. The slice 0 is attributed
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to communes outside of an urban unit, which we interpret as
rural areas.

The following context attribution rules were applied:
• if the cell is located in department 75 (Paris), then the
propagation context is defined as urban.

• if the cell is deployed in department 77, 78, 91 or 95,
and if the urban unit slice of the commune is 0, then the
context defined as rural.

• otherwise, the propagation context is defined as
suburban.

3) HATA MODEL
The Hata path loss model has three variants: urban, suburban
and rural. Using the variable notations in Table 3, we reverse
the Hata path loss functions to get the expressions of Rl .

Urban: Since Île-de-France is a heavily urbanized region,
and the studied frequencies are superior to 400 MHz, the
antenna height correction factor a(hUE) is equal to:

a(hUE) = 3.2[log10(11.75 hUE)]
2
− 4.97

With Rl expressed in km, using the Hata path loss model HU,
the Equation 3 becomes:

MAPL = HU(Rl)

= 69.55 + 26.16 log10(f ) − 13.82 log10(hBS)

− a(hUE) + [44.9 − 6.55 log10(hBS)] log10(Rl)

Reversing HU, we get:

H−1
U (MAPL) = Rl

= 10
MAPL−69.55+13.82 log10(hBS)+a(hUE)−26.16 log10(f )

44.9−6.55 log10(hBS)

(5)

Suburban: The Hata suburban model HSU is formulated
as:

HSU(Rl) = HU(Rl) − 2
[
log10

(
f
28

)]2
− 5.4

Reversing HSU:

H−1
SU(MAPL) = Rl

= H−1
U (MAPL) × 10

5.4+2
[
log10

(
f
28

)]2
44.9−6.55 log10(hBS) (6)

Rural: The Hata rural quasi-open model HRU is
formulated as:

HRU(Rl) = HU(Rl) − 4.78[log10(f )]
2

+ 18.33 log10(f ) − 35.94

Reversing HRU:

H−1
RU(MAPL) = Rl

= H−1
U (MAPL) × 10

35.94−18.33 log10(f )+4.78[log10(f )]
2

44.9−6.55 log10(hBS)

(7)

4) 0.5-100 GHz MODELS
The 3GPP standard has defined two path loss formula for
macro cells: Urban Macro (UMa) and Rural Macro (RMa).
We used UMa model for urban and suburban cells and RMa
model for rural cells. Instead of expressing the path loss as a
function of the distance Rl between the BS and the user, UMa
and RMa are expressed as a function of the distance between
the user and the top of the antenna, noted d3D.

Using the Pythagorean theorem, the relationship between
Rl , d3D and hBS is:

Rl =

√
d23D − h2BS (8)

Urban Macro (UMa): We consider a pessimistic scenario
where it is not possible to have LoS communication at the
limit radius.

The path loss model UMa is formulated as:

MAPL = UMa(d3D)

= 13.54 + 39.08 log10(d3D)

+ 20 log10(f ) − 0.6(hUE − 1.5)

Rearranging the previous expression, d3D is expressed as
follows:

d3D = 10
MAPL−13.54+0.6(hUE−1.5)−20 log10(f )

39.08

Rural Macro (RMa) We suppose that the limit radius is
always beyond the breakpoint distance dbp defined in the
standard, so we use the following formulation:

RMa(d3D) = a log10(d3D) + bd3D + c
where:
a = 60 + 0.03h1.72

b = 0.002 log10(h)

c = 20 log10

(
40π

f
3

)
− 0.044h1.72 − 40 log10(dbp)

The reverse function RMa−1 is a function of the principal
branch (0) of the Lambert W functionW0.

d3D = RMa−1(MAPL)

=
a

b log(10)
W0

(
10(MAPL−c)/ab log(10)

a

)
(9)

VII. SCALING FACTOR TUNING WITH CELL-LEVEL DATA
This section details the second contribution consisting in
using user aggregated data at cell level to tune the scaling
factor of Voronoi polygons. The efficiency of this method is
examined using the same metrics and ground truth as before.

The dataset for tuning the scaling factor is the empirical
cumulative distribution function of user distances by cell. For
a cell of id c ∈ C, let RTA : � → R be the random variable
corresponding to a user’s distance to c. The space of events
� ⊂ N is the set of possible timing advance (TA) values
measured between the user and c.

Let (rc,1, . . . , rc,n) ∈ R be n user distances sampled from
RTA. For t ∈ R, Fn(t) is the empirical cumulative distribution
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TABLE 3. Budget link in the uplink direction. In the first column, the terms in bold indicate a section, and the terms in italic are the result of a formula
involving the variables presented in the section.

function of RTA. With 1A as the indicator function of event A,
the expression of Fn(t) is:

Fn(t) =
1
n

n∑
i=1

1rc,i≤t

The empirical limit radius R̂c ∈ R is the smallest value
verifying Fn(R̂c) ≥ 0.95. We leave out 5% of the measures to
filter out outlier measurements.

Let (c1, . . . , cm) be the m cells constituting the dataset,
R̂ = (R̂c1 , . . . , R̂cm ) is the vector such that the ith element is
the empirical limit radius of ci, and r = (rc1 , . . . , rcm ) is the
vector such that the ith element is the bounding circle radius of
the Voronoi polygon of ci. When the polygons are scaled by
a scaling factor s, the corresponding bounding circle radii are

described by the vector r′
= sr. The optimal scaling factor

is the value that minimizes the mean average error (MAE)
between r′ and R̂:

MAE(R̂, r′) =
1
n

n∑
i=0

|R̂ci − srci |

s∗ = argmin
s∈R

MAE(R̂, sr)
(10)

VIII. RESULTS
We first present the results of the comparison between the
Voronoi polygons and the circular shapes for modelling cell
coverage combined with different scaling strategies. Then
we present the precision and recall achieved by scale-tuning
Voronoi polygons compared with the default scale.
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FIGURE 8. Geometric models precision (vertical axis) and recall (horizontal axis) obtained with the ground truth data. One subfigure is the evaluation of
several models for the same frequency band, and one line is one model evaluated at different scales.

A. GEOMETRIC MODEL AND SCALING STRATEGY
COMPARISON
Figure 8 shows the average precision P and recall R of the
geometric models by frequency. One curve corresponds to
a combination of a geometric model with a scaling strategy.
One point on a curve corresponds to the precision and recall
of a geometric model scaled with the value of a scaling
factor. We refer the reader to Table 2 for a description of the
combination that were tested and the corresponding labels in
the legend.

While it looks like the precision-recall curves of binary
classifiers, the graphs presents major differences in how their
design and interpretation. In our case, it is unlikely for the
precision or recall to be equal 1. This is because we look at
the average precision and recall averaged over all the cells
at once. Also, the hyperparameters controlling the scaling
factors (number of PRB or scaling factor) vary in ranges that
does not guarantee that the scaled shapes will cover all the
positives (recall = 1) or just one positive (precision = 1).
The hyperparameter of the scaling strategies influences

the precision and recall. For a scaling strategy parameterized
by a scaling factor (voronoi-cell, voro+circle, voronoi-site,
voronoi-sitecell), the larger the factor is, the larger the

geometry is. Consequently, the shape associated to a cell
will overlap more users attached to that cell, and the recall
increases. At the same time, the shape will likely overlap
more users that are not attached to the cell, so the precision
decreases. This means that the scaling factor increases when
we read the curves from left to right. For scaling strategies
parameterized by the number of PRB nPRB received by a UE
(hata+circle, hata+voro, uma/rma+circle, uma/rma+voro),
the smaller the number of PRB is required, the larger the limit
radiusRl is. This means that nPRB decreases whenwe read the
curves from left to right.

The efficiency of two combinations (model, scaling
strategy) A and B can be compared by observing the
positioning of their curves. If the curve of A is above B, then
the combination A is closer to the real coverage of the cell.
With these elements of interpretation, we now answer the

questions 1-5 of Section III based on the graph results.

1) WHICH GEOMETRIC SHAPE BEST MODEL THE CELL
COVERAGE: VORONOI POLYGONS OR CIRCULAR SHAPES?
The geometric model that best follows the distribution of
users by cell attachment is the Voronoi sector split model
labeled voronoi-cell. This can be observed for all the bands,
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FIGURE 9. Voronoi precision/recall at different scales, overlayed with the default scaled factor (triangle) and the tuned scaling factor (star). The scatter
plot of each tested scale is also displayed in blue.

especially the higher ones. For the lowest band (LTE700),
all the models were almost equivalent. When the scaling
factor derives from path loss equations, the Voronoi-based
geometries (hata+voro, uma/rma+voro) are slightly better
than circular-based shapes (hata+circle, uma/rma+circle).

2) A) HOW DO THE PRECISION AND RECALL VARY
BETWEEN BS COVERAGE MODELLING AND CELLS
COVERAGE MODELLING? (B) AT CELL LEVEL, WHAT IS THE
GAIN FROM SPLITTING THE BS COVERAGE INTO SECTORS
COMPARED TO NOT SPLITTING IT?
(a) There is a decrease in both precision and recall when
sector splitting the BS coverage, as we can see that the
coverage model voronoi-site for BS is above voronoi-
cell. This can be explained by intra-site sector coverage
overlapping, meaning that users are not always attached to the
closest sector. (b) If we do not apply sector split, and consider
the coverage of each cell to be equal to the coverage of the BS,
then the precision and recall values drop significantly. This
shows that while there may be intra-sector overlaps, most
users are connected to the closest sectors. It also confirms
the usefulness of doing sector-split when modelling the cells
coverage.

3) WHICH REFERENCE VALUES SHOULD BE USED TO
COMPARE THE MODELS?
Supposing that the real coverage of a cell is somewhere
between the convex and the concave hull of its users
locations, we use these hulls average precisions as reference
values. The higher bound p_concavehull varies between
0.65 and 0.8, and the lower bound p_convexhull between
0.45 and 0.65 depending on the frequency. These values
show a very high overlap between inter-sites sectors, and the
importance of upscaling the geometric shapes to render these
overlaps.

4) IS IT BETTER TO SCALE GEOMETRIC SHAPES: FOR
VORONOI POLYGONS WITH A SCALING FACTOR IDENTICAL
FOR ALL THE CELLS, FOR CIRCULAR SHAPES WITH A
SCALING FACTOR SUCH THAT IT IS RESIZED TO THE
DIMENSIONS OF THE CORRESPONDING VORONOI
POLYGON, OR WITH A SCALING FACTOR DIFFERENT FOR
EACH CELL? FOR THE LAST CASE, SHOULD WE USE HATA
OR UMA/RMA MODEL?
The best scaling strategy was the uniform scaling of Voronoi
cells (voronoi-cell), followed by scaling circles up to scaled
Voronoi polygons dimensions (voro+circle), then followed
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by scaling circles with the scaling factor derived from
Hata model (hata+voro, hata+circle), then derived from
UMa/RMa (uma/rma+voro, uma/rma+circle), although the
last four combinations are often close.

5) DO THE RESULTS VARY SIGNIFICANTLY ACROSS
DIFFERENT FREQUENCY BANDS?
While references, precision and recall values may vary across
the frequencies, the curves pattern and their positioning are
consistently the same.

6) WHAT COVERAGE EFFICIENCY CAN BE OBTAINED WHEN
TUNING VORONOI POLYGONS WITH CELL RADIUS DATA
ESTIMATED FROM TA?
The data we used for finding the scaling factor of Voronoi
polygons is a dataset of empirical cumulative distribution of
user distances by cells. Prior to data acquisition, the distances
of the cumulative distribution function had been discretized
into 12 values. The possible values of R̂ in kmwere I ={0.35,
0.7, 1.1, 2.2, 3.6, 5.8, 8.0, 10.0, 15.0, 20.0, 25.0, 30.0}.

TABLE 4. Optimal scale and corresponding MAE in meters.

Table 4 shows the tuned scales s∗ and the minimized
MAE(R̂, s∗r). The MAE, expressed in meters, is relatively
high but the results are affected by the coarse spatial
granularity of the binned distances from the dataset. Indeed,
the average distance between two consecutive values of I is
2.7 km, 1.4 km if we only consider distances < 10 km. The
MAE can be interpreted in the following way: on average,
the scaled polygons bounding circle radius is off by one
consecutive discrete value R̂.

The table also shows that s∗ is always superior to 1meaning
that according to the method, the Voronoi polygons should
be upscaled. Figure 9 plots the curve voronoi-cell with the
precision-recall of all the tested scaling factors between
[0.3, 3] with a step of 0.1. The default scale is marked with
a triangle and s∗ is marked with a star. The graph shows that
the recall of polygons scaled by s∗ is always higher. In two
cases (LTE700, LTE800), the precision is slightly below the
lower bound and in one case it is still above the upper bound.

IX. DISCUSSION
From the previous answers, it appears that the Voronoi
diagram, despite its simplicity, has the best results in
modelling the cells coverage. The polygons can be uniformly
scaled to be closer to the reality by rendering the cells
overlaps.While the study cannot provide explanations to why
this strategy is the best, we can still propose an interpretation.

TABLE 5. For LTE800 cells, the hyperparameters of each model such that
the target precision is chosen as the precision of the convex hull.

The mobile network is designed so that a user equipment is
attached to the cell from which the receiving signal is the
strongest. In the studied area, it is likely that the density
of base stations is so high that the limit radius computed
using the MAPL is oversized. In other terms, the range of
theoretic signal reception may be larger than the range of
user attachment seen in the ground truth data. Furthermore,
the high density of base stations could also lead the real
boundaries of user attachment to be ‘‘sharper’’ than a circle.
We think the shape of the Voronoi polygons might be more
representative of the boundary in this case. The uniform
scaling, when combined with Voronoi based shapes, preserve
the information of cell densities and how close they are
to each other. For urban areas (i.e. big cities), we thus
recommend for people using Voronoi based cell coverage
models to resize the shapes with a scaling factor in the range
[1.0, 2.0]. The coverage is larger than the default diagram due
to various phenomenons, such as the handover mechanism.
In the present case, if we were to choose a scaling parameter
s or nPRB, one way could be to choose the hyperparameter
such that the precision of the model equals the precision of
the convex hull. That way, we try to have a recall as high
as possible without taking the risk of oversizing the model.
Table 5 shows the retained hyperparameters for LTE800.
Tables for the other frequencies are given in the Appendix.
In case where user measurements are difficult to acquire,
we have shown that it was possible to get a fair to good
approximation of the optimal scaling factor by tuning it with
user distances aggregated at cell level, even if the data is
coarse. To avoid overscaling, a compromise is to take the
mean or a weighted mean between 1 (default scale) and s∗.
That way, one will end between the triangle marker and the
star marker on the graphs of Figure 9.

For less populated areas, the results may be biased by the
accuracy of the ground truth. As stated in the introduction, the
urban fabric and the distribution of the population was dense
enough to assumed that distribution of measurements was
uniform. However, less populated areas do not have the same
continuous distribution of population and infrastructure.
In many rural areas, people are concentrated in small
towns and villages surrounded by fields. This can lead to
coverage models underestimating how far a user could be
attached, because no user has been far enough to provide
a measurement in areas distant from dwellings. This aspect
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can be limiting for studies aiming at analyzing the network
performance at every point where a user can potentially be,
independently of how likely they would be there. But the
resulting tuned coverage remain relevant if we want to model
the coverage area such as it is closest to human activity and
network usage.

X. CONCLUSION
Throughout this study, we have developed a method to
compare geometric coverage models with a ground truth of
real measurements, using precision and recall metrics. We
proposed to use the notions of convex and concave hulls to
define a reference interval of precision to avoid undersizing
or oversizing coverage models.

Two geometries were evaluated for modelling sectorized
cell coverage: Voronoi polygons and circles, split into sectors.
Three scaling strategies were also tested: scaling the shapes
with an arbitrary scaling factor uniform for all the Voronoi
cells, using a scaling factor different for each cell and
dependent on the conditions of signal propagation, or using
a scaling factor so that circles are the same dimensions
as Voronoi cells. The results have shown that Voronoi
sector split model combined with uniform scaling was the
closest to the ground truth. This demonstrates the simplicity,
yet strength of Voronoi-based solutions, and confirms the
relevance of using this model when complex simulators and
network knowledge are out of reach.

Since we have shown that upscaling Voronoi polygons
should be a good practice to improve coverage modelling,
we have also proposed an approach using more affordable
data (i.e. cell level aggregates) to tune the scaling factor.

TABLE 6. For LTE700 cells, the hyperparameters of each model such that
the target precision is chosen as the precision of the convex hull.

TABLE 7. For LTE800 cells, the hyperparameters of each model such that
the target precision is chosen as the precision of the convex hull.

This work was initially motivated by the need to better
understand how external sources of data should be associated

TABLE 8. For LTE1800 cells, the hyperparameters of each model such that
the target precision is chosen as the precision of the convex hull.

TABLE 9. For LTE2100 cells, the hyperparameters of each model such that
the target precision is chosen as the precision of the convex hull.

TABLE 10. For LTE2600 cells, the hyperparameters of each model such
that the target precision is chosen as the precision of the convex hull.

with mobile network data at cell level to create informative
machine learning training sets. We hope this study helps the
development of cross-domain ML applications, or any kind
of data-driven solution that could be integrated into next-
generation networks.

Further work could be aimed at evaluating more complex
coverage models to improve our knowledge about their
accuracy in comparison to ground truth data. For example,
different scaling parameters and/or models which take
antenna radiation patterns into account can be considered.
The cellular coverage models described in this study could
also be improved by modelling the existing intra-sites sector
overlapping.

APPENDIX I.
TABLES OF PRECISION AND RECALL FOR CONVEX HULL
PRECISION TARGET
See Tables 6–10.

APPENDIX II.
MAE CURVES FROM TUNING THE SCALING FACTOR
See Figure 10.
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FIGURE 10. MAE curves from tuning the scaling factor.

APPENDIX III.
PRECISION-RECALL OF DEFAULT VERSUS SCALE-TUNED
VORONOI POLYGONS

TABLE 11. Precision-recall of the default scale (s=1) vs the tuned
scale (s∗).
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