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TWISTED DIFFERENTIALS AND LEE CLASSES OF LOCALLY

CONFORMALLY SYMPLECTIC COMPLEX SURFACES

VESTISLAV APOSTOLOV AND GEORGES DLOUSSKY

To the memory of Marco Brunella, whose work inspired us, and underline the
importance of the theory of PSH functions for the classification problem.

Abstract. We study the set of deRham classes of Lee 1-forms of the locally con-
formally symplectic (LCS) structures taming the complex structure of a compact
complex surface in the Kodaira class VII, and show that the existence of non-trivial
upper/lower bounds with respect to the degree function correspond respectively to
the existence of certain negative/non-negative PSH functions on the universal cover.
We use this to prove that the set of Lee deRham classes of taming LCS is connected,
as well as to obtain an explicit negative upper bound for this set on the hyperbolic
Kato surfaces. This leads to a complete description of the sets of Lee classes on the
known examples of class VII complex surfaces, and to a new obstruction to the exis-
tence of bi-hermitian structures on the hyperbolic Kato surfaces of the intermediate
type. Our results also reveal a link between bounds of the set of Lee classes and
non-trivial logarithmic holomorphic 1-forms with values in a flat holomorphic line
bundle.

1. Introduction

The classification, up to biholomorphisms, of the compact complex manifolds of
complex dimension 2 was reduced by the seminal works of Enriques and Kodaira to
understanding the minimal models of 10 classes of complex surfaces [8, Tab.10]. The
description of these minimal models is essentially optimal in the case when the complex
surfaces admit Kähler metrics, a purely topological condition equivalent to the first
Betti number being even [16, 43, 57]. On the other hand, in the non-Kähler case, there
is a still open classification conjecture regarding the minimal complex surfaces in the
class VII, i.e. those having the first Betti number equal to 1 and negative Kodaira
dimension. It is now known [22, 40, 47, 58] that such a surface must be given by a list
of known examples if one can show that, when the second Betti number is positive,
the surface admits a global spherical shell (GSS). The existence of such a GSS is often
referred to as the GSS Conjecture (see [47] and the references therein). Whereas some
structure results about the existence of compatible hermitian metrics, and especially
locally conformally Kähler hermitian metrics [9, 12, 13, 34, 31], on the complex surfaces
in the Kodaira class VII were obtained by assuming the GSS Conjecture, our thesis in
this paper is that getting such structure results, and studying the geometric invariants
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associated to them, for possibly unknown surfaces is a promising angle of attack of the
classification conjecture.

In the above general vein, this paper is a continuation of our previous work [5, 6],
in which we showed that any non-Kähler compact complex surface S = (M,J) admits
hermitian metrics induced by locally conformally symplectic (LCS) 2-forms ω which
tame the underlying complex structure J .

Recall that a LCS structure ω is a non-degenerate 2-form on M , which is closed in
the twisted sense that

dαω := dω − α ∧ ω = 0,

where α is a closed 1-form on M , called the Lee form of ω. The taming condition
means that the (1, 1)-part F := (ω)1,1 of ω with respect to J is positive-definite, i.e. is
the fundamental form of a hermitian structure (g, J) on S. This definition is tailored
to conformal geometry: if ω̃ = e−fω for some smooth function f , then ω̃ is a taming
LCS structure on S with Lee form α̃ = α+df , and induced hermitian metric g̃ = e−fg.

Given a compact complex surface S, we introduce the following subset of the first
deRham cohomology group H1

dR(S,R):

T (S) := {[α] ∈ H1
dR(S,R) |α is a Lee form of a taming LCS structure on S},

which is a natural complex geometric invariant of S.

A central fact, established in [5], is that T (S) is non-empty, i.e. any compact complex
surface admits taming LCS structures. This contrasts the well-known obstruction to
the existence of taming symplectic structures, which forces b1(S) to be even [33, 43]
and S to be Kähler [16, 43]. In this latter case, it is also observed in [5] that T (S) = {0}
reduces to a single trivial class.

Thus motivated, we have initiated in [5, 6] a systematic investigation of the set
T (S) on the non-Kähler compact complex surfaces. This naturally extends the related
invariant studied in [9, 12, 13, 61, 48] in the case of locally conformally Kähler hermitian
metrics, i.e. when ω is a LCS structure which not only tames the underlying complex
structure but is also compatible with it.

The question of determining T (S) is particularly interesting and yet difficult to
answer in the case when b1(S) = 1 and theH0(S,Km

S ) = 0, ∀m ≥ 1, i.e. on the complex
surfaces in the Kodaira class VII. To state our results, we first order H1

dR(S,R) by the
degree function with respect to some Gauduchon metric g on S, i.e. for a, b ∈ H1

dR(S,R)
we let La and Lb be the corresponding flat holomorphic line bundles associated to the
flat real line bundles determined via a and b, and say that a ≤ b (resp. a < b) if
degg(La) ≤ degg(Lb) (resp. if degg(La) < degg(Lb)). It is well-known [60] that the
relation a ≤ b (resp. a < b) is independent of the choice of Gauduchon metric. In
these terms, we have shown in [5] that

T (S) ⊆ (−∞, 0).

Furthermore, in [6] we proved that T (S) is a non-empty open subset, unless S is
obtained by blowing up Inoue–Bombieri surface in which case T (S) = {a} is a single
point.

In this paper, we improve the above statements and establish the following general
structure result:
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Theorem 1.1. Let S be a compact complex surface in the Kodaira class VII. Then
T (S) is either a single point, in which case S is obtained from an Inoue–Bombieri
surface by blowing points, or else T (S) is an open interval

T (S) = (d0, b0) ⊆ (−∞, 0).

The main new idea in the proof of Theorem 1.1 is a relation between the existence of
upper and lower bounds for the set T (S) ⊂ (−∞, 0) with the existence of, respectively,
negative and positive currents of degree 0 on S, satisfying a twisted PSH condition, see
Propositions 3.7 and 3.8 below. This new observation can be loosely stated as follows:

Proposition 1.2. (see Proposition 3.7 and Lemma 3.11) Suppose S is a compact

complex surface in the Kodaira class VII and denote by Ŝ the minimal Z-cover of S
such that H1(Ŝ,R) = {0}, see Definition 3.10.

(a) There exists a deRham class b < 0 such that T (S) ⊂ (−∞, b) if and only if

Ŝ admits a negative strictly PSH function which is multiplicative automorphic
with respect to the action of the cyclic generator of the covering subgroup in
Aut(Ŝ), with constant of automorphy C > 1.

(b) There exists a deRham class d < 0 such that T (S) ⊂ (d, 0) if and only if Ŝ ad-
mits a non-negative strictly PSH function which is multiplicative automorphic
with respect to the action of the cyclic generator, with constant of automorphy
C > 1.

The proof of Proposition 1.2 and the derivation of Theorem 1.1 rely on relatively
elementary methods which come in the form of theory of linear second order elliptic
differential operators, and applications of Hahn-Banach’s theorem as in [37].

Specializing to the known examples of class VII complex surfaces, Proposition 1.2
and Theorem 1.1 can be used to obtain the following sharp classification result:

Theorem 1.3. Suppose S is a compact complex surface obtained from a known mini-
mal complex surface in the Kodaira class VII, by blowing up points.

(a) If S is obtained by blowing up points of an Inoue–Bombieri surface, then
T (S) = {a} ∈ (−∞, 0) consists of a single point;

(b) If S is obtained by blowing up points of a Hopf surface, then T (S) = (−∞, 0);
(c) If S is obtained by blowing up points of a hyperbolic Kato surface, then T (S) =

(−∞, b) for some b < 0;
(d) If S is obtained by blowing up points of an Enoki surface, then T (S) = (−∞, 0).

As we have mentioned, (a) follows from [6] whereas (b) is established in [5, 61], using
the constructions of [9, 34]. The non-boundedness from below of T (S) in the cases
(c) and (d) is due to Brunella [12]. To the best of our knowledge, (c) provides the
first known constraint on T (S), other than the inclusion T (S) ⊂ (−∞, 0) established
in [5]. In this case, our result is new even for the set of Lee classes of the locally
conformally Kähler metrics, and in fact it partially answers questions raised in [12,
Rem.9]. Similarly, (d) provides the first proof that T (S) = (−∞, 0) on the Enoki
surfaces. It will be interesting to know whether or not in the cases (b)-(d) of the above
theorem, T (S) coincides with the set of Lee classes of the locally conformally Kähler
metrics on S.

The existence of PSH functions on Ŝ as in Proposition 1.2 was studied by Brunella [14,
15] who showed that if such a PSH function has also analytic singularities, then S must
be a known complex surface (see also Section 5 below). We thus expect that when
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T (S) ( (−∞, 0) in Theorem 1.1, one would be able to reduce the situation to the one
studied by Brunella, and propose the following, where hyperbolic Kato surfaces are by
definition Kato surfaces of intermediate type or Inoue-Hirzebruch surfaces:

Conjecture A. Suppose S a compact complex surface in the Kodaira class VII.

(a) If there exists a deRham class b ∈ (−∞, 0) ⊂ H1
dR(S,R) such that T (S) ⊂

(−∞, b), then S is obtained from either an Inoue–Bombieri or a hyperbolic
Kato surface by blowing up points.

(b) If there exists a de Rham class d ∈ (−∞, 0) ⊂ H1
dR(S,R) such that T (S) ⊂

(d, 0), then S is obtained from an Inoue–Bombieri surface by blowing up points.

Of course, the above will be an immediate corollary of Theorem 1.3 if one assumes
the Global Spherical Shell Conjecture [45], but we would rather think about it as a
plausible intermediate step in deriving a general classification.

To illustrate the usefulness of Theorem 1.3, recall that [45] the minimal complex
surfaces with a GSS and second Betti number equal to k are all diffeomorphic to
Mk := (S1 × S3)]kCP 2. The underlying smooth manifold Mk then admits three
types of complex structures with a GSS, described in the cases (b), (c) and (d) of
Theorem 1.3. As the taming condition is open in the C∞ topology of almost complex
structures, we then get from Theorem 1.3 the following stability result for hyperbolic
Kato surfaces under the action of the diffeomorphism group:

Corollary 1.4. Suppose S = (Mk, J) is a hyperbolic Kato surface with k = b2(S), and
(φi) ⊂ Diff0(Mk) is a sequence of diffeomorphisms in the connected component of the
identity, such that φi(J) converges in C∞ to an integrable complex structure J∞ on
Mk. If S∞ := (Mk, J∞) admits a GSS, then it must be a hyperbolic Kato surface.

The above corollary is potentially useful in the application of analytic methods, such
as J. Streets’ theory of the pluriclosed flow [55]. By the results in [26], Corollary 1.4
holds true in the setting of analytic degenerations of J .

We also find an explicit upper bound b for T (S) on the hyperbolic Kato surfaces, by
relating the corresponding deRham class b with the existence of a non-zero logarithmic
holomorphic 1-form with coefficients in the flat holomorphic line bundle determined by
b (see Section 4.3 and Lemma 6.6). As another application of Theorem 1.3, we return to
our initial motivation of studying LCS structures on class VII surfaces [3], which stems
from the classification of bi-hermitian structures on these complex surfaces [3, 31, 56].
We give now a new obstruction to the existence of bi-hermitian structures on Kato
surfaces.

Theorem 1.5. (see Theorem 4.6) There are intermediate type hyperbolic Kato sur-
faces S, satisfying H0(S,K−1

S ⊗ Lb) 6= 0 where Lb is the flat holomorphic line bundle
associated to a deRham class b ∈ (−∞, 0), but which do not admit any bi-hermitian
structure.

Our explicit construction on the hyperbolic Kato surfaces leads us to investigate
in the final Section 6.1 of the paper the general problem of existence of logarithmic
1-forms with values in a flat line bundle. We recall that any such form determines
a holomorphic foliation F on S and, the characteristic numbers of a non-degenerate
singularity p of F are given by the two ratios of eigenvalues of the linear part of any
local holomorphic vector field generating F around p and vanishing at p. We prove
the following result of independent interest.
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Theorem 1.6. Suppose S a minimal compact complex surface in the Kodaira class VII,
which admits a non-zero holomorphic logarithmic 1-form θ with values in a flat holo-
morphic line bundle Lb obtained as the complexification of a real flat line bundle cor-
responding to a deRham class b ∈ H1

dR(S,R). Suppose, furthermore, that degg(Lb) ≤ 0
with respect to some (and hence any) Gauduchon metric g on S, and that the holo-
morphic foliation F defined by θ has real negative characteristic numbers at any non-
degenerate singular point situated on the pole of θ. Then b bounds T (S) and one of
the following must hold:

(a) b = 0 and T (S) = (−∞, 0). In this case S is either a Hopf surface or an Enoki
surface.

(b) b < 0 and T (S) ⊆ (−∞, b). In this case S is a hyperbolic Kato surface.
(c) b < 0 and T (S) = {b}. In this case S is an Inoue–Bombieri surface.
(d) b < 0 and T (S) ⊆ (b, 0).

All known minimal complex surface in the Kodaira class VII, except possibly some
secondary Hopf surfaces, do appear in the cases (a)-(c) of the above statement whereas
the case (d) should not occur if Conjecture A-(b) holds true. It is interesting to know
whether or not in the case (b) we have equality T (S) = (−∞, b).

2. Twisted differentials and currents

Let X = (M,J) be a compact complex manifold of complex dimension n, α a closed
1-form on M , representing a de Rham class a := [α] ∈ H1

dR(M,R). We denote by
Lα = M × R the topologically trivial real line bundle over M , endowed with the flat
connection ∇α = d + α, and by Lα = Lα ⊗ C the corresponding topologically trivial
flat holomorphic line bundle. This construction fits in the sequence

(1) H1
dR(M,R)

exp
↪→ H1

dR(M,R∗+) −→ H1
0 (M,C∗) −→ Pic0(X),

where H1
0 (M,C∗) and Pic0(X) respectively denote the spaces of equivalent classes of

flat and holomorphic topologically trivial complex line bundles. We shall slightly abu-
sively denote by L = La the isomorphism class of topologically trivial flat real bundles
corresponding to a ∈ H1

dR(M,R), and by L∗ = L−a its dual. The corresponding flat
holomorphic line bundles over (M,J) will be denoted by L = La ⊗ C and L∗ = L−a,
respectively.

We denote by Ek(M,R) (resp. Ep,q(X,C)) the sheaf of smooth real k-forms on M
(resp. of complex-valued (p, q)-forms on X).

For any α ∈ a, the differential operator dα := d− α ∧ · on Ek−1(M,R) corresponds
to the induced differential on Ek(M,L∗) via the flat connection ∇−α := d − α on
L∗ = L−a. Furthermore, dα defines the Lichnerowicz–Novikov complex

(2) · · · dα→ Ek−1(M,R)
dα→ Ek(M,R)

dα→ · · ·

which is isomorphic to the de Rham complex of differential forms with values in L∗

(3) · · · dL∗→ Ek−1(M,L∗)
dL∗→ Ek(M,L∗)

dL∗→ · · · .

This isomorphism can be made explicit by writing α|Ui = dfi on an open covering

U = (Ui) of M : then, for any dα-closed smooth form ω on M , ωi|Ui := e−fiω gives rise
to a dL∗-closed form with values in L∗.

In particular, we have an isomorphism of cohomology groups

Hk
α(M,R) ' Hk

dL∗
(M,L∗).
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For the Dolbeault cohomology groups of X with values in the flat holomorphic line
bundle L∗, we have similarly

dL∗ = ∂L∗ + ∂̄L∗ and dα = ∂α + ∂̄α,

where

∂α = ∂ − α1,0 ∧ and ∂̄α = ∂̄ − α0,1∧,
thus giving rise to the isomorphisms

(4) Hp,q

∂̄α
(X,C) ' Hp,q

∂̄L∗
(X,L∗).

We can further consider the Aeppli and the Bott–Chern cohomology groups of (p, q)-
forms with values in L∗, respectively denoted Hp,q

A (X,L∗) and Hp,q
BC(X,L∗), also seen as

the spaces of ∂α∂̄α-closed (p, q)-forms modulo im(∂α)⊕ im(∂̄α) (resp. dα-closed (p, q)-
forms modulo ∂α∂̄α-exact ones). The Hodge duality theory (see e.g. [1, Cor. 1.5])
yields in this case

Lemma 2.1. Let X = (M,J) be a compact complex manifold of complex dimension
n and L a real flat line bundle. Then, the natural pairing through integration of wedge
products of 2-forms with values in L and L∗ respectively, gives rise to canonical iso-
morphisms(

Hk
dL

(M,L)
)∗ ∼= H2n−k

dL∗
(M,L∗),

(
Hp,q
BC(X,L)

)∗ ∼= Hn−p,n−q
A (X,L∗),

where the upper ∗ denotes the dual vector space.

For any open subset U ⊂ M , we denote by Ekc (U,R) and Ep,qc (U,C) the respective
spaces of smooth forms with compact support in U . The space D′k(U,R) of currents of

dimension k (and degree 2n− k) is the dual topological space of Ekc (U). Similarly, the
space D′p,q(U,C) of currents of bi-dimension (p, q) (and bi-degree (n− p, n− q)) is the

dual topological space of Ep,qc (U,C). We shall use the standard notation D′r(U,R) :=
D′2n−r(U,R) and D′r,s(U,C) := D′n−r,n−s(U,C) and denote by j the natural injections

j : Ek(M,R) ↪→ D′k(M,R) and j : Ep,q(X,C) ↪→ D′p,q(X,C) obtained by the wedge
product and integration.

The action of the operator dα : D′k(M,R) 7→ D′k−1(M,R) on currents is defined by

(5) (dαT )(φ) := (−1)k−1T (dαφ), ∀φ ∈ Ek−1(M,R),

and similarly for the operators

∂α : D′p,q(X,C)→ D′p−1,q(X,C), ∂̄α : D′p,q(X,C)→ D′p,q−1(X,C).

Notice that for any (k − 1)-form φ and (2n− k)-form ψ on M , we have

(6) d(φ ∧ ψ) = (dαφ) ∧ ψ + (−1)k−1φ ∧ d−αψ.

Thus, the sign convention in (5) is such that for any smooth (2n − k) form ψ on M ,
giving rise to a current Tψ := j(ψ) ∈ D′k(M,R), we have

(7) dαTψ = T(d−αψ), d−αTψ = −T(dαψ).

Let Hα
k (M,R), HBC,α

p,q (X,C), HA,α
p,q (X,C) be the corresponding homology groups in

terms of currents, defined respectively as dα-closed modulo dα-exact currents of degree
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2n − k, dα-closed modulo ∂α∂̄α-exact currents of bi-degree (n − p, n − q), and ∂α∂̄α-
closed currents of bi-degree (n − p, n − q) modulo im(∂α) ⊕ im(∂̄α). The injection j
defined above gives rise to linear isomorphisms

H2n−k
−α (M,R) ∼= Hα

k (M,R),

Hn−p,n−q
BC,−α (X,C) ∼= HBC,α

p,q (X,C),

Hn−p,n−q
A,−α (X,C) ∼= HA,α

p,q (X,C).

Combined with Lemma 2.1, we have canonical isomorphisms

Hα
k (M,R) ∼= (Hk

α(M,R))∗,

HBC,α
p,q (X,C) ∼= (Hp,q

A,α(X,C))∗,

HA,α
p,q (X,C) ∼= (Hp,q

BC,α(X,C))∗.

We use the usual notions of positivity of T ∈ D′p,p(U,R), defined as follows

Definition 2.2. T ∈ D′p,p(U,R) is a weakly positive (or positive) (p, p)-current (T ≥ 0)

if for each ξ1, . . . ξp ∈ E1,0
c (U), T (iξ1 ∧ ξ̄1 ∧ · · · ∧ iξp ∧ ξ̄p) ≥ 0; the current T is called

strongly positive if T−j(ψn−p) is a positive (p, p)-current, where ψ is a positive-definite
smooth (1, 1)-form on X.

3. Twisted exact currents and LCS structures on complex surfaces

We now specialize to the case when X = S is a compact complex surface with odd
first Betti number b1(S), in which case we have the following result:

Theorem 3.1. [5] Let S = (M,J) be a compact complex surface with odd first Betti
number, and c a conformal class of hermitian metrics on S. Then, there exists a
non-zero de Rham class a ∈ H1

dR(M,R) such that for any metric g ∈ c, there exists a
representative α ∈ a such that the fundamental 2-form F of g satisfies

(8) dαd
c
αF = 0,

where dcα := JdαJ
−1.

The following can be obtained by a simple and standard modification of the argu-
ments in [37, 49].

Proposition 3.2. The complex surface S = (M,J) admits a dαd
c
α-closed positive

definite 2-form F if and only if S admits no non-trivial positive current T ≥ 0 which
is dαd

c
α-exact.

Proof. (=⇒) If there exists τ ∈ D′4(S,R) such that T = dαd
c
ατ , then T (F ) = τ(dαd

c
αF ) =

0. As F > 0, it follows that T = 0.

(⇐=) The closed mapping theorem asserts that the adjoint of a linear mapping with

a closed range has a closed range (see e.g. [51], Ch.IV, Sec.7.7). As HBC,α
1,1 (S,C) ∼=

H1,1
BC,−α(S,C) ∼= H1,1

BC(S,L∗) is finite dimensional, a similar argument as the one in [37,

p. 174] shows that the subspace C = {T = dαd
c
ατ, τ ∈ D′4(S,R)} is a closed subspace

in D′1,1(S,R). Let ψ > 0 be a positive definite (1, 1) form and consider the weakly
compact convex subset K = {T ∈ D′1,1(S,R) | T ≥ 0, T (ψ) = 1}. We have C ∩ K = ∅
by the assumption. The spaces Ep,q(S,C) and D′p,q(S,C) being dual of each other [53,
p. 75], Hahn–Banach separation theorem implies that there exists a smooth (1, 1)-form
F such that

F|C = 0 and F|K > 0.
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The first condition implies that for each τ ∈ D′4(S,R), dαd
c
ατ(F ) = τ(dαd

c
αF ) = 0,

hence dαd
c
αF = 0, whereas the second condition yields F > 0. �

Furthermore, as shown in [5, Prop. 2.12 & Lemma 2.13], the relevance of the condi-
tion (8) is given by the following

Proposition 3.3. On a compact complex surface S with b1(S) = 1, Kodaira dimen-
sion kod(S) = −∞, and whose minimal model has positive second Betti number, the
following conditions are equivalent.

(i) 0 6= a ∈ H1
dR(S,R) is such that there exists a hermitian metric g on S and a

representative α ∈ a, so that fundamental 2-form F of g satisfies (8);
(ii) 0 6= a ∈ H1

dR(S,R) is such that for any α ∈ a, there exists a hermitian metric
g on S whose fundamental 2-form F of g satisfies (8);

(iii) 0 6= a ∈ H1
dR(S,R) is such that for any α ∈ a, S admits a locally conformally

symplectic 2-form ω which tames J and satisfies dαω = 0.

Remark 3.4. On any complex manifold X = (M,J) endowed with a LCS structure
ω taming J and with Lee form α, the fondamental 2-form F = ω1,1 > 0 of the
corresponding hermitian structure satisfies (8). The above Proposition provides a
converse.

Definition 3.5. On a complex surface S we denote by T (S) ⊂ H1
dR(S,R) the set of

deRham classes of the Lee forms α of locally conformally symplectic 2-forms ω which
tame the complex structure J .

By [5, Thm.1], on any compact complex surface T (S) 6= ∅. Furthermore, when
b1(S) = 1, we can define an order on H1

dR(S,R) by the degree of a flat holomorphic
line bundle La corresponding to a ∈ H1

dR(S,R) via (1), with respect to some (and
hence any [60]) Gauduchon metric on S. Then, [5, Prop. 4.3] yields

Proposition 3.6. On a compact complex surface S with b1(S) = 1 and kod(S) = −∞
we have ∅ 6= T (S) ⊂ (−∞, 0).

We are now going to establish the following refinement of Proposition 3.2 in the case
of complex surfaces with b1(S) = 1 and kod(S) = −∞.

Proposition 3.7. Let S be a compact complex surface with b1(S) = 1 and Kodaira
dimension kod(S) = −∞.

(a) Suppose β ∈ b ∈ H1
dR(S,R) is such that there exists a weakly negative cur-

rent τ ≤ 0 of degree 0, with T := dβd
c
βτ ≥ 0 and T 6= 0. Then b ∈

(−∞, 0) and T (S) ⊂ (−∞, b).
Conversely, if T (S) ⊂ (−∞, b) for some b < 0, then for each β ∈ b there exists
a weakly negative current τ ≤ 0 of degree 0, with T := dβd

c
βτ ≥ 0 and T 6= 0.

(b) Suppose δ ∈ d ∈ H1
dR(S,R) is such that there exists a weakly positive current

τ ≥ 0 of degree 0, with T := dδd
c
δτ ≥ 0 and T 6= 0. Then either d ∈ (0,∞) or

else T (S) ⊂ (d, 0).
Conversely, if T (S) ⊂ (d, 0) for some de Rham class d < 0, or if d > 0, then
for each δ ∈ d there exists a weakly positive current τ ≥ 0 of degree 0, with
T := dδd

c
δτ ≥ 0 and T 6= 0.

Proof. (a) We first notice that the condition τ ≤ 0 is conformally invariant and

dβd
c
β

(
efτ
)

= ef
(
dβ̃d

c
β̃
τ
)
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with β̃ = β − df . Thus, after making a conformal modification of T we can assume
that T = dβd

c
βτ ≥ 0, T 6= 0 for some weakly negative degree zero current τ and any

given β ∈ b.
Let a ∈ T (S). By Remark 3.4, there is an α ∈ a and a hermitian metric g on S

whose fundamental 2-form F satisfies (8). By changing g in its conformal class and α
in its deRham class a, we can assume that g is a Gauduchon metric [32] on S. Writing
b = ta for some t > 0, we let β := tα ∈ b. Denoting by θg = JδgF be the Lee form of
g, we compute as in [5, Lemma 2.5]:

dβd
c
βF =

(
d(Jθg − Jβ) + (θg − β) ∧ J(θg − β)

)
∧ F

=
1

2

(
δg(β − θg) +

〈
(β − θg), β

〉
g

)
F ∧ F

=
1

2

(
δgβ +

〈
(β − θg), β

〉
g

)
F ∧ F

=
t

2

(
δgα+

〈
(tα− θg), α

〉
g

)
F ∧ F

=
(t− 1)t

2
|α|2gF ∧ F,

(9)

where for passing from the first line to the second we use the computation appearing
in the proof of [5, Lemma 2.5], from the second line to the third we we have used that
g is Gauduchon (i.e. δgθg = 0) and for passing from the forth line to the fifth we have
used the identity

δgα+ 〈α− θg, α〉g = 0

which follows from Lemma 2.5 in [5] and the fact that g is Gauduchon. Applying
T = dβd

c
βτ to F (with β = tα), we get

(10) 0 < T (F ) =
t(t− 1)

2
τ
(
|α|2 F ∧ F

)
.

As τ
(
|α|2F ∧ F

)
≤ 0 by assumption, we obtain t(t − 1) < 0, i.e. t ∈ (0, 1). By

Proposition 3.6, t > 0 is equivalent to b ∈ (−∞, 0); furthermore, α = β/t < β.

We now establish the other direction. We thus assume that S is a compact complex
surface in the Kodaira class VII and b ∈ (−∞, 0) ⊂ H1

dR(S,R) is such that T (S) ⊂
(−∞, b). We are going to show that for any smooth closed 1-form β ∈ b, there exists a
weakly negative current τ ≤ 0 of degree 0 on S, such that T := dβd

c
βτ ≥ 0 and T 6= 0.

We first assume that the minimal model of S has non-zero second Betti number, i.e.
we are under the hypothesis of Proposition 3.3. In this case, b equivalently bounds the
de Rham classes a for which (8) holds for some hermitian metric on S. For β ∈ b and
a positive definite smooth (1, 1)-form ψ on S we consider the following sets

P := {T ∈ D′1,1(S,R) |T ≥ 0},
K := {T ∈ D′1,1(S,R) |T = dβd

c
βτ, τ ≤ 0, τ(ψ ∧ ψ) = −1}.

P is a closed convex cone whereas K is a weakly compact (by the Banach–Alaoglu
theorem) and convex subset of D′1,1(S,R). We want to show that P ∩ K 6= ∅.

Suppose for contradiction that P∩K = ∅. By the Hahn–Banach separation theorem
[51, p.65], there exists a smooth (1, 1)-form F̃ such that for any T1 ∈ P, T1(F̃ ) ≥ 0 and

for any T2 ∈ K, T2(F̃ ) < 0. The first condition is equivalent to F̃ being semi-positive

(i.e. F̃ ≥ 0) whereas the second condition is equivalent to (dβd
c
βF̃ ) > 0 on S. As the
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latter condition is open, we can assume without loss that F̃ > 0 is positive-definite. Let
f be a smooth function such that F := ef F̃ is a Gauduchon metric, see [32]. We now
apply Theorem 3.1. By the assumption and Proposition 3.3 there exist a real number
t ∈ (0, 1) and a smooth function h, such that dα̃d

c
α̃F = 0 for the 1-form α̃ = 1

t (β+dh).

Letting β′ = β + df = β̃ + d(f − h), it follows from (9)

0 < ef
(
dβd

c
βF̃
)

=ef
(
dβd

c
β

(
e−fF

))
= dβ′d

c
β′F

=
1

2

(
δg(β′ − θg) + 〈β′ − θg, β′〉

)
F ∧ F

=
1

2

(
∆g(f − h) +

〈
d(f − h), (2β̃ − θg)

〉
g

+ |d(f − h)|2g
)
F ∧ F

+ dβ̃d
c
β̃
F

=
1

2

(
∆g(f − h) +

〈
d(f − h), (2β̃ − θg)

〉
g

+ |d(f − h)|2g

+
(t− 1)

t
|β̃|2g

)
F ∧ F.

It thus follows that everywhere on S,

∆g(f − h) +
〈
d(f − h), (2β̃ − θg)

〉
g

+ |d(f − h)|2g > 0,

At a point where f − h reaches its minimum ∆g(f − h) ≤ 0 and d(f − h) = 0, which
is impossible.

We now consider the case when the minimal model of S has zero second Betti
number. By [58], S is obtained from either a Hopf surface or an Inoue–Bombieri
surface by blowing up points. In the first case T (S) = (−∞, 0) by [5, Thm.1.4], so
there is nothing to prove. In the former case, T (S) = {a} by [6, Thm. 1.3]. This also
corresponds to the case when there exists an α ∈ a such that d−αd

c
−α(±1) = 0 (see [6,

Thm.4.1]). We can argue in this case (see the proof of Proposition 4.2 below) that for
any b > a there exists a β ∈ b and a degree zero current τ < 0 such that dβd

c
βτ > 0.

Part (b) follows by similar arguments. �

The previous result can be complemented with the following useful observation.

Proposition 3.8. Suppose b ∈ (−∞, 0) ⊂ H1
dR(S,R) is such that there exists a closed

1-form β ∈ b and a degree 0 current τβ on S with T := dβd
c
βτβ ≥ 0, T 6= 0. Suppose,

furthermore, that there exists a ∈ T (S) such that a < b. Then, τβ is a negative current.

Proof. It follows by the assumptions on T = dβd
c
βτβ that

(11) (dβd
c
βτβ)(F ) > 0

for any hermitian 2-form F . Letting

β̃ := β + dϕ, ϕ ∈ C∞(S),

and using that
eϕdβ̃d

c
β̃
(e−ϕτβ) = dβd

c
βτβ,

(which follows from the identity e−ϕdβ̃d
c
β̃
eϕF = dβd

c
βF on forms) we see that τβ̃ :=

e−ϕτβ satisfies the assumption (11) with respect to β̃ ∈ b. Furthermore, τβ̃ has the

same sign as τβ. This gives rise to a conformal class of degree 0 currents

[τβ] = {τβ , β ∈ b},
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satisfying the assumption of the Proposition.

By [5], there exists a Gauduchon hermitian form F0 and a closed 1-form α0 ∈ a such
that dα0d

c
α0
F0 = 0. Let F = efF0 and α = α0 + df . We then have

dαd
c
αF = ef (dα0d

c
α0

(e−fF )) = ef (dα0d
c
α0
F0) = 0.

Our assumption a < b < 0 yields that b = t0a, t0 ∈ (0, 1). Letting β := t0α, we
compute as in (9)

dβd
c
βF =

(
d(Jθg − Jβ) + (θg − β) ∧ J(θg − β)

)
∧ F

=
1

2

(
δg(β − θg) +

〈
(β − θg), β

〉
g

)
F ∧ F

=
t0
2

(
δg(α− θg) +

(t0 − 1)

t0
(δgθg) +

〈
(t0α− θg), α

〉
g

)
F ∧ F

=
t0
2

(
δg(α− θg) +

〈
α− θg, α

〉
g

+
(t0 − 1)

t0
(δgθg) + (t0 − 1)|α|2g

)
F ∧ F

=
(t0 − 1)

2

(
δgθg + t0|α|2g

)
F ∧ F,

where we have used the equivalence (which follows from the equality at the second line
with α = β)

δg(α− θg) +
〈
α− θg, α

〉
g

= 0 ⇐⇒ dαd
c
αF = 0,

for passing to the last line. Using that the hermitian metric g is related to the Gaudu-
chon metric by g = efg0, so that θg = θg0 + df , and α = α0 + df , we have (see e.g. [10,
pp. 59])

δgθg = e−f
(
δg0(θg0 + df)− 〈df, θg0 + df〉g0

)
= e−f

(
∆g0f − 〈df, θg0 + df〉g0

)
,

|α|2g = e−f 〈α0 + df, α0 + df〉g0 .

Hence

dβd
c
βF =

(t0 − 1)

2

(
∆g0f +

〈
2t0α0 − θg0 , df

〉
g0

+ (t0 − 1)|df |2g0
+ t0|α0|2g0

)
efF0 ∧ F0.

Making the substitution u := e(1−t0)f , we conclude

dβd
c
βF = −1

2

(
∆g0u+

〈
2t0α0 − θg0 , du

〉
g0

+ t0(1− t0)|α0|2g0
u
)
et0f F0 ∧ F0.(12)

Consider, for 0 < t0 < 1, the linear differential operator,

P (ϕ) := ∆g0ϕ+
〈
2t0α0 − θg0 , dϕ

〉
g0

+ t0(1− t0)|α0|2g0
ϕ, ϕ ∈ C∞(S).

As α0 6= 0, by the strong maximum principle (see e.g. [28, p.349]) P has a trivial
kernel. As the index of P is zero, P has also a trivial co-kernel. It then follows from
standard linear elliptic theory that for any smooth function w ∈ C∞(S), there exists
a unique smooth function u ∈ C∞(S) solving the PDE

(13) P (u) = w.

We can thus choose w ≥ 0, w 6≡ 0 and denote by u the corresponding solution of (13).
Evoking the strong maximum principle again, it follows that u > 0 on S. This shows
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that there exists a smooth function f such that F := efF0 satisfies

dβd
c
βF = −1

2
wet0f F0 ∧ F0, w ≥ 0.

where β := t0(α0 +df) and β0 := t0α0. Considering the corresponding currents τβ and
τβ0 in the conformal class, we have by (11):

0 < T (F ) = dβd
c
βτβ(F ) = τβ

(
dβd

c
βF
)

= −1

2
τβ

(
et0fwF0 ∧ F0

)
= −1

2
τβ0 (wF0 ∧ F0) .

As this inequality holds for any w ≥ 0, w 6≡ 0, we conclude that τβ0 < 0. �

We have the following corollary of the above results.

Theorem 3.9. Let S be a class VII surface. Then T (S) is connected.

Proof. Recall that T (S) 6= ∅ by [5]. If T (S) is not connected, we can find a1, a2 ∈ T (S)
and b /∈ T (S) with a1 < b < a2. If the minimal model S0 of S has zero second Betti
number, by [58] S is either a Hopf surface or an Inoue–Bombieri surface. In these
cases the set T (S) is known and connected by the results in [5, 6]. We now assume
b2(S0) > 0. By Propositions 3.3 and 3.2, there exists a zero degree current τ with
T := dβd

c
βτ ≥ 0, β ∈ b and T 6= 0. By Proposition 3.8, τ ≤ 0 and by Proposition 3.7-

(a), a2 < b, a contradiction. �

Proof of Theorem 1.1. This in an immediate corollary of [5, Thm.1.1, Prop.4.3]
(which show that T (S) is a non-empty subset of (−∞, 0)), [6, Thm.1.3] (which shows
that T (S) is either open or a single point and characterizes the latter case) and The-
orem 3.9. �

Definition 3.10. The minimal Z-cover of a complex surface S with b1(S) = 1 is
defined as follows. The torsion-free part H1(S,Z)free of H1(S,Z) being Z, S admits an

infinite cyclic cover π̂ : Ŝ → S whose fundamental group is the kernel of the morphism

π1(S) 7→
( π1(S)

[π1(S), π1(S)]

)free
.

By construction, π̂∗
(
H1
dR(S,R)

)
= {0} and Ŝ can be characterized as the smallest

Z-cover of S with that property.

We denote by γ the deck transformation on Ŝ such that S = Ŝ/〈γ〉 and notice the
following simple fact.

Lemma 3.11. Let S be a compact complex surface with b1(S) = 1 and Ŝ be its minimal

Z cover with S = Ŝ/〈γ〉. Then S admits a closed 1-form β and a weakly negative (resp.

weakly positive) current τ of degree 0 such that T := dβd
c
βτ ≥ 0 if and only if Ŝ admits

a negative (resp. non-negative) locally integrable plurisubharmonic function û, which
is automorphic in the sense that

(14) û ◦ γ = Cû

for a positive constant C.

Proof. Suppose first β is a closed 1-form and τ a degree 0 current on S satisfying
T := dβd

c
βτ ≥ 0. We can think of τ as a function in L1

loc(S) and denote by τ̂ the lifted

function to Ŝ. This gives rise to a degree 0 current on Ŝ such that γ∗(τ̂) = τ̂ . Let

β̂ = π̂∗(β) be the lift of the closed 1-form β. We then define T̂ := dβ̂d
c
β̂
τ̂ . It is not
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hard to see that T̂ is a positive current on Ŝ (as T = dβd
c
βτ ≥ 0 on S). We can write

β̂ = df̂ on Ŝ for a smooth function satisfying

f̂ ◦ γ − f̂ = c

for some real constant c. It then follows that the degree 0 current ef̂ τ̂ on Ŝ satisfies

ddc
(
ef̂ τ̂
)

= ef̂
(
dβ̂d

c
β̂
τ̂
)

= ef̂ T̂ ≥ 0

It follows that (see e.g. [19, Ch.I, (5.5)] ) ef̂ τ̂ defines a negative (resp. non-positive)

PSH function û ∈ L1
loc(Ŝ) (where we have used the maximum principle to rule out

zeroes of û in the non-positive case) which has the property û ◦ γ = ecû.

Conversely, suppose û is a negative (resp. non-negative) PSH function on Ŝ satis-
fying û ◦ γ = ecû for some real constant c. As H1

dR(S,R) 6= {0}, there exists a closed

but not exact 1-form β whose lift on Ŝ satisfies β̂ = df̂ for a smooth function f̂ such
that f̂ ◦ γ = f̂ + c0, c0 6= 0. Multiplying f̂ by a suitable constant if necessary, we may

suppose that c0 = c. We then consider the degree zero current τ̂ := e−f̂ û on Ŝ and
check as before that

dβ̂d
c
β̂
τ̂ = e−f̂ddcû ≥ 0,

where β̂ = df̂ . Furthermore, as e−f̂ û is γ-invariant and negative (resp. non-negative),
there exists a degree zero weakly negative (resp. weakly positive) current τ on S such

that τ̂ is the pull-back of τ to Ŝ. Using that γ∗(β̂) = β̂ we conclude that τ satisfies

dβd
c
βτ ≥ 0 on S with respect to the induced 1-form β from β̂. �

Remark 3.12. For any closed 1-form α on S, the lift α̂ to Ŝ is exact, and α̂ = df̂ for a
smooth function f̂ satisfying

f̂ ◦ γ − f̂ = c

for some real constant c. The constant c = ca is independent of the choice of α in a
given deRham class a ∈ H1

dR(S,R), being zero precisely when α is exact. It follows
that the positive constant Ca = eca is 1 iff a = 0.

There is a 2-fold choice for the generator γ: we can replace γ by γ−1, which changes
Ca with 1/Ca. To fix this ambiguity, in this paper we assume that the generator γ
is choses so as Ca > 1 iff a < 0. As a corollary of Proposition 3.7(a), the constant
C = Cb in Lemma 3.11 must satisfy C > 1 (this is equivalent to the inequality b < 0).

Furthermore, using that the function f(x) = −(−x)t is increasing and convex on

(−∞, 0) for any real number t ∈ (0, 1), we conclude that −
(
− û

)t
is also a negative

PSH function on Ŝ which satisfies (14) with constant Ct < C; it thus follows that if b
satisfies the hypothesis of Proposition 3.7(a), then any b′ ∈ (b, 0) does too.

Remark 3.13. Related to Remark 3.12 is the following useful observation. On any
compact complex surfaces satisfying b1(S) = 1 and kod(S) = −∞ we have the identi-
fication (see [42])

(15) H1
0 (S,C∗) = Pic0(S) ∼= C∗,

compare with (1). We can then write for an isomorphism class of flat bundles L ∈
H1

0 (S,C∗)
L = Lµ, µ ∈ C∗.

In terms of the sequence (1), for any a ∈ H1
dR(S,R), the corresponding flat complex

bundle La = La ⊗ C can be then written as LCa , where Ca > 0 is the constant
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introduced according to the convention in Remark 3.12. We thus have that Lµ = La
with a ∈ (−∞, 0) iff µ ∈ R, µ > 1, an identification that we will use throughout the
paper.

4. Examples

In this section, we examine the existence of degree 0 currents as in Proposition 3.7 on
the known surfaces in the Kodaira class VII (see [8]), i.e. the compact complex surfaces
satisfying b1(S) = 1 and kod(S) = −∞. Notice that the existence of such currents is
invariant under blow-up and blow-down of points, so we shall restrict attention to the
minimal case. Minimal complex surfaces in the class VII are referred to as class VII0

complex surfaces.
We first recall the rough classification of the known minimal complex surfaces of

Kodaira class VII.

4.1. Known examples of class VII0 complex surfaces.

Definition 4.1. A known minimal complex surface in the Kodaira class VII0 is one
of the following

• An Inoue–Bombieri surface [38] (b2(S) = 0 and S admits no curves);
• A Hopf surface [42, II, section 10] and [41] (b2(S) = 0 and S admits curves);
• A Kato surface [40, 20](b2(S) > 0 and S admits a global spherical shell).

Following [20, 15], we shall further distinguish between two different types of Kato
surfaces

• Enoki surfaces [27], and
• hyperbolic Kato surfaces [15].

If b2(S) = 0 there are no other surfaces than the Inoue-Bombieri and Hopf surfaces
listed above [58]. The minimal surfaces in the class VII are said to belong in the class
VII0 whereas those with b2(S) > 0 are said to belong to the class VII+

0 . According to
the still open GSS conjecture (proved in [59] when b2(S) = 1) any complex surface in
the class VII+

0 must be a Kato surface.

4.2. Definite currents on the known class VII0 surfaces. We prove with the
following

Proposition 4.2. Suppose S is a known minimal surface of the Kodaira class VII0.
Then,

(a) S admits a weakly negative current τ ≤ 0 with T = dβd
c
βτ ≥ 0 and T 6= 0 for

some closed 1-form β if and only if S is either an Inoue–Bombieri surface, or
a hyperbolic Kato surface;

(b) S admits a weakly positive current τ ≥ 0 with T = dδd
c
δτ ≥ 0 and T 6= 0 for

some δ ∈ d ∈ (−∞, 0) ⊂ H1
dR(S,R) if and only if S is an Inoue–Bombieri

surface.

Proof. We start with showing nexessary part of (a): to this end, we need to prove
that Hopf and Enoki surfaces do not admit a degree 0 current τ as in the case (a) of
the Proposition. If a degree zero current τ ≤ 0 existed on a Hopf surface S, it would
define a non-positive PSH function û on the universal cover C2 \ {0} by Lemma 3.11.
As C∗ × C ⊂ C2 \ {0} is covered by C2, by Liouville theorem we must have that
û is constant, and thus T = 0, a contradiction. The case of Enoki surfaces can be
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treated similarly: we notice that such a surface contains a cycle of rational curves
whose complement has a covering biholomorphic to C∗ × C (see [27], [26, Cor. 1.20]).

We now show (b). To this end, we need to check that a Hopf or a Kato surface do
not admit a degree 0 current as in the statement. We shall argue by absurd, using
Proposition 3.7 (b). In the case of a Hopf surface S, we have by [5, Thm. 1.4] that
T (S) = (−∞, 0) so we conclude by Proposition 3.7 (b). Similarly, if S is a Kato
surface, Brunella [12, 13] shows that T (S) contains an interval (−∞, c) for some c < 0,
so we conclude again by Proposition 3.7 (b).

We finally address the existence part. Notice that Inoue–Bombieri surfaces admit
a closed 1-form α with d−αd

c
−α(1) = 0 and a := [α] ∈ (−∞, 0) ⊂ H1

dR(S,R) (see e.g.
[6]). It follows that the integration over S is a positive degree 0 current on S which is
dαd

c
α-closed. By the proof of Lemma 3.11, it gives rise to a strictly positive PH function

û = e−f , where β̂ = df , on the minimal Z-cover Ŝ, which is automorphic with constant
C0 > 1. Taking (û)t, t > 1 and −(û)t, t ∈ (0, 1) we see that for any C0 < C there exists

a positive strictly PSH automorphic function on Ŝ with automorphy constant C, and
for any 1 < C ′ < C0, there exists a negative automorphic strictly PSH function on
Ŝ with automorphy constant C ′. Equivalently, for any δ ∈ d < a = [α], there exists
a weakly positive degree 0 current on S satisfying the hypothesis of (b), and for any
β ∈ b > a, there exists a current of degree 0 on S satisfying the hypothesis of (a).
Proposition 3.7 is then consistent with the fact that in this case T (S) = {a}, see [6].
The existence of negative PSH functions on the Z-cover of a hyperbolic Kato surface
is treated in detail in the next subsection. �

Proof of Theorem 1.3. T (S) is a non-empty subset of (−∞, 0) by [5, Thm.1.1,
Prop.4.3], see also Proposition 3.6 above. Part (a) is established in [6, Thm.1.3];
for part (b) see e.g. [5, Thm.1.4] and [61]. In the cases (c) and (d), T (S) is open by
[6, Thm.1.3] and connected by Theorem 3.9. The lower bound follows from [12, 13]
and the upper bounds in each case follow from Proposition 4.2 above. �

Proof of Corollary 1.4. Let J̃i := φi(J) be the integrable almost complex structure
on Mk obtained by the pull-back with a diffeomorphism φi ∈ Diff0(S), and denote

by Si := (Mk, J̃i) ∼= S the corresponding complex surface. As φi acts trivially on
H1
dR(Mk,R), we have by Theorem 1.3 T (Si) = T (S) = (−∞, b) ⊂ H1

dR(Mk,R). By

assumption, J̃i converges in C∞ to a complex structure J∞: it then follows that any
LCS structure ω taming J∞ will also tame J̃i for i large enough. This and T (Si) = T (S)
show that τ(S∞) ⊂ T (S) = (−∞, b). Applying Theorem 1.3 again, we conclude that
S∞ must be a hyperbolic Kato surface. �

4.3. An explicit upper bound of the Lee classes of a hyperbolic Kato surface.
In this section, we show the existence of an upper bound b = b(S) < 0 of T (S) given
by Proposition 3.7 for a hyperbolic Kato surface S. Recall that a Kato surface S is
a minimal compact complex surface in the class VII with b2(S) > 0 and containing a
GSS. Such a surface is obtained by the following general construction. Given

• a composition π = π0 ◦ · · · ◦ πn−1 : W → C2 of n = b2(S) blow-ups over the
origin of C2, in such a way that π0 blows up the origin of C2, C0 = π−1

0 (0) and
πi blows up a point Oi−1 ∈ Ci−1 for any i ≥ 1, and
• a biholomorphism σ : B̄ → W from a neighbourhood of the closed ball to W

such that σ(B̄) ⊂ π−1(B) and σ(0) ∈ Cn−1,
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we remove σ(B) from π−1(B̄). We obtain an annulus with a boundary composed of two
spheres π−1(S3) and σ(S3) where S3 = ∂B. The surface S = S(π, σ) is obtained by
glueing by σ ◦ π isomorphic neighbourhoods of these two spheres (see [20] for details).

The resulting smooth manifold is diffeomorphic to (S1 × S3)]kCP 2 and the minimal

Z-cover Ŝ of S (see Definition 3.10) coincides with the universal cover. Let

F = π ◦ σ : (C2, 0)→ (C2, 0)

be the associated germ. The order of creation of rational curves induced by the suc-
cessive blow-ups produces a total order on the rational curves in Ŝ. Given one of these
curves, say C, it is possible to collapse all the curves C ′ > C to a point ÔC of C.
Doing this, C becomes an exceptional curve of the first kind and we denote by ŜC the
resulting manifold and by pC : Ŝ → ŜC this collapsing. Notice that pC is not proper,
and induces by restriction an isomorphism

pC : Ŝ \
⋃
C′>C

C ′ → ŜC \ {ÔC}.

We shall use next the following fact taken from [20, Prop. 3.9]. Let γ : Ŝ → Ŝ be the

generator of π1(S) ∼= Z. Then, for any curve C in Ŝ as above, we have the following
commutative diagram

Ŝ
γ

> Ŝ

ŜC

pC
∨

FC
> ŜC

pC
∨

Moreover, if ÔC is the critical value of pC (i.e. the image of all the rational curves

C ′ > C with notations of [20]), we can identify the germ (ŜC , ÔC) with (C2, 0) in such

a way that the equation of C at ÔC is C = {z2 = 0}.

Lemma 4.3. Let S be a Kato surface defined by a germ

F = π ◦ σ : (C2, 0)→ (C2, 0)

and vC : (ŜC , ÔC)→ R∪{−∞} a germ of PSH function such that F ∗C(vC) = vC +c for

a constant c ∈ R. Then, there exists on Ŝ a unique PSH function v̂ : Ŝ → R ∪ {−∞}
satisfying γ∗v̂ = v̂+ c, and such that if vC is defined in a neighbourhood V of ÔC , then
on p−1

C (V ) we have

vC ◦ pC = v̂.

Proof. The inverse image p−1
C (V ) contains the pseudo-concave end of the universal

covering space Ŝ (in the terminology of [20]). Notice that Ŝ =
⋃
i∈ZAi where Ai

is a copy of a fundamental domain isomorphic to an annulus Π−1(B) \ σ(B). We
have γ(Ai−1) = Ai for every i ∈ Z. If Ai ⊂ p−1

C (V ) we define v̂ on Ai−1 by v̂(x) :=
v̂(γ(x))− c. �

We now recall that the hyperbolic Kato surfaces are either Kato surfaces of interme-
diate type or Inoue–Hirzebruch surfaces which we will treat in the next two examples,
respectively.
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Example 4.4. Let S be a Kato surface of intermediate type, i.e. a Kato surface
which contains a cycle of rational curves with branches. A defining germ of S is given
by (see [29])

(16) F (z1, z2) = (λ1z1z
s
2 + P (z2) + λ2z

sk
k−1

2 , zk2 ),

where λ1 ∈ C∗, λ2 ∈ C, s, k ∈ N∗, k ≥ 2, s
(k−1) ∈ N when λ2 6= 0, and P (z) is a certain

polynomial with complex coefficients and deg (P ) ≤ s. The maximal divisor D of S is
defined by the equation z2 = 0. For |z2] < 1, the function

v(z1, z2) := − log(− log |z2])

is PSH, and satisfies

F ∗v = v − log(k).

By Lemma 4.3, v gives rise to a PSH function v̂ on Ŝ, satisfying γ∗v̂ = v̂ − log(k).
Define û := − exp(−v̂) = log |z2| < 0. It follows that û is negative PSH satisfying

γ∗û = kû.

The fact that k > 1 tels us that the choice for the generator is consistent with the
convention of Remark 3.12. Furthermore, the support of û is on D = {z2 = 0}. It
follows that in this case, the upper bound b ∈ (−∞, 0) of Proposition 3.7 is given by
the deRham class corresponding to the topologically trivial flat line bundle defined by
k ∈ N∗.

Example 4.5. Let S be an Inoue–Hirzebruch Kato surface. In this case, the contrac-
tion germ defining S is given by (see [21, p.667])

F (z1, z2) = (zp1z
q
2, z

r
1z
s
2)

where A =

(
p r
q s

)
∈ GL(2,Z) with det A = ±1. The characteristic polynomial

PA(X) = X2 − (p+ s)X + det A

has two eigenvalues λ1, λ2 satisfying 0 < |λ2| < 1 < λ1, λ2 = ±λ−1
1 . Each eigenvalue

λi (i = 1, 2) has an eigenvector (ξi, ηi) with ξ1 > 0, η1 > 0 and ξ2 > 0, η2 < 0. We next
let (ξ, η) := (ξ1, η1), λ := λ1 > 1, and

G(z1, z2) := ξ log |z1|+ η log |z2|.

We have that G ◦ F (z) = λG(z) and Ω := {(z1, z2) ∈ C2 : G(z1, z2) < 0} con-
tains a neighbourhood of 0 ∈ C2. We then define (on Ω) the PSH function v(z) :=
− log(−G(z)) which satisfies v ◦ F = v + log λ and hence, by Lemma 4.3, gives rise to

a PSH function v̂ on Ŝ satisfying γ∗v̂ = v̂ + log λ. Letting û := − exp(−v̂) = G(z) we

get a negative PSH function on Ŝ satisfying

γ∗û = λû.

It follows in this case too that the upper bound b ∈ (−∞, 0) of Proposition 3.7 corre-
sponds to the constant C = Cb = λ > 1, see Remark 3.12.
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4.4. An obstruction to the existence of bi-hermitian structures on interme-
diate Kato surfaces. By a bi-hermitian structure on a connected compact complex
surface S = (M,J) we mean a conformal class c of hermitian metrics such that there
exists another integrable complex structure I on M which is positively oriented, c-
orthogonal, and I(x) 6= ±J(x) at at least one point of S. The main interest in
bi-hermitian structures comes from their link with generalized Kähler geometry re-
vealed in [36]. When b1(S) is even, i.e. on a Kähler complex surface, it follows by
the results in [7, 35] the existence of a bi-hermitian structure is equivalent to the con-
dition H0(S,K∗S) 6= 0 where KS stands for the canonical bundle and K∗S denotes its
dual. On the other hand, in the case b1(S) odd, the situation is not completely un-
derstood yet. It is known from [2] that in this case b1(S) = 1, kod(S) = −∞, and
H0(S,K∗S ⊗La) 6= 0 for some flat holomorphic line bundle La corresponding to a class
a ∈ (−∞, 0] ⊂ H1

dR(S,R) via (1). It was observed in [23, 4] that the latter conditions
imply that S must be obtained by blowing up points of either a Hopf surface or a
Kato surface of index 1 (or NAC of index 1 in the terminology of [23]). Since the
existence of bi-hermitian structures is stable under blow-ups preserving the index 1
NAC condition [18], one can concentrate on the minimal case, and one situation in
which the existence of bi-hermitian structures remains unknown [31] is the case when
S is a Kato surface of intermediate type, as described in Example 4.4 above. In this
case, the necessary index 1 NAC condition is studied in detail in [23, 30, 50]. It is
observed there that if H0(S,K∗S ⊗ L) 6= 0, then L = Lµ for a unique µ ∈ C∗, where
we have used the identification of L with a µ ∈ C∗ as in Remark 3.13. In terms of the
germ (16), the index 1 NAC condition is equivalent to s

(k−1) ∈ N (see [29]). Indeed, in

this case

σ := zr2
( ∂

∂z1
∧ ∂

∂z2

)
, r =

s

(k − 1)
+ 1,

defines a germ satisfying F∗(σ) = (λ1k)σ, so it defines a holomorphic section of K∗S⊗Lµ
with µ = λ1k. In particular, as noticed in [50], µ ∈ R and µ > 1 are necessary
conditions for an intermediate Kato surface S to admit a bi-hermitian structure. We
now prove that they are not in general sufficient.

Theorem 4.6. Suppose S is an intermediate Kato surface as described in Example 4.4,
which admits a bi-hermitian structure. Then λ1 in (16) must be a real number satis-
fying λ1 > 1 or, equivalently, H0(S,K∗S ⊗ Lµ) 6= 0 where µ is a positive real number
satisfying µ > k.

Proof. By [23], Lµ is the only flat line bundle on S such that H0(S,K∗S⊗Lµ) 6= 0 and,
furthermore, in this case H0(S,K∗S ⊗ Lµ) = C and the support of the NAC divisor
is the maximal curve of S (which is connected). It follows from [3, Prop. 2.4] that
any bi-hermitian structure on S (if it exists) must be given by the construction of [3,
Prop. 2.3]. In particular, J must be tamed by a locally conformally symplectic 2-form
ω with Lee deRham class a and Lµ = La as explained above. The claim follows from
Proposition 3.7 and Example 4.4. �

5. Characterization of some known class VII surfaces

Lemma 3.11 allows us to recast the results of M. Brunella [14, 15] which in turn
provide a partial converse of Proposition 4.2(a).

Theorem 5.1. [14, 15] Let S be a compact complex surface with b1(S) = 1 and
kod(S) = −∞. Then the following conditions are equivalent
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(i) S is obtained from either a hyperbolic Kato surface or a Bombieri–Inoue surface
by blowing up points.

(ii) S admits a weakly negative non zero current τ ≤ 0 of degree 0, and a smooth
closed 1-form β such that

T := dβd
c
βτ ≥ 0

and the support of T is either empty or is an analytic set Z of pure dimension
1 in S.

Proof. By Lemma 3.11, we can replace condition (ii) with the existence of non-positive

PSH automorphic function on Ŝ.
The direction (i) =⇒ (ii) can be established explicitly, see Section 4 for the case of

a hyperbolic Kato surface.
To establish the direction (ii) =⇒ (i), we first notice that the support of T is empty iff

T = 0 (and hence T̂ = 0). In this case, the PSH function û on Ŝ is pluriharmonic, and
therefore is smooth and strictly negative. In particular, the constant C in Lemma 3.11
cannot be 1, i.e. b := [β] 6= 0 in H1

dR(S,R). The equality in (10) (and using that τ is a
negative smooth function) now gives T (S) = {b}. It follows that S cannot be a blow
up of a Hopf surface (in which case T (S) = (−∞, 0), see e.g. [5]), so the algebraic
dimension of S is zero (see e.g. [8]). Thus, S must be a blow up of a Bombieri–Inoue
surface by [14].

In the case when T is supported over a curve, T 6= 0, and by Proposition 3.7 we
have T (S) ∈ (−∞, b). Again, S cannot be a blow-up of a Hopf surface, and thus the

algebraic dimension of S is zero. As Ŝ admits a negative PSH function with analytic
support over a curve, S must be a blow up of a hyperbolic Kato surface by [15]. �

The following result was obtained in [6].

Theorem 5.2. [6] Let S be a compact complex surface with b1(S) = 1 and kod(S) =
−∞. Then the following conditions are equivalent

(i) T (S) = {a} consists of a single point;
(ii) T (S) is a proper closed subset of (−∞, 0);

(iii) S is obtained by blowing up points of an Inoue–Bombieri surface.

6. Lee classes and twisted logarithmic holomorphic 1-forms.

Definition 6.1. Let X be a complex manifold, D ⊂ X an effective divisor, and θ
a holomorphic p-form on X \ D. We say that θ is a logarithmic p-form on X with
logarithmic pole along D if θ and dθ have a pole of order at most one along D. We
denote by Ωp(logD) the coherent sheaf of logarithmic p-forms on X with pole along D.
We shall also consider logarithmic p-forms with values in a holomorphic line bundle
L, i.e. sections of H0(X,Ωp(logD) ⊗ L). In particular, an L-valued logarithmic 1-
form θ ∈ H0(X,Ω1(logD) ⊗ L) is a ∂̄L-closed L-valued (1, 0)-form on X \ D such
that, around each point p ∈ D, there exists a neighbourhood U , holomorphic functions
fj , gj ∈ O(U), j = 1, . . . , k, a holomorphic 1-form θ0 ∈ Ω1(U), and a holomorphic
section s ∈ H0(U,L|U ) with

(17) θ|U =
(
θ0 +

k∑
j=1

gj
dfj
fj

)
⊗ s,

where {fj = 0} are the reduced equations of the irreducible components of D ∩ U .
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We shall be interested in particular in twisted logarithmic 1-forms on a complex
surface S, i.e. elements θ ∈ H0(S,Ω1(logD)⊗L) where L ∈ H1

0 (S,C∗) is a topologically
trivial flat C∗-line bundle. Using the short exact sequence

{0} → Z ↪→ C exp 2πi−→ C∗ → {1},
it follows that the first morphism in

(18) H1
dR(M,C)

exp−→ H1
0 (M,C∗) −→ Pic0(X),

is surjective, i.e. L can be written as L = Lα for a closed complex-valued 1-form α.
As explained in Section 2, θ can be equivalently viewed as a ∂̄−α-closed (1, 0)-form
on S \D, such that we can choose a neighbourhood U of p ∈ D with α|U = dh for a
smooth complex valued function h, holomorphic 1-form θ0 and holomorphic functions
fj , gj on U with

(19) ehθ|U = θ0 +

k∑
j=1

gj
dfj
fj

It follows from the above expression that θ gives rise to a (1, 2)-current Pθ, defined by

(20) Pθ(φ) :=

∫
S\D

θ ∧ φ, ∀φ ∈ E1,2(S,C).

Furthermore, assuming that D is a simple normal crossing divisor, we compute (using
(19) and the basic identity i∂∂̄ log |z|2 = 4πδ0)

(21) Tθ := ∂̄αPθ = 2πiResα(θ)TD

where TD is the current of integration over D, and Resα(θ) is a complex valued function
on D, called the residue of θ on D. The above computations show that on each
component Dj of D defined by {fj = 0}, we have

(22) Resα(θ)|Dj = (e−hgj)|Dj
.

It follows from (21) and (22) that on Dj , Resα(θ)|Dj satisfies ∂̄−α

(
Resα(θ)|Dj

)
= 0,

i.e. is an element of H0
(
Dj , (Lα)|Dj

)
(see (4)). If α = 0 and Dj is compact, then

Res0(θ)|Dj
= aj is a constant. If Dj is a rational curve, then the flat C∗ bundle (Lα)|Dj

is trivial, and therefore Resα(θ)|Dj
= ehjaj for some complex valued function hj on

Dj .
What will be important for us is that in the case when La = La ⊗ C is a flat

line bundle corresponding to a real deRham class a ∈ H1
dR(S,R), there is a well-

defined notion of positivity of the real and imaginary parts of Tθ, independent of the
representative α of a ∈ H1

dR(S,R).

Definition 6.2. Let θ ∈ H0(S,Ω1(logD) ⊗ La) be a logarithmic 1-form on S with
values in the flat line bundle La corresponding to a deRham class a ∈ H1

dR(S,R) via
(1). We say that θ is of positive type if for some (and hence any) α ∈ a, Resα(θ) is a
real valued function which is positive on each component Dj of D. In particular, the
current Im(Tθ) is weakly positive and supported on D.

We next specialize to class VII complex surfaces. We recall that in this case, we
have (15), i.e. the second morphism in (18) is an isomorphism. For this reason we shall
refer to the topologically trivial flat C∗ line bundle L as a flat bundle. We tacitly use
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the identification H1
0 (S,C∗) ∼= C∗ and for a µ ∈ C∗ we write Lµ for the corresponding

flat C∗ bundle. Thus, Lµ = Lα for some closed complex-valued 1-form α with α real
iff µ > 0. Furthermore [α] < 0 iff µ > 1, according to the convention in Remark 3.12.

6.1. Twisted logarithmic 1-forms on known class VII0 complex surfaces. We
start with Hopf surfaces.

Lemma 6.3. Let S be a Hopf surface with H0(S,Ω1(logD)⊗Lb) 6= 0, b ∈ H1
dR(S,R).

Then b ≥ 0, and, if S is a primary Hopf surface, the set of classes b such that the
latter condition holds includes b = 0.

Proof. A primary Hopf surface is the quotient of C2\{0} by the cyclic group generated
by a contraction of the type

(23) F (z1, z2) = (αz1 + tzm2 , βz2), 0 < |α| < |β| < 1, t(α− βm) = 0, m ≥ 1.

The secondary Hopf surfaces are obtained by taking a further quotient with a finite
group, see [41]. To prove the statement, it is thus enough to assume that S is a primary
Hopf surface given by (23)

Clearly, (23) preserves the 1-form dz2
z2

, giving rise to a non-trivial section ofH0(S,Ω1(logD))
with D being the elliptic curve z2 = 0. We can thus realize the value µ = 1, where we
use the correspondence Lµ = Lb for µ ∈ R, µ > 0 given by Remark 3.12. Notice that

zk2dz2, k ∈ N give rise to twisted holomorphic 1-forms (i.e. with D = ∅) with values in
the flat bundle Lβk ; in the case when β ∈ R these give rise to infinitely many values
of µ ∈ (0, 1).

Suppose now θ ∈ H0(S,Ω1(logD) ⊗ Lµ) 6= 0 with µ > 1. We shall derive that
θ = 0. The twisted logarithmic form θ is induced by a germ of logarithmic 1-forms
(still denoted θ) on (C2, 0), such that F ∗θ = µθ. We consider the following 3 cases,
depending of the form of (23):

(i) Case t 6= 0. Then there exists only one elliptic curve on S, given by {z2 = 0},
and θ has the form

θ(z1, z2) = A(z1, z2)dz1 +B(z1, z2)
dz2

z2
,

where A,B are germs of holomorphic functions on (C2, 0) satisfying

A(F (z))α = µA(z) A(F (z))tzm−1
2 +

B(F (z))

z2
= µ

B(z)

z2
.

As |α|, |β| < 1 and µ > 1, it follows that A = 0; then the remaining equation
is B(F (z)) = µB(z), which yields B = 0.

(ii) Case t = 0 and αk 6= βl, k, l ∈ N. In this case S admits only two elliptic curves
[8, Prop.18.2], corresponding to z1 = 0 and z2 = 0. Therefore θ has the form

θ(z1, z2) = A(z1, z2)
dz1

z1
+B(z1, z2)

dz2

z2
,

where A,B are holomorphic and satisfy

A(F (z))α = µA(z) B(F (z))β = µB(z).

Using 0 < |α| < |β| < 1 < µ, we derive again A = B = 0.
(iii) Case t = 0 and αk = βl for k, l ∈ N. In this case the Hopf surface S is elliptic

fibered over P1(C) by the meromorphic function zk1z
−l
2 [8, Prop.18.2]. There

are no other curves in S than the fibers of this fibration, because the algebraic
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dimension is a(S) = 1. Thus, any finite number of polar curves for θ have the
equations

zk1 − xizl2 = 0, i = 1, . . . , p.

Thus, we get

θ =

p∑
i=1

Ai(z)
d(zk1 − xizl2)

zk1 − xizl2
.

The condition F ∗θ = µθ is then satisfied if and only if Ai(F (z)) = µAi(z), for
i = 1, . . . , p. It is easy to see that Ai = 0, i = 1, . . . , p.

�

Lemma 6.4. Let S be an Inoue–Bombieri surfaces. There exists a unique flat vector
bundle Lµ with µ ∈ R, such that H0(S,Ω1⊗Lµ) 6= 0. Furthermore, µ > 1 and writing
Lµ = La for a ∈ H1

dR(S,R), we have T (S) = {a}.

Proof. We use notations in [38]. Accordingly, any Inoue–Bombieri surface S is the
quotient of H × C by a discrete subgroup G of automorphisms, and we denote by
w = w1+iw2, w2 > 0 and z = z1+iz2 the complex coordinates on H and C, respectively.
We have the following three types of Inoue–Bombieri surfaces:

• S of type SM = H×C/GM . Then the 1-form dw on H×C induces a twisted 1-
form in H0(SM ,Ω

1⊗Lµ) with µ real and µ > 1. Notice that in this case, there
is another twisted holomorphic 1-form, given by dz, i.e. H0(S,Ω1

S ⊗ Lβ) 6= 0
with β 6∈ R.

• S of type S
(+)
N,p,q,r;t = H × C/G(+)

N,p,q,r;t. Then the normal subgroup Γ =

〈g1, g2, g3〉 of G
(+)
N,p,q,r;t gives rise to the covers

H× C→ H× C/Γ→ S
(+)
N,p,q,r;t.

Then dw induces a holomorphic 1-form on H×C/Γ and a twisted holomorphic

1-form in H0(S
(+)
N,p,q,r;t,Ω

1 ⊗ Lµ), with µ > 1.

• S of type S
(−)
N,p,q,r. We have a double covering

S
(+)
N2,p1,q1,r;0

→ S
(−)
N,p,q,r.

In this case a twisted holomorphic 1-form in H0(S
(+)
N2,p1,q1,r;0

,Ω1 ⊗ Lµ2) with

µ > 1, induces a twisted holomorphic 1-form in H0(S
(−)
N,p,q,r,Ω

1 ⊗ Lµ).

In [6, Lemma 4.4], it is shown that α = dw2/w2 = d log(w2) defines a closed 1-form
on S, such that the deRham class a = [α] satisfies T (S) = {a}. We notice that in the
above constructions, we have Lµ = La in terms of (18).

We now argue that if H0(S,Ω1 ⊗ Lµ) 6= 0 and µ ∈ R∗, then µ is unique. Indeed, if
we have 0 6= θ1 = dw ∈ H0(S,Ω1 ⊗ Lµ) and 0 6= θ2 ∈ H0(S,Ω1 ⊗ Lν), ν ∈ R∗, ν 6= µ,
then ω := θ1 ∧ θ2 ∈ H0(S,KS ⊗ Lµν) is non-zero. Otherwise θ1/θ2 would define a
non-constant meromorphic function on S, an absurd. As there are no curves on S
(see e.g. [38] or [8]), we have that ω does not vanish on S, i.e. KS ⊗ Lµν = O. The
flat factor Lµν such that the latter holds is unique (as S admits no curves). On the
other hand, inspecting the action of G on the holomorphic 2-form dw ∧ dz on H × C
according to the three types of Inoue–Bombieri surfaces, we get

• for SM , KS ⊗ Lµβ = O with µβ ∈ C∗ \ R∗, an absurd.

• for S(+), K ⊗ Lµ = O, therefore ν = 1 an absurd as H0(S,Ω1) = 0 (see [8]).
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• for S(−), K ⊗ Lµ = O, therefore ν = 1 an absurd as H0(S,Ω1) = 0 (see [8]).

�

Lemma 6.5. Let S be an Enoki surface. Then H0(S,Ω1(logD)⊗Lµ) 6= 0 if and only
if either D is the maximal divisor and µ = 1, or D = ∅ and µ ∈ C∗, 0 < |µ| < 1.

Proof. Enoki surfaces are defined by a contraction

F (z1, z2) =

(
tnz1z

n
2 +

n−1∑
i=0

ait
i+1zi+1

2 , tz2

)
, 0 < |t| < 1, n = b2(S).

The curve {z2 = 0} induces a cycle of rational curves in S. By [25, thm 5.5], on

Enoki surfaces, there exists a unique foliation. As the logarithmic 1-form dz2
z2

defines

a foliation on S there is no other and since F ∗ dz2z2 = dz2
z2

, θ = dz2
z2

may be seen as a

section in H0(S,Ω1
S(logD)). Besides the line bundle [D] is flat and [D] ' Lt, t ∈ C?,

0 < |t| < 1 and θ may be seen as 1-form in H0(S,Ω1
S ⊗ Lt). �

Lemma 6.6. Suppose S is a hyperbolic Kato surface. Then there exists a unique b < 0
such that H0(S,Ω1(logD) ⊗ Lb) 6= 0. Furthermore, b ∈ H1

dR(S,R) is an upper bound
of T (S).

Proof. Consider first the case of an Inoue–Hirzebruch surface. In the notation of
Example 4.5, one can check that

θ := ξ
dz1

z1
+ η

dz2

z2

gives rise to a twisted logarithmic 1-form on S with values in the flat bundle is Lλ1

with λ1 > 1. The corresponding deRham class b ∈ (−∞, 0) is the explicit upper bound
of the set T (S) found in Example 4.5.

Similarly, if S is a Kato surface of intermediate type, Example 4.4 shows that dz2

gives rise to a twisted logarithmic 1-form with values in Lk, k ≥ 2. Again, Lk = Lb
where b ∈ (−∞, 0) is the explicit upper bound for T (S) identified in Example 4.4.
By [25, section 2.2] there are exactly two foliations on an Inoue-Hirzebruch surface
given by two twisted logarithmic 1-forms θ ∈ H0(S,Ω1

S(logD) ⊗ Lλi), i = 1, 2, with
λ1λ2 = ±1. This last condition leads to unicity of µ > 1, hence of b < 0. �

We summarize the above discussion in the following

Corollary 6.7. Suppose S is a known minimal complex surface in the class VII,
different than a secondary Hopf surface. Then S admits a flat bundle Lb corresponding
to a deRham class b ∈ (−∞, 0], such that H0(S,Ω1(logD)⊗ Lb) 6= 0. Furthermore, b
is an upper bound of T (S).

Proof. See Lemmas 6.3, 6.4, 6.5, 6.6. �

6.2. Classification results. In this section we do not assume that S is a known
surface, and we are aiming to classify the minimal complex surfaces in the Kodaira
class VII0 which admit a non-trivial section

(24) 0 6= θ ∈ H0(S,Ω1(logD)⊗ La) 6= 0,

for some divisor D and some flat line bundle La associated to a real deRham class
a ∈ H1

dR(S,R), or equivalently, via (18), to a flat line bundle Lµ with µ real and
positive. We notice that the twisted logarithmic 1-form θ defines a (possibly singular)
holomorphic foliation F on S. We recall the following basic
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Definition 6.8. Let F be a holomorphic foliation, defined in a local chart around a
singularity p by a vector field V (z1, z2), V (p) = 0. Denote by λ1 and λ2 the eigenvalues
of DV (p). The singularity (F , p) is called non-degenerate if λ1λ2 6= 0. We notice that

at any non-degenerate singularity p, the numbers λ(p) = λ1
λ2

and λ−1(p) = λ2
λ1

are invari-

ants of (F , p), independent of the chosen vector field V , and are called characteristic
numbers of the non-degenerate singularity of F .

Our main result in this section is the following

Proposition 6.9. Let S be a unknown minimal compact complex surface in the class
VII0 which satisfies the condition (24) for some divisor D and a flat line bundle Lb, b ∈
H1
dR(S,R), and F be the corresponding holomorphic foliation. Then

• D has one connected component, all of its irreducible components are either
smooth rational curves or rational curves with a double point, D contains a
cycle of rational curves and coincides with the maximal divisor of S.
• The intersection of two irreducible components of D is a non-degenerate sin-

gularity of F with real characteristic numbers.
• If the characteristic numbers of F at the intersections of irreducible compo-

nents of D are all negative, then b /∈ T (S), i.e. b bounds τ(S) by virtue of
Theorem 1.1.

The proof of the above result will occupy the reminder of the section and is divided
on several steps, corresponding to the Lemmas below.

First we consider the case when the flat line bundle is trivial, i.e. b = 0 in (24).

Lemma 6.10. Let S be a minimal compact complex surface in the class VII0. There
exists a non-trivial logarithmic 1-form θ ∈ H0(S,Ω1(logD)) if and only if S is a Hopf
surface or an Enoki surface.

Proof. By Lemmas 6.3 and 6.5 the primary Hopf surfaces and all Enoki surfaces admit
non-trivial logarithmic 1-forms, i.e (24) holds with Lµ = O.

Conversely, suppose H0(S,Ω1(logD)) 6= 0. As H0(S,Ω1) = 0 for any surface in
class VII0, D 6= ∅. If D has more than one connected components, it must have
precisely two connected components and S must be an Inoue–Hirzebruch surface (see
[24, Thm.4.22]). By [25], such a surface has only twisted logarithmic 1-forms, i.e.
H0(S,Ω1(logD)) = 0. Thus, D is connected. If the intersection matrix of D is
negative definite, D can be contracted onto a normal point x. Let p : S → S′ be this
contraction. Let V ′ be a Stein neighbourhood of x and V = p−1(V ′), U ′ = V ′ \ {x},
U = V \ D. By the theorem of Steenbrinck–Van Straten [54, Cor.1.4] the mapping
induced by the differentiation

d : H0(U ′,Ω1
U ′)/H

0(V,Ω1
V )→ H0(U ′,Ω2

U ′)/H
0(V,Ω2

V (logD))

is injective. Since [dω] = 0, we obtain a contradiction. Thus, the intersection matrix
of D cannot be definite, and therefore there is a divisor A with support in D such that
A2 = 0. If b2(S) = 0, it follows that S is a Hopf surface; if b2(S) > 0, Enoki’s theorem
[27] shows that S must an affine bundle over an elliptic curve. Such a surface is an
Enoki (Kato) surfaces, by the construction of generic contractions in [26]. �

We next characterize the case when D = ∅ in (24). The argument works for any flat
bundle L = Lα, [α] ∈ H1

dR(S,C).
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Lemma 6.11. Let S be a minimal complex surface in the class VII0. There exists a
non-trivial twisted holomorphic 1-form θ ∈ H0(S,Ω1 ⊗L) only if S is a Hopf surface,
an Inoue–Bombieri surface, or an Enoki surface.

Proof. If b2(S) = 0, then S is either a Hopf surface or an Inoue–Bombieri surface by
[58]. In these cases the existence of non-trivial twisted holomorphic 1-forms follows
from the arguments in Lemmas 6.3 and 6.4. If b2(S) > 0, the claim follows from [6,
Thm. 5.6]. �

From now on, we exclude the cases covered by Lemmas 6.10 and 6.11, and thus
assume D 6= ∅ and µ 6= 1.

Lemma 6.12. Let S be a surface in the class VII+
0 , which is not an Enoki surface, and

suppose that S admits a non-trivial logarithmic 1-form 0 6= θ ∈ H0(S,Ω1(logD) ⊗ L)
with pole along a divisor D 6= ∅ and values in a flat line bundle L = Lα for some closed
complex-valued one form α. Then:

(a) d−αθ = 0 on S \D, i.e. dLθ is the zero section of H0(S,Ω2(logD)⊗ L).
(b) Each connected component of D contains a cycle of rational curves Γ. In

particular, D has at most two connected components, in which case S is an
Inoue–Hirzebruch surface.

(c) Each connected component of D coincides with a connected component of the
maximal divisor of S.

(d) The analytic set of points where θ vanishes is either empty or composed of
isolated points.

Proof. (a) If θ ∈ H0(S,Ω1(logD) ⊗ Lα), then d−αθ = ∂−αθ ∈ H0(S,Ω2(logD) ⊗ Lα)
by (19). If d−αθ 6= 0, it gives rise to an effective divisor ∆ with [∆] = KS + [D] + L.
Notice that D −∆ 6= 0 because K2

S = −b2(S) 6= 0 = L2. It follows that and D −∆
is a numerically anticanonical divisor [23], and therefore S is a Kato surface by the
results in that reference. On a Kato surface, twisted logarithmic 1-forms are classified
in [25] and, by inspection, they are all dL-closed. By the discussion in Section 2, this
is equivalent to d−αθ = 0, a contradiction. We thus conclude that d−αθ = 0 on S \D
for the chosen flat connection ∇α on L = Lα.

(b) Let D′ be any connected component of the polar set D of θ. Then the intersection
matrix is negative definite by [27]. We take a simply connected neighbourhood V ′ of
D′, which is sufficiently small to be contractible onto a Stein space V with an isolated
singular normal point x ∈ V . Let π : V ′ → V be this contraction, D′ = π−1(x) be the
exceptional divisor, and U := V \ {x}. If D′ does not contain a cycle, D′ is simply
connected then the restriction of L to V ′ is trivial. By a result of Steenbrinck–van
Straten [54, Cor. 1.4] the mapping induced by the differentiation

d : H0(U,Ω1
U )/H0(V ′,Ω1

V ′)→ H0(U,Ω2
U )/H0(V ′,Ω2

V ′(logD′))

is injective, which gives a contradiction. If there are two cycles in D, we apply [45,
Thm 8.1].

(c) Let C1 be an irreducible component of D and suppose that there is a rational
curve C2, which is not contained in D, and such that C1 ∩ C2 = {p}. There are
holomorphic coordinates in a neighbourhood of p with Ci = {zi = 0}, i = 1, 2, and a
locally defined smooth function h and holomorphic functions gi, such that

ehθ = g1
dz1

z1
+ g2dz2.
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Since

0 = d
(
ehθ
)

=
∂g1

∂z2
dz2 ∧

dz1

z1
+
∂g2

∂z1
dz1 ∧ dz2 =

(
z1
∂g2

∂z1
− ∂g1

∂z2

)
dz1

z1
∧ dz2

we see that g1 must have the form

g1(z1, z2) = β(z1) + z1z2γ(z1, z2).

If β(0) 6= 0, then the restriction of θ to C2 has a simple pole at p, which is impossible.
Therefore β(0) = 0 and

ehθ =

(
β

z1
+ z2γ

)
dz1 + g2dz2.

The above form has no pole along C2, a contradiction. Thus D contains the whole
connected component of Γ.

(d) If there is a divisor A ⊂ {θ = 0}, its connected component has an empty
intersection with the pole and there are at least two connected components of curves.
We conclude by [24]. �

The above Lemma allows us also to exclude the Inoue–Hirzebruch surfaces, and
assume from now on that D is a connected non-trivial divisor.

Lemma 6.13. Let S be a minimal surface in the class VII+
0 , which is not an Inoue–

Hirzebruch or Enoki surface. Suppose that S admits a non-trivial logarithmic 1-form

0 6= θ ∈ H0(S,Ω1(logD)⊗ Lα), [α] ∈ H1
dR(S,R),

with pole along a non-trivial connected divisor D =
∑

iDi. Let F be the foliation
defined by θ. Then

(i) The intersections of curves in D are non-degenerate singularities of F with
characteristic numbers λ±1(p) ∈ R∗,

(ii) If Di ∩Dj 6= ∅, then

(
Resα(θ)D̃j
Resα(θ)D̃i

)
∈ R∗, see (22).

Proof. Using a result of Nakamura [45, Thm. 10.2], under the hypotheses of the Lemma,
we know that each component Dj is either smooth rational curve, or is a rational

curve with a double-point singularity. Let π̂ : Ŝ → S be the minimal Z-cover, see
Definition 3.10, and D̂ = π̂−1(D), α̂ := π̂∗α, α̂ = dĥ, θ̂ = π̂∗θ. Each component D̂j is

again a rational curve. In a local chart Û around D̂1 ∩ D̂2 we have (see(19))

eĥθ̂ = θ0 + g1(z)
dz1

z1
+ g2(z)

dz2

z2

where θ0, g1, g2 are holomorphic. As D̂i are compact curves, it follows that the
restriction of g1(0, z2) on D̂1 is a constant, say a1, and similarly, the restriction of

g2(z1, 0) to D̂2 is a constant a2. Therefore

Resα̂(θ̂)|z1=0 = e−ĥg1(0, z2) = e−ĥa1, Resα̂(θ̂)|z2=0 = e−ĥg2(z1, 0) = e−ĥa2.

Notice that if a1 = 0 (resp. a2 = 0) then D̂1 (resp. D̂2) will not be a pole, a
contradiction. It thus follows that the holomorphic foliation F defined by θ has a
non-degenerate singularity at p ∈ D1 ∩D2, with corresponding characteristic numbers
(λ, λ−1) := (−a1

a2
,−a2

a1
), and, moreover

a1

a2
=
Resα(θ)D̃1

Resα(θ)D̃2

.
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We next compute the Camacho–Sad indices CS of the foliation F along the curves Di

of D (see [17]):

CS(F , D2, D2 ∩D1) := Resz1=0

(
∂

∂z2
(−z2g1

z1g2
)|D2

)
= Resz1=0

(
− g1(z1, 0)

z1g2(z1, 0)

)
= −g1(0, 0)

g2(0, 0)
= −a1

a2
= −

Resα(θ)D̃1

Resα(θ)D̃2

= λ(p).

(25)

Recall that by [17], F admits a separatrix through its non-degenerate singularity p =
(0, 0), i.e. there exists an F-invariant complex analytic curve passing through (0, 0).
Looking at the classification of non-degenerate singularities of foliations (see e.g. [11,
pp. 2-3]), the only possibility with λ = λ(p) 6∈ R are singularities in the Poincaré
domain with two separatrices {zi = 0}, i = 1, 2. The holonomy of each separatrix is
generated by the contraction (or its inverse) zi 7→ µzi with µ = exp(2πiλ±1). As the
holonomy group is a contraction in this case, we see that any leaf L accumulates on
D and all intersection points p have complex non-real characteristic numbers λ±1(p).
Furthermore, any leaf L is closed in S \ D. In particular L̄ is not analytic. Under
the hypotheses of the Lemma and Enoki theorem [27], the intersection matrix of the
components Di of D is negative definite. We can then contract D onto a normal
singular point f : S → X by Grauert theorem (see e.g. [44, Thm 4.9]). Since the
Hausdorff measure of dimension one of a point is zero, a theorem of Remmert–Stein–
Shiffman [52] shows that M = f(L) is an analytic curve. But then L̄ is contained in the

analytic curve f−1(M), a contradiction. We thus conclude λ(p) ∈ R and
Resα(θ)D̃i
Resα(θ)D̃j

=

−λ(p) ∈ R (see (25)). �

Lemma 6.14. Under the hypotheses of Lemma 6.13, suppose that L = Lα for a real
deRham class [α] ∈ H1

dR(S,R) and that the characteristic numbers at the intersection
of curves of D are negative reals. Then, we can multiply θ by a non-zero complex
number such that the residues Resα(θ) defined in (22) are real valued and positive, and
the real part Re(Pθ) of the current Pθ associated to θ via (20) is exact, i.e. satisfies
Re(Pθ) = dατ for a degree 0 current τ on S. Furthermore,

dαd
c
ατ = 2πResα(θ)TD > 0,

and [α] 6= T (S).

Proof. The argument at the beginning of the proof of Lemma 6.13 shows that Resα(θ)|D̃j
∈

H0(Dj ,Lα) is of the form e−hjaj where hj is a the restriction of a smooth function
to Dj and aj 6= 0 is a complex number. Let us fix one such component Dj ⊂ D. By
Lemma 6.13, and using the connectedness of D, it follows that if we multiply θ by the
non-zero constant 1/aj , we have that Resα(θ) is real-valued and non-zero along any
other component Di, whence on D. Furthermore, if all the characteristic numbers of
F are negative, by (25), we may also assume that Resα(θ) > 0.

We now notice that the RHS of (21) is dα-closed (as a current on S), which follows
directly from the formula (19) and the fact that (gj)|Dj

= aj are constants. It follows

that Q := ∂αPθ is a ∂̄α-closed current of bi-degree (2, 0), and thus is of the form Q = Tψ
for a (2, 0)-form ψ on S with ∂̄−αψ = 0, i.e. ψ ∈ H0(S,KS ⊗Lα). As S is in the class
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VII+
0 (and L is flat) ψ = 0 (see e.g. [23, Remark 2.21]), and thus Q = 0. We conclude

that

dαPθ = ∂̄αPθ = 2πiResα(θ)TD.

Taking real parts yields dαR = 0, where R := Re(Pθ). Thus, R gives rise to a
class [R] ∈ Hα

1 (S,R) ∼=
(
H1
α(S,R)

)∗ ∼= H3
−α(S,R), as discussed in Section 2. By

Lemma 6.12-(b), S contains a cycle of rational curves and, therefore, is diffeomorphic

to (S1 × S3)]kCP 2
by the results in [46]. It follows from [6, Theorem 1.5] that either

L = O is trivial, or else [R] = 0 and hence R = dατ . As we have assumed [α] 6= 0, the
first possibility is impossible. We thus conclude that dαd

c
ατ = 2πResα(θ)TD > 0 for a

degree zero (real valued) current τ . The last claim then follows from Propositions 3.2
and 3.3. �

Proof of Proposition 6.9. Direct consequence of Lemmas 6.12, 6.13 and 6.14. �

Proof of Theorem 1.6. If b = 0, the claim in (a) follows from Lemma 6.10. We
suppose from now on b < 0. If b2(S) = 0, by [58] S is either a Hopf surface or an
Inoue–Bombieri surface. The Hopf surfaces do not admit twisted logarithmic 1-forms
with values in a flat line bundle Lb with b < 0 by Lemma 6.3. The only non-zero
twisted logarithmic 1-forms on Inoue–Bombieri surface have values in the flat bundle
La with T (S) = {a} by Lemma 6.4. We thus recover the case (c) of Theorem 1.6.

From now on we assume that b2(S) > 0 and b 6= 0, i.e. the surface is in the class
VII+

0 . As the Enoki surfaces admit no logarithmic 1-forms with values in a non-trivial
flat bundle [25, Thm 5.5], we can assume that S is different from an Enoki surface.
We are thus in the setup of Lemma 6.12.

IfD has two connected components, S is an Inoue–Hirzebruch surface by Lemma 6.12-
(b). In this case, there are two flat holomorphic line bundles L = Lµi , i = 1, 2 with
H0(S,Ω1(logD) ⊗ Lµi) 6= 0, corresponds to a real numbers −1 < µ1 < 1 or µ2 > 1
[25]. By Remark 3.13, Lµ2 = Lb with b < 0, and in this case, by Example 4.5 and
Lemma 6.6, T (S) ⊂ (−∞, b), i.e. we obtain the case (b) of the Theorem.

We now suppose that D has one connected component. In this case, by Lemma 6.14
we can assume without loss that Resα(θ) > 0 and b /∈ T (S). Recall that T (S) is an
open interval by Theorem 1.1. Suppose b is an upper bound of T (S) . By Lemma 6.14
again, there exists a degree 0 curent τ on S satisfying T = dβd

c
βτ = 2πResβ(θ)TD >

0, T 6= 0. We conclude by Proposition 3.8 that τ < 0. By Theorem 5.1, S must be a
hyperbolic Kato surface (we assume b2(S) > 0 at this point) and furthermore it must
be of intermediate type as we supposed that the maximal divisor D is connected. We
recover again the case (b) of the Theorem. The only remaining case is that T (S) ⊂
(b,∞), a situation which we recorded in the case (d) of the Theorem. �
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