Photographic 3D scanning in the wild

Benjamin Coupry¹, Antoine Laurent¹, Jean Mélou¹, Yvain Quéau², Jean-Denis Durou¹

¹ IRIT, UMR CNRS 5505, Université de Toulouse, France ² GREYC, Université de Caen, France

Calibrated photometric stereo

Self-calibrated photometric stereo

Case of the Pech Merle cave painting

"Panneau des chevaux ponctués" (Pech Merle cave, Lot, France)

Calibrated photometric stereo

Self-calibrated photometric stereo

- For archeological purposes
 - Digital preservation for conservation
 - Long-term archiving
 - Analysis
- For public purposes
 - Accessibility to the greatest number of people (ex: museography)
 - Realistic "digital twins"

Two families of digitization solutions for surface acquisition:

- Lasergrammetry
 - Pros: fairly good geometric accuracy
 - Cons: very expensive, poor quality textures
- Photogrammetry
 - Pros: requires a simple camera, inexpensive, 3D models with better quality textures
 - Cons: increased geometric uncertainty

Needs

- Accuracy: capturing digitized tracings, fine engravings, etc.
- Separate the relief from the color: analysis of the antero-posteriority

Photometric stereo

- Have a pixel-size accuracy
- Separate light, geometry and color

 \Rightarrow Photometric stereo is the solution!

Calibrated photometric stereo

Self-calibrated photometric stereo

Inverse image formation model

- Ill-posed problem with one image
- Photometric stereo: $n \ge 3$ images from same viewpoint under different lighting conditions

Results of photometric stereo

Photometric stereo in practice

Until now: lighting assumed to be known \Rightarrow Calibration by sphere

Lambert's law

Calibrated photometric stereo in Pech Merle (1/2)

Calibrated photometric stereo in Pech Merle (2/2)

PS with light calibrated by sphere

Albedo

Photometric stereo in Chauvet Cave, Ardèche

- A sphere is positioned at the end of a pole
- Position of the sphere in the image differs from one image to another

Calibrated photometric stereo

Self-calibrated photometric stereo

Normals from SDM (deep learning)

Normals from calibrated photometric stereo

Normal field prior (multi-view) \Rightarrow Reliable in low frequencies

Normal field prior (multi-view) \Rightarrow Reliable in low frequencies

Problem formulation

$$\begin{array}{ll} \min_{\{\alpha_j\},\{\mathbf{s}_i\}} & \sum_i^{\text{images pixels}} \sum_j^{|I_i(u_j,\mathsf{v}_j)\,\alpha_j - \mathsf{n}(u_j,\mathsf{v}_j)\cdot \mathbf{s}_i| \\ \text{s.c.} & \alpha_j \geq 1 \end{array}$$

Unknowns are "orthogonal": α_j constant between images, s_i constant between pixels

Numerical methods

- Quadratic programming
- Iteratively reweighted least squares

Need for a local estimation

PS with light calibrated by a sphere

PS with light calibrated by the scene

Calibrated photometric stereo

Self-calibrated photometric stereo

"Panneau des chevaux ponctués"

Locally estimated illumination direction

Locally estimated illumination intensity

Low frequencies fidelity

Locally self-calibrated PS

SFM cloud is used as geometric prior

SFM, used as prior for calibrated PS

MVS, a classical multi-view method

Locally self-calibrated PS

Influence of shading on color perception

Albedo estimated by locally self-calibrated PS

Case of the Mas d'Azil cave sculpture (1/2)

"Le Masque" (Mas d'Azil, Ariège, France)

Case of the Mas d'Azil cave sculpture (2/2)

Normal field estimated by locally self-calibrated PS

Conclusion

- Bring PS out of the laboratory, at the expense of another picture
- Simplify acquisition protocols

Perspectives

- HDR
- Multi-view