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Lévy Processes and Extreme
Value Theory
Olivier Le Courtois1 and Christian Walter2
1EM Lyon Business School, Ecully Cedex, France
2Fondation Maison des Sciences de l’Homme, Paris, France

8.1 INTRODUCTION

There are fundamentally two different ways of viewing the uncertainty of financial
asset prices in continuous time. The first assumes the principle of continuity, the
second does not. According to the first view, following Bachelier (1900) legacy,
price movements are modeled by continuous diffusion processes, such as, for
instance, Brownian motion. According to the other view, following Mandelbrot’s
(1963) legacy, price movements are modeled by discontinuous processes, such
as, for instance, Lévy processes. In this chapter, we develop on the relationships
connecting the Lévy processes and extreme value theory (EVT).

We begin by defining the modeling alternative and the challenges contem-
porary finance has to tackle. Next, we present the link with EVT. A convenient
way of thinking the modeling alternative for today’s financial stakes is to come
back to the history of science to exhibit the roots of the puzzle. The story begins
in the eighteenth century: Leibniz and Newton, the inventors of differential calcu-
lus, stated that “Natura non facit saltus” (nature does not make jumps). In other
words, in physics, the so-called principle of continuity states that change is contin-
uous rather than discrete. This same principle underpinned the thoughts of Linné
on the classification of species and later Charles Darwin’s theory of evolution
(1859). If we move to economics, we find Alfred Marshall’s Principles of Eco-
nomics (1890) in which the principle of continuity is assumed, allowing the use
of differential calculus in economics and the subsequent development of neoclas-
sical economic theory. As modern financial theory grew out of neoclassical eco-
nomics, the same principle of continuity is assumed in the conceptual framework
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of financial modeling. As a surprising consequence of this assumption, one of
the great success stories of modern financial theory was the valuation of deriva-
tives. Celebrated examples include the formulas of Black et al. (1900) for valuing
options, and the subsequent fundamental theorem of asset pricing that emerged
from the work of Michael Harrison, Daniel Kreps, and Stanley Pliska between
1979 and 1981. These success stories rest on the principle of continuity.

In the twentieth century, both physics and genetics abrogated the principle
of continuity. Quantum mechanics postulated discrete energy levels, while genet-
ics took discontinuities into account. But economics—including modern financial
theory—stood back from this intellectual revolution. An early attempt by Benoit
Mandelbrot in 1962 to take explicit account of discontinuities on all scales in stock
market prices led to huge controversies in the financial industry for almost 40
years; see (Walter 2009). But, by the 1980s, the academic consensus reaffirmed the
principle of continuity—despite the repeated financial crises following the 1987
stock market crash. Many popular financial techniques, such as portfolio insur-
ance or the calculation of capital requirements in the insurance industry, assume
that (financial) nature does not make jumps and therefore promote continuity (see,
however, Bertrand and Prigent (2015) for a recent account on the Constant propor-
tion portfolio insurance (CPPI) method and the EVT approach). Most statistical
descriptions of time series in finance assume continuity.

It follows that Brownian representation became the standard model, part
and parcel of finance curricula across the globe. It was the dominant view in the
financial industry itself; and it still underlies almost all prudential regulation
frameworks: for instance, the so-called square-root-of-time-rule underlying the
regulatory requirements (Basle III and Solvency II) for calculating minimum
capital, which is a very narrow subset of time scaling rule of risk, comes directly
from the hypothesis that returns are independent, stationary (identically dis-
tributed),and normal, that is, Brownian-based representation. Brownian motion
has the very important property of independence and stationarity of increments.
The processes with independent and stationary increments are called Lévy
processes, which constitute the class of stochastic process having this property.
Brownian motion is a specific Lévy process: it assumes continuity. Other Lévy
processes do not.

Now let us turn our attention to the extreme values in the tails. The classic
theory of extreme values distinguishes between small and large quantities. One
of the difficulties often encountered in the practical application of this theory is
the choice of a threshold beyond which a variation is considered large. One of
the main goals of this chapter is to show how the Lévy process approach can be
reconciled with that of extreme values. Another objective is to be able to bypass
the dead-end of the mixture of diffusions and EVT approaches to tail modeling.
An important and puzzling consequence of assuming continuous dynamics is the
truncation of financial time series into the so-called “normal” periods and periods
of “insanity” or “irrationality.” Adopting continuity implies adding an extra com-
ponent, precisely the EVT framework, to the continuous part of the model. But
this ad hoc mechanism has a negative spillover: it implies considering crises as
“irrational exceptions” and evacuating every possibility of detecting the frailty of
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the market by describing jumps at any scale. In other words, this dichotomy leaves
the profession unable to explain the transition from one period to another. For
example, Alan Greenspan, former chairman of the US central bank, commented
on the financial crisis of 2007–2008 with these words: “We can never anticipate all
discontinuities” (Financial Times, March 16, 2008). This demonstrates the limits
of the diffusion + EVT approach.

This chapter contains five parts. We start by recalling the main definitions of
the EVT framework. Then, we move to a presentation of Lévy processes. Section
4 is dedicated to the study of stable Lévy processes. In Section 5, we examine two
subclasses of semi-heavy-tailed Lévy processes that are based on tempered stable
and generalized hyperbolic distributions. Section 8.6 deals with the relationships
between Lévy processes and extreme value distributions.

8.2 EXTREME VALUE THEORY

We start with a study of the Fisher–Tippett theorem, then we examine the Gener-
alized Jenkinson–von Mises distribution, and finally we concentrate on the maxi-
mum domains of attraction.

8.2.1 The Fisher–Tippett theorem

Let {X1,X2, · · · ,Xn} be n independent, identically distributed (i.i.d.) random
variables equipped with the cumulative distribution function (c.d.f) FX(x) =
Pr(X ≤ x). Consider a sample that consists of the n realizations {x1, · · · , xn}. We
rank them by decreasing order, and introduce the following convention:

x(1) ≥ x(2) ≥ · · · ≥ x(n).

The largest of these realizations, x(1), can be considered to represent the real-
ization of a new random variable X(1). The same idea prevails for the other obser-
vations x(k). Thus, we introduce n new random variables with the convention

X(1) = max(X1, · · · ,Xn),

which represents the random variable giving the largest value in a sample of size
n. In the statistics literature, this quantity is also sometimes denoted by X(1∶n).

Similarly,
X(n) = min(X1, · · · ,Xn)

represents the random variable giving the smallest value observed in a sample of
size n. More generally, X(k)—or X(k∶n) —is the random variable related to the k
th value x(k) obtained among n realizations. These n new random variables can be
ordered in the following way:

X(1) ≥ X(2) ≥ · · · ≥ X(n).
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We want to show how it is traditionally possible to determine the values that
can be taken by maxima over a given observation period, that is, we want to
characterize the probability law of maxima. Because extreme values are by defi-
nition rare, one needs to be able to extrapolate from past observed values to future
hypothetical large values. EVT proposes a framework adapted to this extrapola-
tion: it describes the asymptotic behavior of F1∶n when n tends to plus infinity. For
technical reasons, this is not the maximum X(1∶n), which is the object of study, but
the centered and reduced maximum (X(1∶n) − bn)∕an.

The Fisher–Tippett theorem provides the shape of the possible asymptotic
cdfs of the centered reduced maximum of a sample of size n. We remain in the
context of a set of n random variables {X1, · · · ,Xn} that are i.i.d, and that have the
cdf FX(x). We stress that this theory requires the validation of the i.i.d. hypothesis
in order to be applied in an adequate way.

THEOREM 8.1 (Laws of maxima: Fisher–Tippett (1928)) Let us assume a
sequence of n i.i.d. random variables {X1, · · · ,Xn} with the cdf FX(x). If there
are two sequences {an}n∈ℕ and {bn}n∈ℕ with ∀n, an ∈ ℝ+∗ and bn ∈ ℝ, and a
nondegenerate limit cdf H such that

lim
n→∞

Pr

(
X(1∶n) − bn

an
≤ x

)
= H(x), (8.1)

then H belongs to one of the three classes:

– Fréchet. H(z) = Φ𝛼(z) = exp (−z−𝛼) if z > 0, 0 if z ≤ 0,

– Weibull. H(z) = Ψ𝛼(z) = exp (−(−z)𝛼) if z ≤ 0, 1 if z > 0,

– Gumbel. H(z) = Λ(z) = exp (−e−z), z ∈ ℝ

with z = x−b
a
, where a > 0, b ∈ ℝ, and 𝛼 > 0.

The three classes of distributions denoted by Φ𝛼 , Ψ𝛼 , and Λ are called the
laws of maxima. The Fréchet and Weibull laws are linked by the relation

Φ𝛼

(
−1
z

)
= Ψ𝛼(z). (8.2)

The parameters a and b are scale and localization parameters, whereas 𝛼 is a
shape parameter. These laws are stable with respect to maxima: for a sample of
independent random variables {Z1, · · · ,Zn} that satisfy one of these laws, and for
Z(1∶n), the maximum of these variables, we have

Z(1∶n)
d
= anZ + bn, (8.3)

where Z is a random variable that has the same distribution as {Z1, · · · ,Zn} and
that is independent of these latter random variables.



Trim Size: 6.125in x 9.25in Longin c08.tex V1 - 06/17/2016 12:32 A.M. Page 175
�

� �

�

8.2 Extreme value theory 175

In particular, we have

– Fréchet law: Z(1∶n)
d
= n1∕𝛼Z,

– Weibull law: Z(1∶n)
d
= n−1∕𝛼Z,

– Gumbel law: Z(1∶n)
d
= Z + ln n.

We illustrate the previous developments with a simple example. Suppose that
𝔼[Z] = 1 and consider the Fréchet (with, e.g., 𝛼 = 1

2
) and Gumbel laws. We do not

select theWeibull law because its support is bounded on the right (it is therefore of
little use for financial problems). In the first case, we see that 𝔼[Z(1∶n)] = n2, while
in the second case 𝔼[Z(1∶n)] ≈ ln n. Written differently, with the Fréchet law the
maximum increases much more quickly than with the Gumbel law, and conse-
quently the same behavior is also observed for the contribution of the maximum
within the sum.

There is a formal analogy between this theorem for the maximum (expressed
through the formula (8.1)) and the central limit theorem for the mean, which we
recall here:

lim
n→∞

Pr

(
X̄n − 𝔼[X]
𝜎(X)∕

√
n

≤ x

)
= Φ(x), (8.4)

where Φ is the cdf of the centered reduced Gaussian law.
This comparison between the two theorems, as well as the two formulas (8.1)

and (8.4), allows us to interpret the parameters an and bn. The parameter bn corre-
sponds to the mean 𝔼[X] in the central limit theorem and is therefore a localization
parameter. The parameter an corresponds to 𝜎(X)∕

√
n in the central limit theorem

and is therefore a scale parameter. However, the parameter 𝛼 has no equivalent in
the central limit theorem. The elements of this analogy are displayed synthetically
in Table 8.1, which displays a comparison between two laws of large numbers,
respectively associated with the means and the extreme values. In the two cases,
limit theorems and standard distributions exist. We note that, in the case of the
𝛼-stable distribution, 𝔼(X) and 𝜎(X) do not necessarily exist (case of Pareto-power
laws). Indeed, when the first moments of distributions are not defined, we asymp-
totically obtain a stable distribution, where the coefficient 𝛼 of the central limit
theorem is identical to the inverse of the coefficient 𝜉 of EVT. The two laws of
large numbers focus on two distinct quantities: the fluctuation of means and the
fluctuation of maxima. For more details, see (Leadbetter 2015).

8.2.2 Generalized Jenkinson–von Mises distribution

The expressions of the Fréchet, Weibull, and Gumbel distributions can be united
in a general expression using the condensed representation of Jenkinson and von
Mises (1954–1955), which defines a generalized distribution for the maxima H𝜉 :

H𝜉(x) = exp

(
−
[
1 + 𝜉

(x − 𝜇
𝜎

)]− 1
𝜉

)
, (8.5)
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TABLE 8.1 Limit laws of means and maxima

Laws of large numbers
Central limit theorems Extreme value theorems
Convergence of empirical means Convergence of empirical maxima

X̄n =
1

n

n∑
i=1

Xi X(n) = max(X1, · · · ,Xn)

Φ(x) = lim
n→∞

Pr
(

X̄n−𝔼[X]
𝜎(X)∕

√
n
≤ x

)
H(x) = lim

n→∞
Pr

(
X(n)−bn

an
≤ x

)
Centered reduced Gaussian distribution Standardized distribution
if 𝔼[X] and 𝜎(X) exist of extreme values

Fréchet:
Gaussian density: H(x) = exp (−x−𝛼)
Φ(x) = 1√

2𝜋
∫ x

−∞ e−t
2∕2 dt Weibull:

Gaussian characteristic exponent: H(x) = exp (−(−x)𝛼)
ΨX(u) = − u2

2
Gumbel:
H(x) = exp (−e−x)

Moivre (1730)–Laplace (1812) Fisher–Tippett (1928)
𝛼-stable distributions Generalized distribution
if 𝔼[X] and/or 𝜎(X) do not exist of extreme values

ΨX(u) = i𝜇u − 𝛾𝛼|u|𝛼 (1 − i𝛽 u|u| tg 𝜋𝛼2
)

H𝜉(x) = exp

(
−
[
1 + 𝜉

(
x−𝜇
𝜎

)]− 1
𝜉

)
Lévy (1937) Jenkinson–von Mises (1954–1955)
Fluctuations of means Fluctuations of maxima

for all x such that 1 + 𝜉(x − 𝜇)∕𝜎 > 0.
The density function of this generalized law of maxima is

h𝜉(x) =
1
𝜎

[
1 + 𝜉

(x − 𝜇
𝜎

)]− 1+𝜉
𝜉 exp

(
−
[
1 + 𝜉

(x − 𝜇
𝜎

)]− 1
𝜉

)
. (8.6)

We can interpret the parameters 𝜇 and 𝜎 by comparing Eqs (8.1) and (8.5):

lim
n→∞

Pr

(
X(n) − bn

an
≤ x

)
= exp

(
−
[
1 + 𝜉

(x − 𝜇
𝜎

)]− 1
𝜉

)
.

This equality shows that the parameters 𝜇 and 𝜎 are the limits of bn and an
when n is large. Therefore, 𝜇 ∈ ℝ is a localization parameter and 𝜎 > 0 is a scale
parameter. Finally, the parameter 𝜉 ∈ ℝ models the shape of the distribution tail.
It is therefore called the shape of the extreme value index. More precisely, three
situations can be encountered:

1. 𝜉 > 0, this is the Fréchet law. The distribution tail is thick and 𝜉 = 𝛼−1 > 0,
where 𝛼 is the tail index. The larger the 𝜉, the thicker the distribution tail.

2. 𝜉 < 0, this is theWeibull law. The distribution tail is thin and 𝜉 = −𝛼−1 < 0.
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3. 𝜉 = 0, this is the Gumbel law. The distribution tail decreases exponentially.
This is a limit case between the two preceding situations, where 𝜉 → 0.

8.2.3 Maximum Domain of Attraction

Let us now reformulate the Fisher–Tippett theorem in order to introduce the con-
cept of the maximum domain of attraction (MDA). Because

Pr

(
X(1∶n) − bn

an
≤ x

)
= Pr

(
X(1∶n) < anx + bn

)
,

we have, using the definition of X(1∶n)

Pr
(
X(1∶n) < anx + bn

)
=
[
F(anx + bn)

]n
.

Then, the Fisher–Tippett theorem states that

lim
n→∞

[
F
(
anx + bn

)]n = H(x). (8.7)

We say that the Fisher–Tippett theorem defines a MDA for the cdf F(⋅), and
we write F ∈ MDA(H).

This result is equivalent for the largest values to what the central limit theorem
is for the mean values. A probability distribution of the cdf F belongs to the MDA
of H if the distribution of the renormalized maximum converges to H.

Which types of probability distribution belong to whichmaximum domains of
attraction and what are the renormalization constants? The answer to this question
depends on the variation of the cdf of the random variable. If a random variable
varies regularly, then it belongs to the MDA of Fréchet; if this random variable
varies rapidly, then it belongs to the MDA of Gumbel. We now examine these two
cases.

In the first situation, F̄ is a regular function of index −𝛼. Recall that f is a
regular function of index 𝛼 if, for all x > 0, we have

lim
t→+∞

f (tx)
f (t)

= x𝛼.

In this case, F ∈ MDA(Φ𝛼): the MDA is that of the Fréchet law with
an = F−1(1 − n−1) and bn = 0. This result was obtained by Gnedenko in 1943. In
order to verify that F ∈ MDA(Φ𝛼), we check that

lim
t→∞

1 − F(tx)
1 − F(t)

= x−𝛼.

Assume, for instance, that F is the cdf of a Pareto distribution of type I, so
that F(x) = 1 − x−𝛼 . Then

lim
t→∞

1 − F(tx)
1 − F(t)

= lim
t→∞

(tx)−𝛼

t−𝛼
= x−𝛼.



Trim Size: 6.125in x 9.25in Longin c08.tex V1 - 06/17/2016 12:32 A.M. Page 178
�

� �

�

178 CHAPTER 8 Lévy Processes and Extreme Value Theory

Thus, a Pareto distribution of type I belongs to the MDA of the Fréchet law.
We can also check the Fisher–Tippett theorem by calculating Fn. We have here
an = F−1(1 − n−1) = n1∕𝛼 . This yields

lim
n→∞

[F(anx + bn)]n = lim
n→∞

[F(n1∕𝛼x)]n = lim
n→∞

(1 − x−𝛼

n
)n,

so that
lim
n→∞

[F(anx + bn)]n = exp (−x−𝛼) ,

and we have recovered the Fréchet law.
The second situation is that in which the distributions belong to the MDA

of the Gumbel law and have an infinite right endpoint. These distributions are of
rapid variation. Recall that a function f is of rapid variation if it satisfies

⎧⎪⎨⎪⎩
lim
t→+∞

f (tx)
f (t) = 0, x > 1,

lim
t→+∞

f (tx)
f (t) = +∞, 0 < x < 1.

These results conclude this first section on EVT.Wewill come back later on to
these asymptotic results. Before that, let us conduct a study of infinitely divisible
distributions and Lévy processes.

8.3 INFINITE DIVISIBILITY AND LÉVY
PROCESSES

We start by recalling the definition of a characteristic exponent. Then we study
infinitely divisible distributions, before examining Lévy processes, defined as the
class of processes with independent and stationary increments, and Lévy mea-
sures.

8.3.1 Characteristic Exponent

Recall that the characteristic function of a random variable Y is the Fourier trans-
form of its density function, that is,

ΦY (u) = 𝔼
[
eiuY

]
=

∞∑
k=0

eiuk Pr(Y = k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
discrete r.v.

= ∫
+∞

−∞
eiux fY (x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
continuous r.v.

,

where fY (x) is the density function. The characteristic function can be expressed
in the following way:

ΦY (u) = exp
(
ΨY (u)

)
, (8.8)

where ΨY (u) is called the characteristic exponent of Y .
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In the case of Lévy processes, the exponent Ψ is proportional to time. This
follows from a very important property of these processes: their marginal distri-
butions are infinitely divisible. We now examine this property in greater detail.

8.3.2 Infinitely Divisible Distributions

Roughly speaking, the property of infinite divisibility states that it is possible to
write a random variable as a sum of n identical independent random variables, for
any given n. More precisely, for any Lévy process X and any positive integer n, it
is clear that

Xn = X1 + (X2 − X1) + · · · + (Xn − Xn−1)

and

ΦXn
(u) = 𝔼

[
eiuXn

]
= 𝔼

[
eiu(X1+(X2−X1)+···+(Xn−Xn−1))

]
= 𝔼

[
eiuX1 × eiu(X2−X1) × · · · × eiu(Xn−Xn−1)

]
.

From the independence of the increments of X, it follows that

ΦXn
(u) = 𝔼

[
eiuX1

]
× 𝔼

[
eiu(X2−X1)

]
× · · · × 𝔼

[
eiu(Xn−Xn−1)

]
.

The stationarity of the increments of X then implies that

ΦXn
(u) = 𝔼

[
eiuX1

]
× 𝔼

[
eiuX1

]
× · · · × 𝔼

[
eiuX1

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

=
(
𝔼
[
eiuX1

])n
.

Finally, we obtain
ΦXn

(u) =
(
ΦX1

(u)
)n
. (8.9)

This result can be generalized in the case of continuous time t to

ΦXt
(u) =

(
ΦX1

(u)
)t
. (8.10)

If we now consider characteristic exponents, we readily have

exp
(
ΨXt

(u)
)
=
(
exp

(
ΨX1

(u)
))t = exp

(
tΨX1

(u)
)
.

From this equation, we deduce the relation between the distributions of the
process X at time 1 and at time t:

ΨXt
(u) = t ΨX1

(u). (8.11)

Thus, the characteristic exponent of a Lévy process is equal to t times that of
its underlying infinitely divisible distribution, which is the distribution of X1.
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8.3.3 Characteristic Exponent of Lévy Processes

Lévy processes are described by their characteristic exponent, which can, in gen-
eral, be decomposed as follows:

ΨXt
(u) = t

(
i𝜇u − 1

2
𝜎2u2

)
+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Gaussian law
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Diffusion

t ∫|x|<1
(
eiux − 1 − iux

)
𝜈(dx)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
small jumps

+ t ∫|x|≥1
(
eiux − 1

)
𝜈(dx)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
large jumps

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Jump Component

. (8.12)

The three terms of this formula represent the characteristic exponents of the
normal distribution (diffusive component), of a generalized (in the sense that the
arrival rate of jumps may be infinite) compensated compound Poisson process,
and of a compound Poisson process, respectively. The second term corresponds to
modeling small jumps, that is (by arbitrary construction), those jumps of size less
than 1 in absolute value, and the third one to large jumps.

The last two terms can be written together in the same integral using an
indicator function:

ΨXt
(u) = t

(
i𝜇u − 1

2
𝜎2u2

)
+ t ∫ℝ∗

(
eiux − 1 − iux 𝟏|x|<1 (x)) 𝜈 (dx) . (8.13)

This is the Lévy–Khintchine formula. The characteristic exponent is indeed
proportional to time:{

ΨX1
(u) = i𝜇u − 1

2
𝜎2u2 + ∫ℝ∗

(
eiux − 1 − iux 𝟏|x|<1(x)) 𝜈(dx),

ΨXt
(u) = t ΨX1

(u).
(8.14)

A Lévy process is therefore completely determined by the following three
quantities:

1. The expectation 𝜇 of the diffusion component. This is the drift of the
process.

2. The diffusion coefficient 𝜎. This coefficient functions as a scale of the
diffusive fluctuations.

3. The measure 𝜈(dx), called the Lévy measure, determines the fluctuations
of the jumps, as well as the skewness and the kurtosis of the process. Note
that for the integral in Eq. (8.13) to be defined, we impose the following
restriction:

∫ℝ
(x2 ∧ 1)𝜈(dx) < +∞

.
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TABLE 8.2 Comparison of characteristic exponents

Process/characteristic exponent ∫ +∞
−∞ 𝜈(dx)

Compound Poisson: Finite
t ∫ +∞

−∞ (eiux − 1)𝜈(dx)

Compensated compound Poisson: Finite
t ∫ +∞

−∞ (eiux − 1 − iux)𝜈(dx)

Lévy pure jump: Infinite
t∫|x|≥1(eiux − 1)𝜈(dx) + t∫|x|<1(eiux − 1 − iux)𝜈(dx)
t∫ℝ∗

(
eiux − 1 − iux 𝟏|x|<1(x)) 𝜈(dx)

Lévy: Infinite

t
(
i𝜇u − 1

2
𝜎2u2

)
+ t∫ℝ∗

(
eiux − 1 − iux 𝟏|x|<1(x)) 𝜈(dx)

Table 8.2 gives an overview of the jump component in the Lévy–Khintchine
formula of the Poisson processes we have seen so far, which are written in terms
of their Lévy measure.

8.3.4 Lévy Measure

The important term of the characteristic exponent is the Lévy measure. To explain
its meaning intuitively, we choose the example, given in the preceding paragraph,
of a compound Poisson process with intensity 𝜆(the Poisson parameter). We
assume that this process has the density function fY (x) for the jump size given by
Y . The Lévy measure can then be written as

𝜈(x) = 𝜆 fY (x). (8.15)

Intuitively, the Lévy measure gives the average number of jumps per unit of
time in terms of their size. We can therefore view the Lévy measure as the mathe-
matical object that quantifies the arrival of jumps and their size. It can be used to
create discontinuities in the paths of the stochastic processes that represent fluctu-
ations on the stock market.

For the Poisson processes introduced previously, the average number 𝜆 of
jumps per unit of time is finite. However, in a very general way, we can arbitrarily
adjust both the frequency with which jumps occur and their size by using the Lévy
measure. We call the average number of jumps per unit of time the intensity of the
process (also called activity of the process in analogy to turbulence). Then, if we
also know the density function that determines the size of the jumps, we can join
them together:

intensity × density,

which is exactly the Lévy measure in the case when it is finite. Let us now
come to the study of two important classes of Lévy processes. We start with the
heavy-tailed ones.
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8.4 HEAVY-TAILED LÉVY PROCESSES

This section is dedicated to the study of stable Lévy processes. We first exam-
ine stable distributions, and then stable processes, and finally stable characteristic
exponents and measures.

8.4.1 Stable Distributions

Let X, Y , and Z be three i.i.d. random variables, and A, B, C, and D four real
numbers (the first three being strictly positive). Then, if the relation

AX + BY
d
= CZ + D

holds, the random variable X(and its independent copies) is said to be stable.
This relation can be generalized for all n ≥ 2 as follows:

X1 + X2 + · · · + Xn
d
= CnX + Dn,

where X1, X2,… , Xn, and X are i.i.d. random variables, and Cn and Dn are real
numbers (the first of which is strictly positive). If this last relation holds, X(and its
independent copies) is said to be stable.

Stable distributions are described by four parameters (𝛼, 𝛽, 𝛾, 𝜇), which cor-
respond to the fatness of the tails, the asymmetry, the width, and the mean of these
distributions, respectively (when this last quantity does not exist, 𝜇 is interpreted
as a shift parameter). We will denote stable distributions by (𝛼, 𝛽, 𝛾, 𝜇) in the
following.

8.4.2 Stable Processes

A stable process is a process whose underlying distributions, marginal or joint, are
stable. We call a stable process whose marginal distributions are symmetric and
normalized, an alpha-stable process such as

Xt − Xs ∼ (𝛼, 0, |t − s| 1𝛼 , 0).
These symmetric and normalized alpha-stable distributions are often denoted

by S𝛼S.
If X is an alpha-stable process, then it has the following property:

X(at) − X(as)
d
= a1∕𝛼X(t) − X(s), (8.16)

for all 𝛼 ∈]0, 2], where we use
d
= to denote equality in distribution. In this

case, the stochastic process X is said to be self-similar with exponent 1∕𝛼, or
1∕𝛼-self-similar with stationary increments (1∕𝛼- sssi), or also fractal. This
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means that the distribution of the return at date at (hence X(at)), where a
determines some multiple or fraction of t(e.g., a year-fraction, or a noninteger
multiple of a year, if a year is the unit of time), is related to the distribution at
date t by simple invariance of scale. Graphically, the dilation of the time axis is
equivalent to a dilation of the axis of cumulative returns, up to normalization
(and stressing the fact that this is a dilation of the distributions, and not of the
paths).

8.4.3 Characteristic Function and Lévy Measure

To obtain the characteristic function of the marginal distribution of a stable process
at a given time t, we take the t th power of the characteristic function of a reference
stable distribution taken at time t = 1(see Eq. (8.10)). In the general case, the den-
sity function is not known in closed form and the characteristic function is used.
For a stable random variable X, we have by definition

ΨX(u) = i𝜇u + ∫
0

−∞
𝜓(u, x)

C−|x|1+𝛼 dx + ∫
+∞

0
𝜓(u, x)

C+

x1+𝛼
dx (8.17)

with
𝜓(u, x) = eiux − 1 − iux 𝟏|x|<1. (8.18)

The parameter 𝜇 gives the drift, while the term 𝛼 describes the form of the
distribution and the force of the jumps affecting the paths. The tails of the distri-
bution become fatter and fatter as 𝛼 decreases.C− andC+ are two constants, called
the tail amplitudes, which represent scale parameters for the distribution tails. In
practice, C− and C+ give the order of magnitude of large fluctuations (negative or
positive). Comparing Eq. (8.17) to the Lévy–Khintchine formula (8.13), we see
that the Lévy measure of a stable distribution is

𝜈(dx) =
C−|x|1+𝛼 𝟏(−∞,0)(x)dx + C+

x1+𝛼
𝟏(0,+∞)(x)dx (8.19)

or, more intuitively,

𝜈(x) =
⎧⎪⎨⎪⎩

C−|x|1+𝛼 if x < 0,

C+
x1+𝛼

if x > 0,

(8.20)

which is the equation also found in (Samorodnitsky and Taqqu 1994).
An important feature evident in this form is a decrease given by a power law,

which is slow for large values of x compared to the fast decrease observed for
exponential laws. This slow decrease of the distribution tails is a key characteris-
tic of Pareto distributions. Here, the Lévy measure is defined by a Pareto type I
distribution, or simply Pareto distribution.
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8.5 SEMI-HEAVY-TAILED LÉVY PROCESSES

In these section, we examine two subclasses of semi-heavy-tailed Lévy processes
that are based on tempered stable and generalized hyperbolic distributions.

8.5.1 Tempered Stable Distributions

To remedy the inconvenience of not having any moments for those Lévy processes
whose measure is given by a power function built on the model

𝜈(x) =
⎧⎪⎨⎪⎩

C−|x|1+𝛼 if x < 0,

C+
x1+𝛼

if x > 0,

it has been suggested to weight this measure by an exponential quantity in order
to reduce large fluctuations, and therefore recover the moments. This idea cor-
responds to a set of Lévy processes whose marginal distributions are stable dis-
tributions truncated, or “tempered,” by exponential functions, hence their name
tempered stable processes. The distribution tails of these stable models, tempered
by the truncation, are semi-light.

The first model to be built on this principle was that of (Koponen 1995), later
taken up by (Bouchaud and Potters 2003) and again by (Boyarchenko and Leven-
dorskii 2002), in which the Lévy measure is given by

𝜈(x) =
⎧⎪⎨⎪⎩

C−|x|1+𝛼 e−a− |x| if x < 0,

C+
x1+𝛼

e−a+ x if x > 0.

(8.21)

Observe that the parameterization is asymmetric in the decay rate of large
jumps, but symmetric in the parameter 𝛼, which is the same for up and down
jumps. The Variance Gamma and CGMY (Carr, Geman, Madan, and Yor) models
are well-known special cases of this model. In the CGMY model, the coefficients
C− and C+ have been symmetrized.

This model has the following Lévy measure:

𝜈(x) =
⎧⎪⎨⎪⎩

C|x|1+𝛼 e−a− |x| if x < 0,

C
x1+𝛼

e−a+ x if x > 0.
(8.22)

As before, interpreting the parameters exposes two types of risk: size and
shape. The parameter C is a measure of size (affecting all moments), whereas
𝛼, a−, and a+ determine the shape (force of the jumps for 𝛼 and asymmetry for
a− and a+). When a− > a+, the distribution is curtailed on the left and stretched
to the right (the left part is squashed by the exponential factor), and vice versa.
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Finally, for asymmetrical distributions, a change in 𝛼 will result in a change in the
asymmetry. In other words, 𝛼 has an indirect leverage effect on the asymmetry.

8.5.2 Generalized hyperbolic distributions

We first concentrate on the simple hyperbolic distribution by developing an intu-
itive understanding of what motivates the name “hyperbolic.” If we draw the graph
of a Gaussian density in a semilogarithmic chart (i.e., one in which the ordinate
is given on a logarithmic scale), then the density function (with e−x

2 ) will have
the shape of a parabola (since we have −x2 now). This parabola is characterized
visually by the rapid fall (rapid decline) of the distribution’s tails. If we try to
obtain more drawn-out distribution tails, we can slow down the fall by replacing
the parabola by a hyperbola. In this case, the distribution’s density function will be
of hyperbolic form in a semilogarithmic chart. This is the reason why distributions
constructed in this manner are called hyperbolic. Their usefulness for the model-
ing of price movements on the stock markets stems from the slower decrease of
their tails.

This intuition allows us to reach in a simple way the general complicated form
of these distributions. In fact, the equation defining a hyperbola (with vertex on
top in order to obtain a density) is easily obtained as

y(x) = −𝛼
√
1 + x2 + 𝛽x, (8.23)

where 𝛼 and 𝛽 are two constants that determine the shape of the hyperbola. As x
goes to ±∞, the asymptotes are the two lines with slope −𝛼 + 𝛽(for x → +∞) and
𝛼 + 𝛽(for x → −∞). It follows directly from Eq. (8.23) that the general form of
the density function of a hyperbolic distribution is given by

f (x) = a exp
(
−𝛼

√
1 + x2 + 𝛽x

)
, (8.24)

where a is a normalization constant for the integral of the density function.
By considering the slopes of the two asymptotes, we obtain a direct

interpretation of the parameters: 𝛼 > 0 and 0 < |𝛽| < 𝛼 determine the shape
of the distribution, affecting the fatness of the tails (for 𝛼) and the asymmetry
(for 𝛽). Introducing a localization parameter denoted by 𝜇 and a dispersion (or
scale) parameter denoted by 𝛾 , we obtain a more general version of the preceding
equation:

f (x) = a′ exp
(
−𝛼

√
𝛾2 + (x − 𝜇)2 + 𝛽(x − 𝜇)

)
. (8.25)

We must now define the normalization constant. Since the density must inte-
grate to 1, we compute its integral and deduce the value of the normalization
constant from it. In this way, we obtain the result that the density function of a
hyperbolic distribution (H) is given by

fH(x) =
√
𝛼2 − 𝛽2

2𝛼𝛾K1

(
𝛾
√
𝛼2 − 𝛽2

) exp
(
−𝛼

√
𝛾2 + (x − 𝜇)2 + 𝛽(x − 𝜇)

)
, (8.26)
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where K1(⋅) is a modified Bessel function of the third kind of order 1.
We see that, like alpha-stable distributions, hyperbolic distributions are

defined by four parameters: the kurtosis, the asymmetry, the dispersion, and the
localization of the distribution. In other words, here too we have completed the
size of the random movements (their dispersion, or scale: 𝛾) with their form
(fatness of tails and asymmetry: 𝛼 and 𝛽). The localization parameter keeps the
same meaning in all cases. Although different in their asymptotic behavior, all
hyperbolic distributions retain a twofold notion of risk in their description of
price movements on an exchange (size–form, or amplitude–structure).

The construction of the density function of a hyperbolic distribution can there-
fore be carried out in two steps.

1. By defining the hyperbolic part of the exponential function in its general
form with four parameters (𝛼, 𝛽, 𝛾, 𝜇):

−𝛼
√
𝛾2 + (x − 𝜇)2 + 𝛽(x − 𝜇).

2. By adjusting the exponential of the hyperbola by a normalization constant
that depends on the parameters: a(𝛼, 𝛽, 𝛾). This constant involves modified
Bessel functions denoted by K𝜆(⋅).

We recall that Bessel functions are solutions to the second-order differential
equation

x2y′′ + xy′ + (x2 − 𝜆2)y = 0.

The solutions to this equation are denoted by J𝜆(x) and Y𝜆(x), depending on
whether they are defined at x = 0, and are called Bessel function of the first kind
of order 𝜆 and Bessel function of the second kind of order 𝜆, respectively.

If at present we consider the following modified differential equation

x2y′′ + xy′ − (x2 + 𝜆2)y = 0

then its solutions are called modified Bessel functions of the first and second kinds,
denoted by I𝜆(x) and K𝜆(x).

We can generalize the density (8.26) by choosing an order 𝜆 different from 1
for the modified Bessel function to obtain a generalized version of the hyperbolic
distribution. The Bessel function of the second kind of order 𝜆 is defined for all
x > 0 by

K𝜆(x) = ∫
∞

0
y𝜆−1e−

1
2
x(y+y−1) dy.

• For 𝜆 = 1, we have the case K1 of the simple hyperbolic distribution
described above.
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• For 𝜆 = −1∕2, we obtain the density of the normal inverse Gaussian (NIG)
distribution

fNIG(x) =
𝛼𝛾

𝜋

K1(𝛼
√
𝛾2 + (x − 𝜇)2)√

𝛾2 + (x − 𝜇)2
exp

(
𝛾
√
𝛼2 − 𝛽2 + 𝛽(x − 𝜇)

)
.

(8.27)
The dispersion parameter 𝛾 takes values between 0 and infinity. Starting from
the simple hyperbolic distribution with density (8.26), it can be shown that

– when 𝛾 → +∞ and 𝛽 → 0, then 𝛾∕
√
𝛼2 − 𝛽2 → 𝜎2, and the simple hyper-

bolic density converges toward a Gaussian one with mean 𝜇 and standard
deviation 𝜎;

– when 𝛾 → 0, the simple hyperbolic density converges toward an asym-
metric Laplace density

f (x) = C

⎧⎪⎨⎪⎩
e−(𝛼−𝛽)(|x|−𝜇) if x ≥ 𝜇,

e−(𝛼+𝛽)(|x|−𝜇) if x < 𝜇.
(8.28)

• For 𝜆 ≠ 1, we have the case of the generalized hyperbolic distribution(GH),
whose density function is given by

fGH(x) = a(𝛾2 + (x − 𝜇)2)
(
𝜆− 1

2

)
∕2
K
𝜆− 1

2

(
𝛼
√
𝛾2 + (x − 𝜇)2

)
e𝛽(x−𝜇) (8.29)

with normalizing constant

a = (𝛼2 − 𝛽2)𝜆∕2√
2𝜋𝛼𝜆−

1
2 𝛾𝜆 K𝜆

(
𝛾
√
𝛼2 − 𝛽2

) .

8.6 LÉVY PROCESSES AND EXTREME VALUES

The infinitely divisible distributions whose underlying Lévy measure density is
the product of an exponential function by a power function belong to the MDA
of the Gumbel law. The asymptotic behavior of these distributions is studied in
detail in (Albin and Sundén 2009). Consider, for instance, the infinitely divisible
distributions having the Lévy measure density

𝜈(x) = Cx𝜌e−𝛼x. (8.30)

It appears that both the distribution densities and the cdfs of these laws have, up
to a constant, a mixed exponential-power form. It can also be noted that the distri-
butions constructed from such Lévy measure densities (in particular the Variance
Gamma, CGMY, or generalized hyperbolic distributions) possess cdfs that can be
written as

F(x) = 1 − e− ∫ x
−∞ c(t) dt,
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where limt→+∞c(t) = 𝛼. This representation is that of a von Mises function. It
readily implies that these distributions belong to the MDA of the Gumbel law.

Let us conclude on the behavior of distribution tails:

1. The MDA of the Fréchet law contains all distributions having stretched or
heavy tails, such as power functions.

2. The MDA of the Gumbel law contains all thin and medium-tailed distri-
butions. Examples of such distributions are the exponential distributions
with semi-heavy tails thicker than the Gaussian, such as the distributions
resulting from mixing a power function with an exponential function. The
previous section gave a representative sample of such distributions.

3. The MDA of the Weibull law contains all distributions with a support
bounded to the right. These distributions are said to be short-tailed.

These results are summarized in Table 8.3. It appears that most distributions of
interest to the field of finance belong to theMDA of Gumbel, whereas distributions
of interest to the field of insurance rather belong to the MDA of Fréchet.

To describe the behavior of the largest values of Lévy processes, it is sufficient
to consider the Lévy measure. Indeed, this measure directly yields the asymptotic
pattern of the density and cdf of any marginal Xt. Because Lévy processes have
independent and stationary increments, considering a marginal distribution at time
t, as we do in the next subsections, exhausts the discussion for the whole process.

8.6.1 CGMY and VG Distributions

We first consider the asymptotic behavior of the CGMY (see Carr, Geman,
Madan, and Yor (2002) and Variance Gamma (see, e.g., Madan and Seneta (1990)
or Madan and Milne (1991)) processes satisfying the relationship (8.30) with,

TABLE 8.3 Laws of maxima and maximum domain
of attraction

Laws of maxima Shape parameter Basic distributions
Weibull 𝜉 < 0 Uniform

Beta
Gumbel 𝜉 = 0 Gaussian

Exponential
Lognormal
Gamma
CGMY

Fréchet 𝜉 > 0 Cauchy
Pareto
𝛼-Stable
Student
Loggamma
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respectively, 𝜌 < −1 and 𝜌 = −1. For a process X of the CGMY type that has the
Lévy measure density

𝜈(x) = C
eGx

(−x)1+Y
𝟏x<0 + C

e−Mx

x1+Y
𝟏x>0,

where Y > 0, (Albin and Sundén 2009) showed that, when u is large,

Pr(Xt > u) +∞∼ Ct
M

𝔼
[
eMX(t)] e−Mu

u1+Y
.

From the computation of the moment generating function 𝔼(eMX(t)), we
deduce that

Pr(Xt > u) +∞∼ Ct
M

eCtΓ(−Y)
[
(G +M)Y −MY − GY

] e−Mu

u1+Y
,

so that

Pr(Xt > u) +∞∼ C̃(t) e−Mu

u1+Y
,

where
C̃(t) = Ct

M
eCtΓ(−Y)

[
(G+M)Y−MY−GY ]

.

This confirms that the CGMY distribution tail is a mix of power and
exponential functions, similar to the CGMY Lévy measure density.

In the case of a Variance Gamma process Z = Z1 + Z2 with the Lévy density

𝜈(x) = C
eGx

(−x)
𝟏x<0 + C

e−Mx

x
𝟏x>0,

where Z1 is a gamma process describing the positive jumps and Z2 is a gamma pro-
cess describing the negative jumps, (Albin and Sundén 2009) showed that, when
u is large

Pr(Xt > u) +∞∼ MCt−1

Γ(Ct)
𝔼
[
eMZ2(t)

] e−Mu

u1−Ct
.

From the computation of the moment-generating function 𝔼
[
eMZ2(t)

]
of the

gamma process associated with negative jumps, we deduce that

Pr(Xt > u) +∞∼ MCt−1

Γ(Ct)

( G
G +M

)Ct e−Mu

u1−Ct
,

so that

Pr(Xt > u) +∞∼ C̃(t) e−Mu

u1−Ct
,

where

C̃(t) = MCt−1

Γ(Ct)

( G
G +M

)Ct
.
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Recall that

C = 1
v
,G =

(√
𝜃2v2

4
+ 𝜎2v

2
− 𝜃v

2

)−1

, M =

(√
𝜃2v2

4
+ 𝜎2v

2
+ 𝜃v

2

)−1

.

Again, the distribution tail is a mix of power and exponential functions.

8.6.2 Alpha-Stable Distributions

In the case of an alpha-stable motion, described by the Lévy measure (8.19), we
have, by extending Proposition 1.2.15 in (Samorodnitsky and Taqqu 1994) to an
unconstrained time,

Pr(Xt > u) +∞∼ C̃(t)1 + 𝛽
u𝛼

, (8.31)

and
Pr(Xt < u) −∞∼ C̃(t) 1 − 𝛽

(−u)𝛼
, (8.32)

where C̃(t) = (1−𝛼) 𝜎𝛼 t

2 Γ(2−𝛼) cos
(
𝜋𝛼
2

) in both situations, provided 𝛼 ≠ 1.

8.6.3 Generalized Hyperbolic Distributions

Recall that generalized hyperbolic distributions (see, e.g., (Prause 1999)) have the
density

fHG (x) = a

K
𝜆− 1

2

(
𝛼

√
𝛾2 + (x − 𝜇)2

)
e𝛽(x−𝜇)

(
𝛾2 + (x − 𝜇)2

)( 1
2
−𝜆

)
∕2

,

where a is defined by

a = (𝛼2 − 𝛽2)𝜆∕2√
2𝜋𝛼𝜆−

1
2 𝛾𝜆 K𝜆

(
𝛾
√
𝛼2 − 𝛽2

) .
From (Abramowitz and Stegun 1965), we have

Kv(z)
±∞∼

√
𝜋

2z
e−z,

so that

fHG(x)
±∞∼ a

√
𝜋

2𝛼
√
𝛾2+(x−𝜇)2

e−𝛼
√
𝛾2+(x−𝜇)2 e𝛽(x−𝜇)

(
𝛾2 + (x − 𝜇)2

)( 1
2
−𝜆

)
2

.

Because √
𝛾2 + (x − 𝜇)2 ±∞∼ |x|,
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we can write

fHG(x)
±∞∼ a

√
𝜋

2𝛼|x|e−𝛼|x|e𝛽(x−𝜇)|x| 12−𝜆 ,

so that, finally,

fHG(x)
±∞∼ C̃

e−𝛼|x|+𝛽x|x|1−𝜆 (8.33)

with

C̃ = (𝛼2 − 𝛽2)𝜆∕2e−𝛽𝜇

2𝛼𝜆𝛾𝜆K𝜆
(
𝛾
√
𝛼2 − 𝛽2

) .
This asymptotic expression corresponds to a mix of exponential and power

functions. Consider the shape of the asymptotic density in the two particular cases
below:

1. 𝜆 = 1: hyperbolic distribution. The asymptotic behavior of the density is

fH(x)
±∞∼ C̃ e−𝛼|x|+𝛽x

with

C̃ =
√
𝛼2 − 𝛽2e−𝛽𝜇

2𝛼𝛾K1

(
𝛾
√
𝛼2 − 𝛽2

) .
2. 𝜆 = −1∕2: NIG distribution. The asymptotic behavior of the density is

fNGI(x)
±∞∼ C̃

e−𝛼|x|+𝛽x|x| 32
with

C̃ =
√
𝛼𝛾e−𝛽𝜇

2
(
𝛼2 − 𝛽2

) 1
4K− 1

2

(
𝛾
√
𝛼2 − 𝛽2

) .
Compared to the alpha-stable distribution, whose tail is a power func-

tion, we observe here a faster asymptotic decrease due to the presence of
an exponential function in the tail. The distribution tail remains, however,
thicker than in the Gaussian case. Generalized hyperbolic distributions, similar
to CGMY and VG distributions, show a medium asymptotic decrease and
therefore represent a compromise between the Gaussian and alpha-stable distri-
butions.

Table 8.4 concludes this chapter by presenting the main asymptotic behaviors
of Lévy process marginals.
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TABLE 8.4 Infinitely divisible distributions and asymptotic behavior

Basic distributions Density function Tail function Laws of maxima
Gaussian Exp. of parabola Exp. of power Gumbel
Hyperbolic Exp. of hyperbola Exp.-power mix Gumbel
Trunc. 𝛼-stable Exp.-power mix Gumbel
𝛼-stable Power Fréchet

8.7 CONCLUSION

This chapter started by recalling the important features of EVT. Then, it pre-
sented a synthetic account of infinite divisibility and Lévy processes. Further,
it explained distinct studies of heavy-tailed and semi-heavy-tailed processes.
Finally, it provided a recombination of all these elements and allowed us to
understand the tail behaviors associated with the marginals of the most standard
classes of Lévy processes.
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