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Abstract

This chapter gives an overview of the financial modelling of extreme values by using discon-

tinuous stochastic Lévy processes. At least two distinct programmes using these processes are

currently established in financial modelling: the first Mandelbrot programme based on stable

Lévy processes and the alternative non-stable Lévy processes based approach. I term these two

programmes the radical programme (RP) and the pragmatic programme (PP). At first, I use

Sato’s classification to contrast the two programmes. Next I adopt an historical perspective to

present to the two programmes since 1960. The RP initiated huge controversies in the academic

field because of the stable hypothesis. The PP began in the 1970s with explicitly renouncing the

stable hypothesis. In the 1990s a new competitor appeared, called econophysics programme (EP).

I show that, although the PP and the EP can be traced through separate lines in the academic

fields, their shared the use of tempered stable processes and derive from their reliance on Mandel-

brot’s view. At the end, I suggest that Mandelbrot introduced the ‘discontinuous turn’ in financial

modelling of extreme values.
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1 The extreme value puzzle in financial modelling

The extreme value puzzle in finance has a long history (Longin, 1993; Fraga and Neves, 2015). As

early as in the 1950s, one noticed that the price changes presented such phenomenon. For example,

in a landmark paper published in the Journal of the Royal Statistical Society, Maurice Kendall wrote

that the results from price data between 1883 and 1934 are such as “[t]he distributions are accordingly

rather leptokurtic” (Kendall, 1953, 13). Seven years after, in the Food Research Institute Studies,

Arnold Larson noticed that: “Examination of the pattern of occurrence of all price changes in excess

of three standard deviations from zero (...) indicated that [there is] presence in the data of an excessive

number of extreme values” (Larson, 1960, 224, our italics).

The mainstream view of the extreme values of distributions considered these data as irrelevant for

financial modelling. For example, Granger and Orr (1972) asserted that “[i]f the long tails of empirical

distributions are of concern to the time-series analyst or econometrician, it is natural to consider

reducing the importance of these tails. The most obvious approach is to truncate the data”. On the

contrary, Benôıt Mandelbrot viewed these extreme values as something extremely important for the

understanding of market behaviour (Mandelbrot, 1962). But in the 1970s, the Gaussian distribution

was the predominant tool used to describe the empirical distribution of returns and Brownian motion

was just rediscovered by the founders of the ‘modern’ financial theory. Hence, at this time, it was not

possible to take account of the tails of the distributions. I now elaborate this point, which is of a great

importance for the history of financial thought, the origins of the multiple financial accidents since

1987 and the issue of extreme values I aim to address here.

I have argued that some of the key differences between the two approaches can be illuminated by

reference to a familiar debate in philosophy over the principle of continuity (Le Courtois and Walter,

2014b). Although this philosophical debate may seem to be a scholastic preoccupation within a tight

circle of specialists in philosophy of science, far from the financial stakes of modelling and with no

impact on concrete financial practices, I argue, on the contrary, that the divergent positions about the

mindset behind the price changes implicate entirely different views of what it is important to capture

and how to model it. Let us emphasize this point.

In physics, the principle of continuity states that change is continuous rather than discrete. Leibniz
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and Newton, the inventors of differential calculus, said “Natura non facit saltus” (nature does not make

jumps). This same principle underpinned the thoughts of Linné on the classification of species and

later Charles Darwin’s theory of evolution (1859). In 1890, Alfred Marshall’s Principles of Economics

assumed the principle of continuity, allowing the use of differential calculus in economics and the

subsequent development of neoclassical economic theory. In 1900, Louis Bachelier defends his thesis

Theory of speculation in which price movements are modelled by Brownian motion (Bachelier, 1900).

Modern financial theory grew out of neoclassical economics and naturally assumes the same principle of

continuity. One of the great success stories of modern financial theory was the valuation of derivatives.

Examples include the formulas of Fisher Black, Myron Scholes, and Robert Merton (1973) for valuing

options, and the subsequent fundamental theorem of asset pricing that emerged from the work of

Michael Harrison, Daniel Kreps, and Stanley Pliska between 1979 and 1981. These success stories rest

on the principle of continuity. In the 20th century, both physics and genetics abrogated the principle

of continuity. Quantum mechanics postulated discrete energy levels while genetics took discontinuities

into account. But economics – including modern financial theory – stood back from this intellectual

revolution.

The crux of my argument about the extreme value puzzle in financial modelling can be summa-

rized in the following statement. There are two fundamentally different ways of viewing price changes

in finance. One side of the debate, ‘Leibnizian’, takes the continuity as a cornerstone for financial

modelling. In this view, following Bachelier’s legacy, price movements are modelled by continuous dif-

fusion processes. The contrary ‘antiLeibnizian’ position holds that discontinuity is crucial for grasping

the true nature of price changes without intellectual cleavage. According to the second view, follow-

ing Mandelbrot’s legacy, price movements are modelled by discontinuous processes, as for instance

Lévy processes. Mandelbrot’s pivotal move was to reconceptualize the discontinuity of price changes as

empirical problem for financial modelling.

With the presence of extreme value in financial time series, the Mandelbrot view might have been

expected to start a new way of modelling price changes. But the early attempt by Mandelbrot to

take explicit account of discontinuities on all scales in stock market prices led to huge controversies

in the profession (Walter, 2009a). By the 1980s, the academic consensus reaffirmed the principle of

continuity, despite the repeated financial crises following the 1987 stock market crash. The principle of
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continuity was still predominant in the 1990s despite the growing evidence of extreme values in the tails

of empirical distribution (Longin, 1996) mainly with the high-frequency data. Many popular financial

techniques, such as portfolio insurance or the calculation of capital requirements in the insurance

industry assumed that (financial) nature does not make jumps and therefore widely promoted continuity

in the professional community (see however Bertrand and Prigent (2015) for a recent account of the

CPPI method and EVT approach). Most statistical descriptions of time series in top journals in the

field of finance assumed continuity. The Brownian representation still underlies almost all prudential

regulation worldwide: for instance, the so-called square-root-of-time-rule underlying the regulatory

requirements (Basle III and Solvency II) for calculating minimum capital is a very narrow subset of

time scaling rule of risk, and comes directly from the hypothesis that returns follow a Brownian motion.

I termed this Brownian mindset the ‘Brownian virus’ (Walter, 2009b), a notion inspired by Durkheim’s

writing (Le suicide, 1930), for suggesting a cognitive bias: a ‘suicidogenic’ school of thought creating an

pathogenic environment (intellectual, social) that destroyed the prudent instincts of risk professionals

and led to the financial meltdown of 2008.

In fact, one of the cognitive consequences of the Brownian virus is a negative spillover about

the extreme value puzzle: the truncation of financial time series into “normal” periods (continuous

market) and periods of “insanity” where markets are deemed “irrational” (extreme value periods).

This dichotomy leaves the profession unable to explain the transition from one period to another. For

example, in an editorial in the Financial Times (16.3.08), Alan Greenspan commented on the financial

crisis of 2007-2008, “We can never anticipate all discontinuities in financial markets.” For Greenspan,

(financial) nature does not make jumps and extreme values are unpredictable outliers. This cognitive

bias demonstrates the limits of risk management when considering the extreme value problem with a

continuity Brownian based framework completed with an extreme value approach, and the need for a

global discontinuous framework. If extreme value theory can efficiently help to choose a distribution

for rare events (Longin, 2005), the problem of tackling discontinuities at all scales remains.

Brownian motion increments have the important property of being independent and identically

distributed (hereafter IID). The processes with IID increments are called Lévy processes after the French

mathematician Paul Lévy. Brownian motion is a specific Lévy process: it assumes continuity. Other

Lévy processes don’t. This chapter gives an overview of the financial modelling of extreme values and
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discontinuities in the behaviour of stock market prices with Lévy processes. I present to the two main

competitors for this stake: stable Lévy processes (Mandelbrot’s first programme) and the non-stable

Lévy processes based approach. I suggest that the non-stable Lévy based approach of discontinuities can

be viewed as a ‘pragmatic programme’ launched in the 1970s against the Mandelbrot’s first programme

which I term ‘radical programme’. I use Sato’s classification to contrast the two programmes. Next I

present the two competitors from an historical perspective. The pragmatic programme splitted in two

branches: the heterodox financial modelling and the econophysics view. There are interesting parallels

between them, which derive from their reliance on the radical programme.

The outline of the chapter is as follows. Section 2 introduces some fundamental notions from

Lévy processes such as activity, variation and Lévy measure. Next I introduce Sato’s classification

to characterize the two programmes. Section 3 presents the Mandelbrot programme and discusses

the related problems. Section 4 presents the pragmatic programme with is three stages: section 4.1

begins with mixed jump-diffusion processes in the 1970s; section 4.2 follows with infinite activity finite

variation processes and infinite activity infinite variation processes in the 1990s. Section 5 concludes.

2 The Sato classification and the two programmes

This section presents in the simplest and most intuitive way possible the main characteristics of Lévy

processes. Many books present a comprehensive view of these processes, as for example Bertoin (1996)

and Sato (1999), for more details.

2.1 Lévy processes

To specify a Lévy process, there are two alternative routes: either to describe the marginal probability

distribution of the process, i.e. the shape of the probability density function of the law, which describes

the morphology of market uncertainty, considered from a static standpoint. Or to describe the Lévy

measure, a mathematical object that captures the structure of the dynamics of jumps. The marginal

probability distribution corresponds to a representation of uncertainty in the real world (here, the

reality of the chance of the market, the reality of the stock price behaviour, the reality of the financial
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Box 1. Characteristic function and characteristic exponent

The characteristic function of a random variable Y is the Fourier transform of its density function:

ΦY (u) = E
[
eiuY

]
=
∞∑
k=0

eiuk Pr(Y = k)︸ ︷︷ ︸
discrete r.v.

=

∫ +∞

−∞
eiux fY (x)dx︸ ︷︷ ︸

continue r.v.

where fY (x) is the density function. The characteristic function can be written as:

ΦY (u) = exp (ΨY (u)) (1)

where ΨY (u) is the characteristic exponent of Y .

phenomenon), which can be used for real-world calibrations with market data; whereas the Lévy

measure appears only in the transformed space of characteristic functions: the inverse Fourier transform

of the probability density function. The characteristic functions can also be used as part of procedures

for fitting probability distributions to samples of data. These two representations are equivalent for the

specification of a Lévy process in the sense that knowing one of the functions always makes it possible

to find the other. Both provide different insights for understanding the morphology of uncertainty in

the financial world.

However, the two cannot be used indifferently. The probability density function does not always

exist (closed form expression is not available); whereas the characteristic function of any infinitely

divisible distribution always exists. Thus, for reasons of mathematical convenience, one uses the char-

acteristic function and the characteristic exponent (see Box 1) to define in a simple way an infinitely

divisible distribution and the Lévy processes corresponding to it. The characteristic function of a Lévy

process has an equivalent meaning to the density function: it describes the morphology of uncertainty

of the observed phenomenon.

The explicit form of the characteristic exponent of a stochastic process with IID increments was

obtained in the most general case by Paul Lévy in 1934 and is the so-called Lévy-Khintchine formula

(see Box 2). The Lévy measure was explicitly used in the models of the 1990s, whereas it was only

6



Box 2. Characteristic exponent and Lévy measure

The explicit form of the characteristic exponent of a random walk was obtained by Paul Lévy in

1934 for the processes with IID increments. This form is:

ΨXt(u) = t

(
iµu− 1

2
σ2u2

)
︸ ︷︷ ︸

DIFFUSION

+ t

∫
R∗

(
eiux − 1− iux1|x|<1(x)

)
ν(dx)︸ ︷︷ ︸

JUMPS

(2)

This is the Lévy-Khintchine formula, the interpretation of which is the following. The first term

(‘DIFFUSION’) represents the normal distribution with the expectation µ and the standard

deviation σ, the diffusive component of the stochastic process also termed the ‘volatility’ of the

markets. The second term (‘JUMPS’) is the jump component of the stochastic process, which

contains the Lévy measure ν(dx).

Heuristically, the Lévy measure provides the number of jumps per unit of time as a function of their

size. It is the mathematical object which allows to quantify the jump arrival and the jump size. This

is a key component of a Lévy process, which completely defines the structure of ‘erraticity’ of the

market behaviour.
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implicit in those of the 1970s, with the exception of Mandelbrot’s model (1962, 1963), in which it

appeared in an integrated form of the characteristic exponent.

A very important property of Lévy processes due to the IID property is that the characteristic

exponent is proportional to the time duration: the marginal distributions of these processes are infinitely

divisible (see Box 3). This means that a random variable can be understood as the sum of identical

random variables, at any order. When modelling market uncertainty on whatever scale, one uses this

property. The characteristic exponent at a given time t (uncertainty at time t) is easily obtained from

the characteristic exponent at time 1 (uncertainty at time 1) following (see Box 3) the rule (8). This is

one of the main attractions of Lévy processes, making them preferable to other types of model where

the IID property does not hold.

2.2 Activity and variation of Lévy processes

One source of the extreme value puzzle is the interpretation of jumps in statistical descriptions.

2.2.1 Jumps? What jumps?

A stock price trajectory is by construction discontinuous; because it comprises jumps at all quote

times. In the classic case of the Brownian representation of fluctuations, trajectories are continuous.

The classic Brownian representation views quotes as points sampled in a continuous trajectory. In the

case of a Brownian representation, quote jumps are proportional to the volatility of Brownian motion

and hence it is not necessary to change representation. This statement correctly addresses the puzzle

of jumps. In a given representation, are the points separated by distances that are consistent with the

postulated model for paths? In the Brownian representation, are the observed jumps consistent with

the diffusive nature of Brownian motion, or are they too large?

Strange as it may seem, this issue had not been tackled in finance literature until very recently.

While normality tests have been well known for many years, it was not until the contributions of Aı̈t-

Sahalia and Jacod (2009) that appropriate tests for the detection of jumps were constructed, adding

discontinuity tests to the classical toolbox of financial statistics.
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Box 3. Characteristic exponent and infinitely divisible distributions

For any positive integer n, one has Xn = X1 + (X2 −X1) + · · ·+ (Xn −Xn−1) and therefore:

ΦXn(u) = E
[
eiuXn

]
(3)

= E
[
eiu(X1+(X2−X1)+···+(Xn−Xn−1))

]
(4)

= E
[
eiuX1 × eiu(X2−X1) × · · · × eiu(Xn−Xn−1)

]
(5)

If X is a Lévy process, the increments are IID. From the independence of the increments, it follows

that:

ΦXn(u) = E
[
eiuX1

]
× E

[
eiu(X2−X1)

]
× · · · × E

[
eiu(Xn−Xn−1)

]
From the stationarity of the increments, it follows that:

ΦXn(u) = E
[
eiuX1

]
× E

[
eiuX1

]
× · · · × E

[
eiuX1

]︸ ︷︷ ︸
n times

=
(
E
[
eiuX1

])n
Finally one obtains:

ΦXn(u) = (ΦX1(u))n (6)

This result can be generalized in the case of a continuous time t (real positive) to:

ΦXt(u) = (ΦX1(u))t (7)

Now one considers the characteristic exponent. It follows from (7) that:

exp (ΨXt(u)) = (exp (ΨX1(u)))t = exp (tΨX1(u))

Hence the relationship between the characteristic exponent of the process X at time 1 and at time t

is:

ΨXt(u) = t×ΨX1(u) (8)

This is the reason why the characteristic exponent of a Lévy process is equal to t times that of its

underlying infinitely divisible distribution, which is in fact the distribution X1.
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2.2.2 Shaping the path irregularity in a IID framework with the Lévy measure

With a Lévy process, each trajectory is by definition discontinuous everywhere. Intuitively, the greater

the number of jumps per time unit, the more the trajectory of the stochastic process will have a high

degree of irregularity and the more erratic the random walk will be. Hence a stochastic process will

be highly erratic if the average number of jumps occurring per unit of time is very large. The average

number of jumps per unit of time defines the so-called ‘intensity’ of a Lévy process – also termed

‘activity’ by analogy with turbulence. The activity can be finite or infinite.

The rudimentary example of Box 4 shows that, in order to ‘isolate’ the activity of a Lévy process, it

is sufficient to calculate the integral of the Lévy measure. This integral may be either finite or infinite.

In all cases in which one constructs a compound Poisson process with another distribution, the number

of jumps per unit of time (the occurrence rate of discontinuities) is finite and the resulting Lévy process

is of finite activity. In this situation one can clearly separate the activity from the density. When the

activity is finite, the product activity-density is the Lévy measure.

It makes sense to generalize this approach for moving from finite to infinite activity. Indeed there

is no reason why the average number of small jumps per unit of time should stay finite. The advantage

of generalizing in this way is that the very many small market movements can be taken into account.

In the case of infinite activity, it is no longer possible to separate the activity λ from the density f .

Both are “mixed” in the Lévy measure, which entirely shapes the morphology of the irregularity of the

financial phenomenon. The activity is ‘isolated’ in the same way that in the simple previous example.

Let us consider now the average distance between two points of the process. The average distance

can be finite or infinite (the mean may or may not exist). This idea of average distance corresponds to

what is called the variation of a Lévy process. The variation may be finite or infinite. The variation is

another feature of the morphology of financial uncertainty.

Let us summarize what has been presented so far. A Lévy process is fully defined by the specification

of three quantities: the mean of the diffusive component (the trend of the process), the diffusion

coefficient (the scale of fluctuations) and the Lévy measure (the morphology of uncertainty).The role of

the Lévy measure is decisive. It contains all the information needed to characterize the trajectory of a

Lévy process, apart from its tendency and its diffusive fluctuation scale (‘volatility’). It is the quantity
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Box 4. The Lévy measure in simple cases with Poisson processes

Let us consider a Poisson process with parameter λ: the average number of jumps per unit of time –

the activity of the process – is simply λ. Let us continue with this simple example to get an intuitive

idea of what the Lévy measure is. Whenever a jump in the Poisson process occurs, suppose that the

magnitude Y of the jump is random with known density fY (x). Let us note ν(x) the product:

ν(x) = λ× fY (x) (9)

This product is the Lévy measure. One sees that the Lévy measure captures both the occurrence

rate of discontinuities and their magnitude: the product (9) fully characterizes the jump structure

of the process. One observes that the integral of the Lévy measure is equal to λ:∫ +∞

−∞
ν(dx) = λ×

∫ +∞

−∞
fY (x)dx︸ ︷︷ ︸

=1 (density)

= λ = activity

Hence the integral of the Lévy measure provides the activity of the process.

Suppose that the distribution of jumps is normal with a mean µY being the average size of jumps

and a standard deviation σY being the volatility of the size of jumps (a compound Poisson process

with a normal distribution or ‘compound Poisson-Normal’ process). Hence, following (9), the Lévy

measure is:

ν(x) = λ× 1

σY
√

2π
exp

(
−(x− µY )2

2σ2
Y

)
(10)

In the simple case of a compound Poisson process with any probability distribution Y with known

density fY (x), the Lévy measure is just the product:

activity × density
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that shapes the size of the tails of distribution, and the patterns of jumpy fluctuations.

Characteristic exponent = Trend + Scale + Morphology

The significance of the new approach adopted in the 1990s came precisely from this possibility of

defining any market dynamics with irregularities at all scales by direct specification of the Lévy measure.

Thus, the dynamic of stock prices being any Lévy process, the representation of market fluctuations

shifted, in the 1990s, from exponentials of Brownian motions to exponentials of Lévy processes.

Another consideration also favoured Lévy processes. Lévy processes are semi-martingales. The

work of Ross, Harrison and Pliska between 1976 and 1981 on arbitrage showed that the arbitraged

prices of securities ought to be capable of being modelled by semi-martingales. Thus for these reasons

applying both to financial modelling and to the technique of stochastic calculus, the Lévy processes

disinterred in the early 1990s, after a decade of growing maturity in financial thinking around the theory

of arbitrage and the usefulness of intrinsic market temporality, appeared extraordinarily well adapted

to the new way of conceiving the modelling of arbitraged markets, whether in calendar time or market

time. The match between the most modern finance (absence of arbitrage) and the development of

working techniques on Lévy processes was pivotal for the introduction of these processes into financial

research.

2.3 The two programmes in the light of Sato’s classification

In brief, three alternatives exist for shaping financial uncertainty with Lévy process: either the activity

is finite or infinite, or the variation is finite or infinite, and the variance can be finite or infinite. The Sato

(1999) classification defines a process by its pair (activity, variation) according to the double criterion

finite or infinite. In the pragmatic programme, the variance is finite, and in the radical programme

(Mandelbrot’s view) the variance is infinite. It appears that there are four types of stochastic processes

depending on whether their activity and their variation are finite or infinite, and whether variance is

finite or infinite. Table 1 below exhibits the Lévy processes in financial modelling following this double

criterion, the variation being that of the jump part of the stochastic process.

In general, the models of the late 1990s and early 2000s used processes with infinite activity and
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infinite variation but with finite variance. As an outlaw, the Mandelbrot model (1962) comprised

infinite activity, infinite variation and infinite variance.

Table 1: The Sato classification, the variance issue and the financial modelling programmes

Activity Variation Variance Financial modelling Programme

Infinite Infinite Infinite Mandelbrot (1962) Radical

Finite Finite Finite
Press (1967), Merton (1976) Pragmatic

Cox and Ross (1976) stage 1

Infinite Finite Finite
Madan and Seneta (1990) Pragmatic

Madan and Milne (1991) stage 2

Infinite Infinite Finite

Eberlein and Keller (1995)

Barndorff-Nielsen (1997)

Eberlein Keller Prause (1998) Pragmatic

Madan Carr Chang (1998) stage 3

Prause (1999)

Carr Geman Madan Yor* (2002, 2003)

*(depends on exponent)

3 Mandelbrot’s programme: a fractal approach

The initial idea of discontinuities at any scale of the observation of markets behaviour came from Man-

delbrot (1962, 1963). How to name financial markets that are ‘continually discontinuous’? Mandelbrot

felt that the name should reflect the fractured nature of the paths representing price changes. He

coined the term “fractal” (from the Latin fractus, meaning fractured) to characterize discontinuities at

all scales.

He developed his main ideas in a series of significant papers published in French. Some of these

texts are translated in English, modified and reprinted in his 1997 Fractals and Scaling in Finance.
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In this chapter, I term ‘Mandelbrot’s programme’ the research programme described in these papers

corresponding to Mandelbrot (1966, 1967, 1973a, 1973b, 1973c). The three main concepts of the first

research programme for financial modelling are summarized in Walter (2015): fat tails, long range

dependence and intrinsic time. A second strand of papers came after his 1997 book, corresponding

to Mandelbrot (2001a, 2001b, 2001c), which build on the generalized multifractal model put forward

in 1997, outside the IID framework. This model was the result of the Mandelbrot’s coming back to

finance after the 1987 crash. The three papers of 2001 echoed the three of 1973 and represent a second

stage of the programme, moving from unifractals to multifractals. Ultimately, multifractal modelling

allows a comprehensive view of discontinuities with bypassing the limitations of the first approach.

The idea of discontinuity in price variations at any scale is closely related to the scaling view of

price fluctuations (the ‘fractal description of markets’), a current of thought which is initially entangled

with the ‘chartist’ approach to markets, before being adequately mathematicised with fractals. I now

elaborate this point.

3.1 The fractal view of price behaviour

Stock market charts representing changes in the stock prices over a given period of time look like

irregular patterns that seem to be reproduced and repeated in all scales of analysis. Rising periods

follow periods of decline and the rises are punctuated with intermediate falling phases and falls are

interspersed with partial rises, and this goes on until the quotation scale limit is reached.

This mixture of repetitive patterns of rising and falling waves at all scales was Ralph Elliott’s (1938)

intuition, to whom this idea occurred while observing the ebb and flow of tides on the sands of the

seashore. From this, he coined a financial symbolization known as ‘stock market waves’ or ‘Elliott’s

waves’, which he subdivided into huge tides, normal waves and wavelets. In mathematical terms, the

so-called Elliott wave principle presents a deterministic self-similar fractal description of stock markets

with self-similar geometric patterns found on all scales of observations.

The fractals of Mandelbrot, though developed in a radically different intellectual context, fit in this

understanding of stock market variations. It presents, like the common view with Elliott’s waves, a

method for disentangling the inextricable interlacing of stock markets moves at all scales. Fractals rep-
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resented an adequate conceptualization allowing the translation of intuitions of technical analysts into

rigorous mathematical representation, because this mathematics deals with two financial stylized facts:

discontinuity and scaling. The notion of “roughness” addresses these facts by creating a strange nexus

between two seemingly disparate cases: discontinuity and scaling. Random fractal curves adequately

mimic stock market charts. In the following section, I elaborate on this.

3.2 Fractal modelling: discontinuity and scaling

Despite the promising results opened up with this new way of thinking financial modelling, the ad-

venture of fractal modelling in finance does not display a smooth (continuous) history. It is more

an eventful (discontinuous) progression of Mandelbrot’s assumptions through the evolution of finance

theory over forty years, from 1960 until 2000. In a paper summarizing the Mandelbrot’s state of re-

search programme in the 1980s, Mirowski (1995) observed that “the economics profession dropped the

Mandelbrot hypothesis largely for reasons other than empirical adequacy and concise simplicity. [...]

The only purpose of the negative studies was to refute Mandelbrot”. In his admirable book about

the development of financial economics, MacKenzie (2006) stressed this point by hypothesizing that

Mandelbrot’s model was viewed by the financial academic community as a probability ‘monster’. Let

us have a closer look on this point.

3.2.1 The extreme values and the Stable model

At the origin of the fractal modelling in finance is the “leptokurtic phenomenon”, i.e. the presence of fat

tails due to extreme values in the empirical distributions of returns. Mandelbrot’s idea for suggesting

the simplest generalization of Brownian motion that takes account of the extreme values was to put

forward the simplest process, which was, in this sense, stable by addition, the alpha-stable motion. But

the price to pay was the abandonment of finite variance because the variance of alpha-stable motion is

infinite. This infiniteness of a crucial financial quantity which just arose in the new models for portfolio

management (Markowitz, 1952, 1959) and option pricing (Black, Scholes and Merton, 1973) was seen

as horrific by the academic mainstream of the 1970s. For example, one can find in a textbook that

“many researchers find the conclusion of infinite variance unacceptable” (Taylor, 1986).
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On the other hand, there was a lack of statistical tools to tackle the estimation of the parameters

of stable distributions. For example, Fama (1965) wrote that:

“economic models involving stable Paretian generating processes have developed more

rapidly than the statistical theory of stable Paretian distributions. It is our hope that

papers like this will arouse the interest of statisticians in exploring more fully the proper-

ties of these distributions”

In a reference textbook on one-dimensional stable distributions, Zolotarev (1986) echoes Fama by

saying that “it can be said without exaggeration that the problem of constructing statistical estimators

of stable laws entered into mathematical statistics due to the work of Mandelbrot”.

An important point to be understood is the following. It is possible to tackle the extreme value

puzzle with models other than alpha-stable motions, indeed an unlimited number of models. But if

one wants to keep the IID hypothesis and have non-Gaussian tails with scaling property (Brownian

motion) the only alternative is the alpha-stable motion. The controversies resulting from the leptokurtic

phenomenon and extreme values of the distributions became entangled in the intrication of the static

approach (Gaussian or non-Gaussian) and the dynamic approach (Brownian or non-Brownian). In the

1970s, the debates ignored the stochastic process issues and concentrated on the extreme values of the

distributions1.

3.2.2 The rejection of the Stable model

A review over forty years of searching for scaling laws in distributional properties of price variations

(Walter, 2009a) exhibits a turbulent story with fierce controversies which stirred up the academic

community with regard to the continuous / discontinuous debate. So strong was the opposition to

Mandelbrot’s hypothesis that any kind of alternative model was preferred to the idea of infinite variance

as embedded in the alpha-stable motion proposed by Mandelbrot. For example, in a paper devoted to

1It is worth noting that this intrication is sometimes a source of confusion in the existing literature of historical

financial thought, based on an analysis which does not distinguish between so-called “Lévy distributions” (actually

stable distribution with Pareto tail) and Lévy processes (actually stochastic processes with IID increments). Here the

semantics is misleading.
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the statistical properties of exchange rates, Elie et al. (1993) wrote that “ARCH models allowed us

to solve largely this problem of heavy tails of distributions while keeping a Gaussian framework which

turns out more tractable than that of stable laws” (our translation).

Underpinned by the desire to reject fractality (“anything but Mandelbrot” or “ABM” because

Mandelbrot was working at IBM, was the watchword of the pro-continuity approach activists), the

debates shifted to the testing of the alpha-stability-under-addition-property. They ended with the

empirical rejection of fractal modelling for distributional properties returns in the 1970s because the

scale invariance principle was found too strong for adequately modelling price variations. The alpha-

stable Lévy processes were abandoned by the mainstream.

3.2.3 The tempered stable family in econophysics

To remedy the inconvenience of not having any moments for the alpha-stable models of the Mandelbrot’s

programme, other models were developed with a truncation principle. In the alpha-stable models, the

Lévy measure displays a power law which produces Paretian tails (see Box 5). This power law is

precisely the origin of the non-existence of the moments when the Paretian exponent is less than 2. A

simple way of avoiding this problem is to weight the Lévy measure by an exponential quantity in order

to reduce large fluctuations and therefore recover the moments. This idea corresponds to a class of Lévy

processes whose marginal distributions are truncated stable distributions, so-called “tempered stable”

models. The stable distributions are truncated by exponential functions; hence the term tempered

stable processes. The distribution tails of these models, tempered by the truncation, are semi-light.

In the 1990s, physicists began to propose such models combining truncated alpha-stable distri-

butions with exponential tails (Mantegna and Stanley, 1994; Koponen, 1995; Bouchaud and Potters,

1997) and physicist research activity enters the financial modelling field. As Mantegna and Stanley

(2000) noticed, “since 1990, a research community has begun to emerge”. This new community bap-

tised itself with the name “econophysics”. Hence in the 1990s, research in financial modelling then split

into two separate communities: that of financial academics – the mainstream – and that of physicists

– the heterodox view known as “econophysics”. Physicists continued along the way paved by Mandel-

brot’s model, working in particular with the scaling concept: as Mantegna and Stanley (2000) pointed

out, financial academics were “trying to determine a characteristic scale for a problem that has no
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characteristic scale”.

While physicists launched this new strand of research, mathematical financial academics then moved

to the development of Lévy processes, following the first jump-diffusion type models of the 1970s

that were developed to tackle the discontinuity issue in the framework of the finiteness of the second

moment. I term this mainstream strand of research the “pragmatic programme”. The pragmatic

programme opened the first period of model tinkering in financial modelling: a situation in which

researchers, confronted with descriptive inadequacy, decide to ‘repair’ existing models with new data-

driven approach. The story of jump processes represents an illustration of this data-driven model

tinkering. I will now elaborate on the pragmatic programme.

4 The pragmatic programme: a data-driven approach

I begin this section with this excerpt from a paper by Applebaum (2004):

“A sociologist investigating the behaviour of the probability community during the early

1990s would surely report an interesting phenomenon. Many of the best minds of this

(or any other) generation began concentrating their research in the area of mathematical

finance. The main reason for this can be summed up in two words: option pricing.”

The Black-Scholes model is based on the assumption that returns from the underlying assets follow

a diffusion-type process, in particular a geometric Brownian motion. A large number of empirical

studies showed that this model was inadequate, partly because of the continuity assumption. For

example, Merton (1976) admitted that “there is a prima facie case for the existence of jumps” and

Cox and Ross (1976) agreed that “exploring alternative forms is useful to construct them as jump

processes”. Ball and Torous (1985) pointed out that “empirical evidence confirms the systematic

mispricing of the Black-Scholes call option pricing model” and “the Merton model which explicitly

admits jumps in the underlying security return process may potentially eliminate theses biases”. The

goal of the pragmatic programme was precisely to overcome these inadequacies by tackling the issue of

discontinuities without accepting Mandelbrot’s programme. For example, Carr et al. (2002) said that

they “seek to replace this process with one that enjoys all of the fundamental properties of Brownian
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Box 5. The Lévy measures of the radical and pragmatic programmes

The Stable model / radical programme proposed by Mandelbrot (1962) has the characteristic expo-

nent:

ΨXt(u) = t

(
iµu+

∫ 0

−∞
ψ(u, x)

C−
|x|1+α

dx+

∫ +∞

0

ψ(u, x)
C+

x1+α
dx

)
(11)

with:

ψ(u, x) = eiux − 1− iux1|x|<1(x)

From (2) and (11), it follows that the Lévy measure of the α-stable motion is:

ν(dx) =
C−
|x|1+α

1(−∞,0)(x)dx+
C+

x1+α
1(0,+∞)(x)dx (12)

or in a more intuitive form:

ν(x) =


C−
|x|1+α if x < 0

C+

x1+α
if x > 0

(13)

This last form (13) exhibits a power Paretian law in the Lévy measure. This precisely allows to

understand the Mandelbrot’s intuition : the search for Paretian tails for solving the extreme value

issue. A tale of fat tails, he named later “the power of power laws” (Mandelbrot, 2004, 13).

Lévy measure for:

Model x < 0 x > 0 Programme Field

Mandelbrot (1962) C−
|x|1+α

C+

x1+α
Radical Finance

Koponen (1995) C−
|x|1+α e

−a− |x| C+

x1+α
e−a+ x Pragmatic Econophysics

Carr et al. (2002) C
|x|1+α e

−a− |x| C
x1+α

e−a+ x Pragmatic Finance

In the Koponen (1995) and Carr et al. (2002) models, one sees that the stable distributions are trun-

cated by exponential functions. These models are named tempered stable processes. The distribution

tails of these models, because of tempered by the truncation, are semi-light. The parametrization is

asymmetric in the decay rate of large jumps.

19



motion, except for pathwise continuity and scaling, but that permits a richer array of variation in

higher moment structure, especially at shorter horizons”. This will be achieved with a “non-Gaussian

Merton-Black-Scholes Theory” (Boyarchenko and Levendorskii, 2002), which gained official recognition.

This section provides a brief overview of the pragmatic programme by following the evolution of

the modelling of jump processes, from the rediscovery of Poisson’s law in finance by S. James Press in

1967 through to the Lévy infinite activity processes of the 2000s. It came in two major stages. First,

with the rediscovery of Poisson’s law in the late 1960s, a jump component was added to the diffusion

process (Brownian motion): this superposition of jump and diffusion processes opened the period of

hybrid models known as jump diffusion-processes (1970-1990), which state that prices undergo large

jumps followed by small continuous movements. These models were initiated by Press (1967) and

Merton (1976). It is a simple case of Lévy process with finite activity and finite variation in the jump

component. This is the first stage of the pragmatic programme. Then, in the second period, the

diffusive component was removed leaving only the jump component, moving to Lévy processes keeping

finite variation in the jump component but with infinite activity. This is the second stage of the

pragmatic programme. The third stage of the pragmatic programme corresponds to the infiniteness of

the variation, itself divided into two subgroups, according to the finiteness of infiniteness of variance.

In contrast to these pragmatic programmes, the radical programme proposed by Mandelbrot in

1962 had both infinite activity, infinite variation in the jump component and infinite variance. It was

– for this reason – a heterodox view. A convenient way to grasp the conceptual difference between the

framework of Mandelbrot’s first representation (1962) and that of Press’ (1967) successors is to consider

the intuition underlying the modelling of trajectory discontinuities by jump-diffusion processes: the

invalidation of the stability-under-addition-property, one of the cornerstones of Mandelbrot’s models,

precisely the scaling view of markets (fractal nature) embedded in the stability-under-addition-property.

This first approach to jump-diffusion processes, initially limited to Lévy processes with finite activity

and finite variation, was generalized and fully developed only in the 1990s: the second life of Lévy

processes belongs to the late twentieth century.
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4.1 The Jump-diffusion models in the 1970s

The emergence of the pragmatic programme was prepared for a long time by research around Poisson’s

law and process. At first, I present the rediscovery of this law in finance. Next I present the two first

stages of the pragmatic programme.

4.1.1 The rediscovery of Poisson’s law in financial modelling

The issue of the explicit modelling of jumps (discontinuities) was well-known to insurance companies

as early as 1903. In the context of managing their contracts, insurance companies had used the Poisson

process to model the assessment of claims in non-life insurance. Lundberg’s thesis of 1903 on insurance

risk theory was the equivalent of Bachelier’s theory of risk quantification in finance: Bachelier’s (1900)

Brownian model corresponded to Lundberg’s (1903) Poisson model. Subsequently Harald Cramer and

the Stockholm school introduced Lundberg’s ideas into the theory of random processes, resulting in

the so-called Cramer-Lundberg actuarial model.

If the Gaussian and Brownian motion constituted the mathematical basis of classical financial

modelling, Poisson’s law and process were their counterparts in traditional actuarial models. Brownian

motion and the Poisson process are two examples of simple Lévy processes. When researchers tried to

model the discontinuity of stock paths with a non-stable approach, this law and these processes emerge

as the most “natural” candidates for the production of heavy tailed distributions, since Poisson’s

law precisely creates these tails. The Poisson framework appeared as the first response of financial

economics mainstream to Mandelbrot’s programme.

Thus in 1967 the Cramer-Lundberg actuarial model made its entry into finance. In that year, five

years after Mandelbrot, to tackle the jumpy nature of the price process, Press’ proposition provided, for

the first time in financial modelling, a non-stable generalization of Bachelier’s model, by complementing

the Brownian continuous diffusive component with a discontinuous Poisson component (Press, 1967).

This innovation was able to produce a representation of the morphology of static uncertainty with a

non-Gaussian distribution tail, a tail resulting from the introduction of the Poisson law.

Poisson’s formula enables us to determine the probability of the occurrence of infrequent events

(sometimes called rare events), provided that we know the constant average frequency at which these
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events occur. This frequency is described by the parameter of the Poisson distribution. Imagine,

for example, that we consider a trajectory discontinuity as a jump. One easily sees to what extent

the Poisson process is applicable in financial modelling: this process includes moments of jumps, the

amplitude of which then simply has to be modelled. The combination of a Poisson process (for periods

of jumps) and any law of distribution (for the size of jumps) produces what is called a compound

Poisson process, that is to say, a process where the jumps occur at times coming from a simple Poisson

process and have a determinate size. The choice of the probability law of the size fitting the possible

values of this amplitude will then constitute the second stage of modelling.

If one chooses a Gaussian distribution to model the size of jumps, one will obtain a structure

combining a Poisson process and a Gaussian distribution, also called the normal compound Poisson

process. But it is possible to choose any probability law for the distribution of the size of jumps, such

as a power law, a Gamma distribution, a Pareto law, and so on. Any distribution can be arbitrarily

used for modelling the amplitude of discontinuities, coupled with the Poisson counting process. This

linkage will then produce a compound Poisson process with these other laws (exponential Poisson,

Gamma Poisson, etc.). It is this insight that underlies the representation of market discontinuities by

jump processes.

4.1.2 The mixed jump-diffusion processes

However, the Poisson component is not sufficient to model all market changes since, with this pure

Poisson representation, nothing happens between two jumps: the market remains inert, except when

it jumps. It is therefore necessary to supplement it with another model. In the 1960s and 1970s, the

only way to model this change in the market, perceived as “smoother”, between two jumps was to opt

for a Brownian motion. That’s why one added a Brownian component to the Poisson component, and

this linear combination of a compound Poisson process and Brownian motion corresponds precisely to

Press’ (1967) model. This model is thus presented as a simple juxtaposition of a process producing a

very large number of small stock market fluctuations (Brownian motion) and a process of producing

a small number of market discontinuities (the normal compound Poisson process). These two basic

building blocks processes are completely separate (“orthogonal”). Thus it is a mixed process involving

diffusion and jumps, termed mixed jump-diffusion.
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As the increments of the mixed jump-diffusion processes are IID, mixed jump-diffusion processes

are Lévy processes. These are special cases of general non-stable Lévy process. The mixed Press model

thus represents the first introduction of non-stable Lévy processes into finance. These processes had

already been highlighted by Samuelson in 1965, echoing the work of Mandelbrot, but without giving

rise to an explicit use, since Samuelson preferred returning to the usual Brownian motion model.

The values of the Poisson parameter λ (average number of jumps per unit of time) allow us to

localize the mixed jump-diffusion processes in relation to the Bachelier and Mandelbrot models. By

characterising these two models by the number of jumps occurring during the evolution of market

prices, i.e. by the Poisson parameter, the value of λ = 0 (no jumps) leads back to the Bachelier

model, and the value of λ = ∞ (infinite number of jumps) leads to the Mandelbrot model. Between

these two values (0 and infinity), any finite value of λ results in a finite number of jumps between two

given quotes. There are an infinite number of possible mixed jump-diffusion processes, all filling the

range between the Bachelier and Mandelbrot representations. The Press model thus represented an

intermediate solution between Bachelier and Mandelbrot.

In the first stage of the pragmatic programme, the market dynamics of a given stock resulted simul-

taneously from frequent small movements, forming the continuous part of its trajectory and resulting

from the Brownian diffusive component of the process, and from less frequent sudden movements form-

ing the discontinuities of its trajectory, stemming from the Poisson component of the process. As

Merton (1976) said, “the total change in the stock price is posited to be the composition of two types

of changes: diffusion and jumps. The natural prototype process for the continuous component of the

stock price change is a Wiener process, so the prototype for the jump component is a ‘Poisson-driven’

process”. Again Cox and Ross (1976) stated that “in contrast to the diffusion process, the jump process

[introduced] follows a deterministic movement upon which are superimposed discrete jumps”.

From a financial standpoint, the mixed jump-diffusion processes modelled the fluctuation risk of

any asset in terms of two dimensions: (classic) volatility risk corresponding to the Brownian diffusive

component and a (new) jump risk corresponding to the Poisson component. This innovation was

important because it indicated to professionals that usual risk diversification on the basis solely of

the volatility dimension was not sufficient to protect against adverse stock market fluctuations. The

market risk of any asset was therefore at least two-dimensional. The second component of risk, or
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Box 6. Financial modelling with jump-diffusion processes (1967-1976)

The classical models of market behaviour implement the sole Brownian representation, i.e. the

diffusive part of the Lévy processes. Let X being the cumulative return of a given asset. In these

first jump-diffusion processes, the cumulative return X results simultaneously from a large number

of small variations (Brownian part) and a small number of large variations (Poissonian part). In

theses simple cases of Lévy processes, the activity and the variation remain finite.

The characteristic exponent of market dynamics in the classical Brownian models is:

ΨXt(u) = t

(
iµu− 1

2
σ2u2

)
(14)

Adding a Poissonian part to this Brownian component leads to:

ΨXt(u) = t

(
iµu− 1

2
σ2u2

)
+ t λ(ΦY (u)− 1) (15)

where λ is the Poisson parameter. The sizes of the jumps are independent and their stationary

distribution Y has a characteristic function ΦY .
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jump risk, was soon seen to be non-diversifiable, as became apparent from the work undertaken on the

equity valuation models (Jarrow and Rosenfeld, 1984) and on the term structure of interest rates (Ahn

and Thompson, 1988). This jump component creates a specific uncertainty as regards the risk usually

measured by volatility.

The impossibility of perfect hedging for this type of risk was no doubt an obstacle to the widespread

use of these mixed jump-diffusion processes in financial engineering for some fifteen years. Note that

the use of alpha-stable motions also implied the need to take into consideration a second dimension of

risk, namely jump risk. Because this second dimension of risk was not taken up in financial circles, it

can be assumed that the professional community was not sufficiently mature in the 1970s to manage

financial products with two risk dimensions.

4.2 Pure jump models in the 1990s

The rebirth of the random walk model in finance is due to the rediscovery of two important character-

istics of Lévy processes. First, in order to describe the jumping behaviour of various asset prices and

interest rates, it became clear that the use of Lévy processes with infinite activity was sufficient. Hence,

it was no longer necessary to build superpositions of jump and diffusion process (Brownian motion) in

price dynamics equations, namely what was called jump-diffusion processes (special case of very simple

Lévy processes) in the 1970s. Second, it was rediscovered that any Lévy process has an interesting

relation to the Brownian motion, considering the morphology of uncertainty. Using a subordinator

process for measuring time that increases with a randomly varying speed, any Lévy process in calendar

time (physical time) can be written as Brownian motion measured in a time distorted by the pace of

trading. The randomly increasing time has been interpreted as an operational time or a trading time

reflecting the market activity. The fact that a Lévy process can capture the time change of the markets

opened a new strand of research about the nature of intrinsic time in markets. At the end, the random

walk model is released from the prison of the Brownian representation in calendar time in which it

was trapped, and becomes a powerful tool for financial modelling using these two characteristics that

foster the understanding of market price behaviour: infinite activity and the distortion of time. I now

elaborate on this.
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4.2.1 Financial modelling with infinite activity

The separation between the two sources of market movements – the Brownian source, forming the

continuous part of the trajectories, and the Poisson source, creating discontinuities – was simple and

convenient, but limited the possibilities for modelling. Moreover, as one has seen, even those changes

perceived as continuous (between two jumps) could be represented differently, since share quotes are

by definition discontinuous, with the tick defining the smallest time interval between two quotes. The

notion of discontinuity is essential for modelling stock market variations. In other words, the intrinsic

bumpiness of the financial phenomenon did not require the diffusive Brownian part of models to be

retained. It was necessary only to be able to account variously for a very large number of very small

jumps (ticks), a large number of larger jumps, and a very small number of very large jumps (market dis-

continuities), to obtain a relevant model of stock market functioning. The probabilistic representation

of market fluctuations did not ultimately entail the use of the Brownian diffusive component.

This idea slowly made its way into the academic community, up to the early 1990s. The diffusive

part of probabilistic representations had been needed for the modelling of the small movements only in

the case of finite activity: the finite activity of the process required the addition of another component.

But as soon as it was admitted that infinite activity was possible, the usefulness of the diffusive

component disappeared and a pure jump process seemed to be sufficient to represent the entire stock

market phenomenon, i.e. its bumpiness at all scales. The argument is well described in the paper by

Peter Carr, Hélyette Geman, Dilip Madan and Marc Yor published in 2002:

“The rationale usually given for describing asset returns as jump-diffusions is that diffusions

capture frequent small moves, while jumps capture rare large moves. Given the ability of

infinite activity jump processes to capture both frequent small moves and rare large moves,

the question arises as to whether it is necessary to employ a diffusion component when

modelling asset returns”

These studies and those that followed mark the turning point in the modelling of jumps processes

in finance, confirming their disembeddedness from Brownian representation, even if complemented by

compound Poisson processes as in the case of the mixed jump diffusion processes of the 1970s.

Let us summarize. By adopting a representation of market fluctuations using an infinite activity
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Lévy process, it appeared possible in the 2000s to manage without any diffusive component. The struc-

ture of trajectory discontinuities (the morphology of the bumpiness of the stock market phenomenon) is

fully characterized by Lévy’s measure. Compared to the mixed jump-diffusion processes that followed

the path opened up by Press and Merton, this new representation of small market fluctuations was

instead situated in the tradition of normal compound Poisson-type pure jump processes, as proposed

by Cox and Ross in 1976 for evaluating options in markets with trajectory discontinuities. In jump-

diffusion processes, jumps are considered as rare events. In Lévy processes with infinite activity, jumps

are always present at any scale of the fluctuations.

4.2.2 The generalized hyperbolic family

The first studies focussing on general non-stable Lévy processes had been explored in a completely

different context in Denmark and Germany, namely studies of sandstorms. Geophysicists like Ole

Barndorff-Nielsen and Ernst Eberlein worked on a family of distributions called hyperbolic distributions.

One of the arguments given from the beginning in favour of applying these distributions to finance was

they were not stable. In this vein, Eberlein and Keller (1995) write that “real stock-price paths

change drastically if one looks at them on different time scales”. The hyperbolic distributions are

infinitely divisible and can therefore be used to construct Lévy processes by specifying the underlying

marginal distribution. But the hyperbolic distributions are not stable. In other words, if the underlying

distribution is hyperbolic at one given scale, then this does not imply that it will remain this way at any

other scale. Hence a numerical computation will be useful for going from one scale to any other scale.

The paper by Eberlein and Keller (1995), which introduces the class of hyperbolic distributions – and

as a consequence hyperbolic Lévy motions as driving processes for financial modelling – was the first

used for analysing and modelling financial data. The hyperbolic model was next intensively examined

by Eberlein, Keller and Prause (1998). Unlike previous work, the papers on these distributions aimed

to fit the data; in other words, these distributions represent an “application-driven” approach, like an

inflexion point in the pragmatic programme: “these distributions seem to be tailor-made to describe

the statistical behaviour of asset returns” (Eberlein and Prause, 1998).

An intuitive understanding of what motivated the term “hyperbolic” and its fruitfulness in finance is

the following. Let us consider the graph of a Gaussian density in a semi-logarithmic graph, i.e. a graph

27



where one axis is plotted on a logarithmic scale. One will find a parabola because of the square power of

the variable. This parabola is characterized by a rapid fall of the distribution tails. But empirical semi-

log graphs of empirical returns at any scale exhibit a hyperbola, contrary to the parabola of the Gaussian

density. This is the reason why these distributions are called hyperbolic. An heuristically bottom-up

building of an hyperbolic distribution is given in Le Courtois and Walter (2014b). The usefulness for the

modelling of price changes stems from the slower decrease of their tails. The hyperbola fits the empirical

data better. Like alpha-stable distributions, hyperbolic distributions are defined by four parameters:

localisation, asymmetry, dispersion and kurtosis of the distribution. Like alpha-stable distributions,

hyperbolic distribution can characterize the risk of any stochastic change with two dimensions: their

size (the parameter of dispersion, or scale parameter), and their form (the fatness of the tails and

asymmetry). But, unlike alpha-stable distributions, hyperbolic distributions have all their moments.

Hence these distributions modelled both the skewness and leptokurtic features encountered in empirical

distributions from the real financial world rather well, without running into the perceived inconvenience

of alpha-stable distributions of Mandelbrot’s programme. The capacity of these processes to model

in an extremely powerful way all trajectory irregularities, while not retaining the property of stability

by addition, the cornerstone of the first stage of Mandelbrot’s programme, made the family of Lévy

processes a serious candidate for the probabilistic representation of market fluctuations.

Another interesting feature of hyperbolic distributions is the limiting case, when the dispersion

parameter takes values between 0 and infinity. The two limit cases correspond to the two Laplace laws:

Gaussian (Laplace’s second law, of 1778) and double exponential (Laplace’s first law, of 1774). This

shows Laplace’s two laws as limit laws of hyperbolic distributions.

Hyperbolic distribution is a subclass of the generalized hyperbolic distribution introduced by Barndorff-

Nielsen (1977) for the study of particle size in wind-blown sand deposits. The generalized version of the

hyperbolic distributions allows other distributions to be obtained depending of the value of the gener-

alization parameter λ. For example, the hyperbolic distribution corresponds to λ = 1. For λ = 0.5, one

obtains the density of the normal inverse Gaussian distribution (NIG). The normal inverse Gaussian

distribution is obtained by mixing normal and inverse Gaussian (IG) distributions. Barndorff-Nielsen

moved into finance in 1995. In his papers, Barndorff-Nielsen (1995, 1997) used the normal inverse Gaus-

sian (NIG) distributions. As for the hyperbolic distribution, the NIG is a subclass of the generalized
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hyperbolic (GH) distributions. Next, the generalized hyperbolic (GH) distribution, which generates

the generalized hyperbolic Lévy processes, was systematically analysed by Eberlein and Prause (1998)

and Prause (1999). The first applications to the valuation of derivatives appeared and the pragmatic

programme succeeded to price options.

4.2.3 The tempered stable family in finance and the link with econophysics

The symmetric Variance Gamma model was introduced by Madan and Seneta (1990) to generalize

the Black-Scholes formula in the case of the evaluation of options. The main impetus for constructing

this process concerned a practical market problem: finding a suitable model for the so-called volatility

“smile” or “smirk” phenomenon. It was extended to incorporate skewness by Madan and Milne (1991)

and Madan, Carr and Chang (1998) to become the so-called Variance Gamma model (VG). The

terminology is due to the fact that the variance follows a Gamma distribution. The CGMY process of

Carr, Geman, Madan and Yor (2002) generalizes the Variance Gamma process by adding a parameter

permitting finite or infinite activity and finite or infinite variation.

The Variance Gamma model of Madan, Carr and Chang (1998) and the CGMY model of Carr,

Geman, Madan and Yor (2002) are special cases of the Koponen (1995) model. Here there is an

overlap with the physicist’s approach: the academic territory of financial modelling is complex and

overlapping. The pragmatic programme (PP) and the econophysics programme (EP) develop similar

readings of the Mandelbrot view they shared with the tempered stable family. Hence the financial

field of modelling extreme values is not simply divided into two camps: mainstream finance (moving to

pragmatic programme) and econophysics. Despite their separate lines in the academic fields, the EP

and the PP derive from their reliance on Mandelbrot’s view: two offshoots of what I suggest to call

the ‘discontinuous turn’ in financial modelling, introduced by Mandelbrot in 1962.

5 Conclusion

In this chapter, I have presented the two competitive programmes for solving the extreme value puzzle in

financial modelling with Lévy processes: the radical (Mandelbrot) programme (RP) and the pragmatic

programme (PP). Both programmes investigate the ability of Lévy processes to capture the extreme
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Table 2: Examples of Lévy processes in financial modelling

Financial models Type of Lévy process

1900 Bachelier Brownian motion

1962 Mandelbrot Stable motion

1976 Merton Brownian motion and Poisson component

1995 Eberlein and Keller Hyperbolic motion

1997 Barndorff-Nielsen Generalized Hyperbolic motion

1998 Madan, Carr, Chang Variance Gamma process

2001 Kotz, Kozubowski, Podgorski Laplace process

2002 Carr, Geman, Madan, Yor Generalized Variance Gamma process

2014 Le Courtois and Walter Generalized Laplace process

values of price changes. The Mandelbrot programme contributed to a better understanding of the

discontinuous nature of price change, but the first Mandelbrot’s models initially based on stable motions

were not accepted by the mainstream financial academics community. I have argued that some of the

key points of the academic debates can be illuminated by reference to a familiar debate in philosophy

over the principle of continuity. One side of the debate, ‘Leibnizian’, takes the continuity as cornerstone

for financial modelling and hence splits the market regimes between ‘normal’ periods and extreme

values, seen as irrational periods. The contrary ‘antiLeibnizian’ position holds that Mandelbrot’s view

is crucial for grasping the true nature of price changes without intellectual cleavage. I have argued

that in the 1970s, the mainstream view of price changes made specific assumptions to defend the

mathematical tractability of the financial modelling based on continuous diffusion models, by using a

compound ad hoc approach, which gained highly recognition in the 1980s: the pragmatic programme. I

have explained the successes of the pragmatic programme in the 1990s by showing that an inflexion point

appears due to a twofold phenomenon. Firstly, a reorientation of the mathematical financial research

due to European academics who put forward the fruitfulness of infinite activity of the Lévy processes

in case of pure jumps models. Secondly, the emergence of a challenger for mathematical finance
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field: econophysics. At the end, although the pragmatic (financial) programme and the econophysics

programme can be traced through separate lines in the academic fields, the two programmes derive

from their reliance on Mandelbrot’s view, and Mandelbrot can be regarded as the pivotal figure for a

‘discontinuous turn’ in financial modelling.
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[11] Bertoin J. (1998), Lévy processes, Cambridge UP (Cambridge Tracts in Mathematics).

[12] Bertrand Ph. and J.-L. Prigent (2015) “Portfolio insurance: the extreme value approach to the CPPI method” in

Extreme events in finance edited by F. Longin, Wiley.

[13] Bouchaud J.-P., Georges A. (1990), “Anomalous diffusion in disordered media: Statistical mechanisms, models and

physical applications”, Physics Reports, 195 (4-5), 127-293.

31
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Lévy Fligh”, Physical Review Letters, 73 (22), 2946-2949.

[62] Mantegna R., Stanley E. (2000), An introduction to Econophysics : Correlations and Complexity in Finance,

Cambridge University Press, UK.

34



[63] Merton R. (1976), “Option pricing when underlying stock returns are discontinuous”, Journal of Financial Eco-

nomics, 3, 125-144.

[64] Mirowski P. (1995), “Mandelbrot’s economics after a quarter century”, Fractals, 3 (3), 581-600.

[65] Monroe I. (1978), “Processes that can be Embedded in Brownian Motion”, The Annals of Probability, 6 (1), 42-56.

[66] Müller U., Dacorogna M., Olsen R., Pictet O., Schwarz M., Morgenegg C. (1990), “Statistical study of foreign

exchange rates, empirical evidence of a price change scaling law, and intraday analysis”, Journal of banking and

finance, 14 (6), 1189-1208.

[67] Müller U., Dacorogna M., Dav R., Pictet O., Olsen R. Ward J. (1995), “Fractals and Intrinsic Time. A challenge

to econometricians”, Olsen & Associates Working Paper.

[68] Müller U., Dacorogna M., Dave R., Olsen R., Pictet O., Weizsäcker J. von (1997), “Volatilities of different time
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