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Abstract6

Passive acoustic foams have limitations in efficiently reducing low-frequency
noise below 800 Hz due to the associated wavelengths for reasonable mate-
rial thickness. To address this challenge, passive or semi-active resonators
are commonly employed solutions. Linear resonators are very efficient within
a narrow frequency bandwidth. However, nonlinear oscillators can broaden
this bandwidth, but activation of their nonlinear responses typically requires
high excitation amplitudes, beyond human hearing tolerance amplitudes.
Furthermore, the specific type of nonlinearity in such devices is often pre-
determined by the inherent properties of the resonator. In this study, we
employ a novel digital control algorithm, allowing to activate the nonlinear
response of the electroacoustic resonator at low excitation amplitudes. This
algorithm, which relies on real-time integration, facilitates the creation of
nonlinear resonators featuring polynomial or diverse non-polynomial nonlin-
earities within the range of low amplitudes. The nonlinear control is carried
out on a loudspeaker equipped with a microphone. Our research highlights
the potential to create nonlinear resonators with different, versatile and pro-
grammable behaviors. Unprecedented non-polynomial nonlinear behaviors
are experimentally exhibited, we consider cubic, piece-wise linear, and loga-
rithmic nonlinearities. These behaviors are implemented and compared to a
semi-analytic model to control an acoustic mode of a tube under conditions
of low excitation amplitudes and frequencies.
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1. Introduction10

Addressing noise and vibrations has remained a central objective of re-11

search efforts for a significant period of time [1]. To solve this particular12

matter, passive, active, and hybrid categories have been considered for miti-13

gating vibrations and noises across many fields such as mechanics, aeronau-14

tics, and acoustics. In acoustics, passive noise control stands as the most15

widely employed approach. Indeed, acoustic foams are commonly used in16

the building industry. However, their absorption capabilities are limited to17

the frequencies above 1 kHz [2]. The efficiency of acoustic foams diminishes18

at lower frequencies due to their damping mechanism [3, 4]. To overcome19

these limitations, passive resonators are widely used such as Helmholtz res-20

onators. These resonators are very efficient on a narrow frequency bandwidth21

focused around their resonating frequency. With the intention of finding so-22

lutions to these limitations, active noise cancellation technology emerged in23

1878 with Rayleigh’s experiment involving the superposition of sound fields24

using two synchronized tuning forks [5]. Lueg [6] wrote the first patent on25

noise cancellation using a wave in phase opposition with an incident wave.26

Then, active noise cancellation has been rapidly developed, supported by a27

substantial volume of articles published on the subject matter [7, 8, 9, 10].28

However, active noise cancellation demands a substantial amount of energy29

to be efficient in spatial zones. Another active noise control method has30

been created and lies on Impedance Control (IC), with the original idea from31

Olson and May [11]. The IC consists of adapting the boundary conditions32

of a material or a device - usually a loudspeaker - to choose the absorption33

and reflection conditions to be applied on the incident wave by the material.34

Unlike active noise cancellation, this approach doesn’t introduce additional35

waves, rendering the system acoustically passive. Building upon Olson and36

May’s work [11], Guicking [12, 13] extended the IC concept to electroacoustic37

absorbers composed of a loudspeaker collocated to a microphone at normal38

incidence in a Kundt’s tube. Furtoss and Thenail [14, 15] designed an IC39

system that created a quarter wavelength resonator using an accelerometer40

and a microphone to target specific impedances. Subsequently, the studies41
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focused on the active complex impedance control (e.g. see [16]) where the42

optimal impedance is targeted. The following works oriented to create a dis-43

tributed network of electroacoustic absorber cells with a loudspeaker control44

based on the advection equation [17, 18, 19]. Following this, a model inver-45

sion control of the electroacoustic absorber has been created by targeting the46

optimal acoustic impedances at both normal and grazing incidences, with47

and without flow [20, 21, 22, 23]. Recently, a new kind of electroacoustic48

absorber has been designed using the concept of plasmacoustic metalayers to49

achieve broadband sound control [24].50

Nonlinear phenomena in acoustics are not employed a lot for noise control,51

unlike mechanics where such behaviors are extensively explored and used for52

their benefits [25]. Indeed, nonlinear absorbers present faster decreases for53

transient regimes [26], or can feature targeted energy transfer phenomenon54

which consists of an irreversible energy transfer from a primary system to55

a nonlinear absorber. Furthermore, nonlinear systems can be designed to56

be efficient on large frequency bandwidths [26]. Extensive researches have57

been conducted on nonlinear behaviors, including the duffing type oscilla-58

tors [27, 28], piece-wise oscillators [29, 30, 31, 32, 33, 34], or vibroimpact59

oscillators [35, 36], all aimed at mitigating vibrations. These studies have60

sparked interest in applying nonlinear principles to acoustic absorbers [37].61

However, the activation of nonlinear phenomena is usually constrained by62

an amplitude threshold rarely reached. Indeed, this threshold is situated at63

amplitudes that pose the risk of permanently damaging a human ear. Bellet64

[38] implemented a visco-elastic membrane with an amplitude of 148 dB that65

behaves as a pure cubic oscillator, and showed multiple nonlinear phenom-66

ena, with both stationary and transient regimes, along with efficient control67

of the coupled acoustic mode. Gourdon [39, 40] placed a Helmholtz resonator68

in its nonlinear regime, above 138 dB and showed interesting noise reduc-69

tion in the coupled tube. Bitar [41] attempted to create a passive nonlinear70

electroacoustic absorber with an analogic circuit. Finally, Guo [42] created71

a nonlinear electroacoustic absorber at hearing amplitudes around 95 dB72

thanks to an additional microphone in the back cavity of the loudspeaker73

giving the displacement of the membrane at each time step. This additional74

measurement is needed, as frequency-domain approaches cannot perform the75

creation of nonlinear behaviors, and permits the calculation of a polyno-76

mial nonlinear current to be added to a linear current implemented through77

frequency-domain approaches. In this study, unprecedented non-polynomial78

nonlinear behaviors are exhibited through an innovative method to digitally79
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program nonlinear Electroacoustic Resonator (ER) at low excitation ampli-80

tudes, without additional microphones in the back cavity of the loudspeaker.81

It is a real-time based method briefly presented in Section 2 and detailed in82

[43]. Subsequently, the ER is weakly coupled to an acoustic mode of a tube83

which is modeled in Section 3. Finally, experimental results are presented84

for multiple original programmed nonlinear behaviors and compared to the85

model in Section 4. The good correlation between numerical and experimen-86

tal results confirms the achievement of nonlinear dynamics involving cubic,87

piece-wise, and logarithmic restoring force functions, and demonstrates the88

potentialities of such nonlinear behaviors for noise reduction and the control89

of acoustic modes.90

2. The Electroacoustic Resonator91

2.1. The concept92

The underlying concept is to create an acoustic resonator with a loud-93

speaker collocated to a microphone, and equipped with a feedback con-94

trol that runs by a dedicated processor. The study aims at creating pro-95

grammable nonlinear resonators at low excitation amplitudes. The classical96

approach which relies on the Z-transform and the infinite impulse response97

experimental implementation [44] is not suitable for nonlinear resonators im-98

plementation due to its frequency-based approach. As a result, an innovative99

and efficient real-time-based method has been created to address this chal-100

lenge. Assuming that the loudspeaker is positioned on its first mode, the101

algorithm carries out a pressure-based current-driven control of the mem-102

brane displacement. Indeed, it retrieves the measured pressure coming from103

the microphone and estimates the corresponding electrical current to send104

into the loudspeaker coil. Once the electrical current is delivered, the loud-105

speaker behaves as the programmed nonlinear resonator. Further details on106

the algorithm can be found in the next section, and in [43, 45].107

2.2. Programming of the Electroacoustic Resonator108

The algorithm considers the pressure as an input and the electrical current109

as an output. It estimates the electrical current based on the measured110

pressure to achieve the desired behavior of the loudspeaker. Given the low111

operational frequencies and amplitudes, the membrane is regarded as both112

rigid and planar. The loudspeaker is placed on its first mode, modeled as a113

single-degree-of-freedom oscillator.114
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The dynamic model of the loudspeaker’s first mode is a classical mass-spring-115

damper:116

M0üm(t) +R0u̇m(t) +K0um(t) = Sdp(t)−Bli(t) (1)
where •̇ represents the time derivative of the variable. um denotes the dis-117

placement of the membrane of the loudspeaker. M0, R0, and K0 are the118

modal parameters of the loudspeaker’s first mode without any applied cur-119

rent. Bli is the Laplace force, while B is the intensity of the magnetic field,120

and l the coil’s length. Sdp stands for the force induced by the incident acous-121

tic waves, while Sd represents the effective area of the loudspeaker membrane122

[46]. The desired behavior equation can be written as:123

Mdüm(t) +Rdu̇m(t) + FNL(t, um) = Sdp(t) (2)

where Md, Rd, and Kd denote the desired modal parameters of the loud-124

speaker’s first mode, and FNL stands for a chosen nonlinear restoring forcing125

function. However, also a linear part of the stiffness of the loudspeaker should126

be taken into account in FNL for stability issues. It is due to the impossibility127

to reach a zero stiffness system. It should be mentioned that in this study128

we suppose that FNL is a nonlinear restoring forcing function i.e. FNL(t, um),129

but generally speaking it can be FNL(t, um, u̇m, üm). The algorithm is now130

explained using Eqs. (1) and (2).131

The algorithm is structured around two main tasks. The first task consists132

of the determination of the desired displacement, speed, and acceleration of133

the loudspeaker’s membrane. To achieve this result, at time step tn, the134

algorithm uses the measured pressure to integrate Eq. (2) with a numerical135

scheme. This real-time resolution predicts the desired displacement um and136

speed u̇m for the next time step tn+1 and keeps the values in memory. At137

time step tn+1, the algorithm uses the prediction of the desired displacement138

and speed done at time step tn along with the newly measured pressure at139

time step tn+1 to estimate the desired acceleration üm using Eq. (2). Then,140

the second task is devoted to the calculation of the electrical current to send141

into the loudspeaker. From Eq. (1), the controller to enforce the desired142

displacement is given by:143

i(t) =
Sd

Bl

(
p(t)−

(M0

Sd

üm +
R0

Sd

u̇m +
K0

Sd

um

))
(3)

At time step tn+1, and employing Eq. (3), the electrical current is computed144

using the previously determined desired displacement, speed and accelera-145
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tion, and the measured pressure.146

147

3. Considered System148

3.1. Principle and experimental set-up149

This section aims at modeling the experimental acoustic set-up in order150

to predict the system behavior. The experimental set-up has been designed151

such that it can be modeled as a two-degrees-of-freedom system [38]. The152

model of the experiment is presented in Fig. 1 and has been widely studied153

in previous works [38, 37, 39]. It is composed of a cylindrical reduced section154

tube linked to the Electroacoustic Resonator through a cylindrical coupling155

box. The system is excited through an external loudspeaker (LS) placed at156

the opposite end of the tube. The microphone placed in the reduced section157

tube is employed to verify the noise attenuation performance achieved by158

our nonlinear ER, and it does not play a role in the programming. In the159

following parts, each segment of the experimental set-up will be explained in160

detail and will be modelized.

Microphone
External

For Control
Microphone

pls
pcb

|
Lt

reduced section tube |
Lt + Lcb

coupling box|
0

rt

rcb

x
LS| |ER

St
Sd

Figure 1: Scheme of the experimental set-up

161

3.2. Analytical modeling162

This model assumes that waves are plane. The section of the largest tube163

of the experiment allows the first transverse modes to appear above 2 kHz.164

It ensures plane waves below this excitation frequency.165
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3.2.1. The acoustic source model166

One of the innovations introduced in this work is the functionality of167

the proposed system at low excitation amplitude. As previously mentioned,168

acoustic resonators usually need to be excited at high excitation amplitudes169

to activate their nonlinear behaviors [40, 39, 38]. These sound pressure levels170

range from 120 dB to 160 dB depending on the characteristics of the device.171

The working frequency is chosen to bound the frequencies of the reduced172

section tube’s first acoustic mode: from 350 Hz to 800 Hz. The acoustic173

source is modeled as an incident pressure at x = 0 (see Fig. 1), named pls.174

3.2.2. The coupling box model175

The goal of introducing the coupling box into the system is to maintain176

a weak coupling between the primary system to be controlled (the reduced177

section tube) and the added system (the ER). To achieve such a condition178

through the coupling box, its section is chosen to be large enough compared179

to the ones of the narrowed tube section and the membrane of the ER. Ad-180

ditionally, the length of the coupling box is kept relatively short compared181

to the wavelengths of the working frequencies to maintain a constant pres-182

sure within the box. Using the mass conservation equation, one can express183

the pressure in the coupling box, denoted pcb, as a function of its volume184

variation:185

pcb(t) = −ρ0c
2
0

dVcb(t)

Vcb,0
(4)

where Vcb,0 represents the initial volume of the coupling box, ρ0 is the air186

density, and c0 is the velocity of the sound in the air. The variation of volume187

dVcb can be described in terms of displacements of the membrane of the ER188

and of the reduced section tube air mass. Equation (4) reads:189

pcb(t) = kb

(
Stua(t)− Sdum(t)

)
(5)

with kb =
ρ0c20
Vcb,0

.190

3.2.3. The model of the reduced section tube191

The reduced-section tube is considered with boundary conditions at each192

end of the tube that ensures the continuity of the displacements. These193

conditions are given in Eq. (11). From the mass conservation equation, one194
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can easily get the relation between the pressure p and the displacement of195

the air particles denoted as uair:196

p(x, t) = −ρ0c
2
0

∂uair

∂x
(x, t) (6)

The Euler equation for a plane wave without flow reads:197

ρ0
∂2uair

∂t2
= −∂p

∂x
(7)

By replacing Eq. (6) in Eq. (7), one can obtain:198

ρ0
∂2uair

∂t2
= ρ0c

2
0

∂2uair

∂x2
(8)

Let u∗
air(x, t) be a virtual displacement field that is kinematically admissible,199

continuous, and differentiable with respect to x and t. Multiplying Eq. (8) by200

u∗
air(x, t) and integrating over the volume yields the variational formulation201

of Eq. (8):202 ∫ Lt

0

ρ0
∂2uair

∂t2
Stu

∗
airdx =

∫ Lt

0

ρ0c
2
0

∂2uair

∂x2
Stu

∗
airdx (9)

After an integration by parts and using Eq (6) at x = 0, and x = Lt, this203

yields:204 ∫ Lt

0

ρ0
∂2uair

∂t2
Stu

∗
airdx =−

∫ Lt

0

ρ0c
2
0St

∂uair

∂x

∂u∗
air

∂x
dx

− Stu
∗
air(Lt, t)pcb + Stu

∗
air(0, t)pls

(10)

Let us suppose that the response of the system is dominated by its first mode,205

with the boundary conditions:206 {
uair(0, t) = −uls(t)

uair(Lt, t) = ucb(t)
(11)

where the displacement is positive when the air goes out of the tube. We use207

a Rayleigh-Ritz method considering that:208

uair(x, t) = ua(t)Φ1(x) = ua(t)
(
− cos

(πx
Lt

))
(12)
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where Φ1 is the shape function (which represents also the first acoustic mode209

of the tube), and ua stands for the modal coordinates. The same considera-210

tions are applied to the virtual displacement. Equation (10) yields to:211 (ρ0StLt

2

)
üa +

(ρ0c20Stπ
2

2Lt

)
ua = −St(pcb + pls) (13)

We aim to have a model that closely represents the reality. However, the212

experiments revealed the need to model a damping coefficient. The choice of213

linear viscous damping is arbitrary. In typical structural or fluid-structure214

dynamics problems [47], it is often assigned a viscous term to synthesize215

the multi-physical phenomena contributing to the modal dissipation (such216

as mechanical damping and visco-thermal losses). The corresponding modal217

viscous coefficient is then usually estimated experimentally [48]. This for-218

malism is kept in the reduced model by introducing a viscosity contribution219

in Eq (13), proportional to ca. This parameter is obtained by experimental220

measurements and a brief study of its influence on the numerical results is221

presented in Appendix A.2. We obtain:222

maüa + cau̇a + kaua = −St(pcb + pls) (14)

The modal mass ma and modal stiffness ka of the first acoustic mode of the223

reduced section tube reads:224 
ma =

ρ0StLt

2

ka =
ρ0c

2
0Stπ

2

2Lt

(15)

3.2.4. Coupled equations of the two-degrees of freedom model225

Each segment of the overall system has been described individually. Equa-226

tions of the coupled systems can be constructed by incorporating boundary227

conditions. The considered ER model is given by the desired behavior equa-228

tion Eq. (2) in the tube with the compatibility condition p = pcb:229

Mdüm(t) +Rdu̇m(t) + FNL(t, um) = Sdpcb(t) (16)

Equations (14) and (16) yield the system of equations:230 {
maüa + cau̇a + kaua = −St(pcb + pls)

Mdüm(t) +Rdu̇m(t) + FNL(t, um) = Sdpcb(t)
(17)
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Introducing Eq. (5) into Eq. (17) yields the weakly coupled two-degree-of-231

freedom system of equations:232 {
maüa + cau̇a + kaua + St

(
kb(Stua − Sdum)

)
= −Stpls

Mdüm +Rdu̇m + FNL(t, um)− Sd(kb(Stua − Sdum)) = 0
(18)

We set γ = kbStSd and α = Sd/St. The system can be further rearranged as:233 maüa + cau̇a + kaua +
γ

α
(ua − αum) = −Stpls

Mdüm +Rdu̇m + FNL(t, um) + γ(αum − ua)) = 0
(19)

It is worth noting that the weak coupling in this system appears to be non-234

reciprocal. Nevertheless, this is a consequence of formulating the equations235

in terms of forces. The formulation in terms of pressure, which is the com-236

mon acoustic approach, results in a reciprocal coupling. In fact, the system237

of equations can be expressed using the acoustic parameters ma/St, ca/St,238

ka/St, Md/Sd and Rd/Sd:239 
ma

St

üa +
ca
St

u̇a +
ka
St

ua +
γ

Sd

(ua − αum) = −pls

Md

Sd

üm +
Rd

Sd

u̇m +
1

Sd

FNL(t, um) +
γ

Sd

(αum − ua)) = 0

(20)

The coupling between the mechanical behavior of the ER, and the acoustic240

behavior of the tube allows one to choose either of the formulations. In the241

following, the formulation in terms of forces defined Eq. (19) is employed.242

4. Experimental results243

4.1. Experimental set-up244

The experimental set-up is described in Fig. 1 and shown in Fig. 2. The245

values of the parameters of the system are presented in Table 1. The ER246

is linked to a D-Space MicroLabBox DS1202 device which serves for pro-247

gramming and for the control of the loudspeaker displacement. The device248

operates with a sampling frequency of 50 kHz. The external excitation is pro-249

duced by an external loudspeaker. The acoustic excitation lasts 60 seconds250

in the form of a linear chirp from 350 Hz to 800 Hz with either increasing251

or decreasing frequencies. Experiments are carried out with the coupled ER252
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rt 1.45× 10−2 m
St 6.61× 10−4 m2

Lt 0.204 m
rcb 5.0× 10−2 m
Lcb 0.125 m
Sd 1.3× 10−3 m2

Table 1: Values of parameters of the system

M0 3.89× 10−4 kg
R0 2.63× 10−1 kg.s−1

K0 4.34× 103 kg.s−2

Bl/Sd 136.7 kg.m−1.A−1.s−2

Table 2: Values of the modal parameters of the first mode of the loudspeaker when the
current is set to zero.

and with a rigid termination. All results are confronted with those obtained253

from numerical integration of system equations. The modal parameters of254

the ER loudspeaker are detailed in Table 2. Desired parameters of the target255

dynamics are µM , µR, and µK , defined as follows:256 
Md = µMM0

Rd = µRR0

Kd = µKK0

(21)

257

To illustrate the functionality of the programming at low excitation ampli-258

tudes, a variety of nonlinear behaviors are exploited and subjected to exper-259

imental testing.260

To begin with, a cubic stiffness force is considered. It is a classic case261

that has been extensively studied across multiple domains [27, 26, 38]. An-262

other nonlinear behavior considered is a piece-wise linear restoring forcing263

function, which has also been widely studied in fields such as mechanics264

[29, 31, 32, 33, 49]. However, its implementation in acoustics remains un-265

precedented and is implemented here. Finally, a logarithmic potential func-266

tion is also studied, which leads to a non-polynomial restoring function. This267

force has shown the capability to induce targeted energy transfer as demon-268

strated by Gendelman in [50], and is experimentally implemented here for269

the first time. Each nonlinear behavior is compared to an optimized linear270

11



resonator, whose behavior resembles a Tuned Mass Damper in mechanics.271

However, it is worth noting that the linear oscillator is optimized, while the272

nonlinear resonator is not. Optimization of such nonlinear behavior for noise273

reduction would need an additional and complete study, and will be addressed274

in future research. Notice that the presented behaviors can be replicated at275

lower or higher excitation amplitudes in the limits of the sensors and actu-276

ator capabilities. It is possible thanks to the ability to adjust βNL which277

controls the threshold for nonlinear behavior activation [43]. A demonstra-278

tion is carried out showcasing a measure at higher excitation amplitudes with279

the logarithmic potential restoring force in Fig. 13.

Figure 2: Experimental set-up

280

4.2. The cubic restoring forcing function281

4.2.1. Design282

As a first example, a cubic restoring forcing function is employed here to283

demonstrate the functionality of the nonlinear programming. The specific284

form of the nonlinear restoring force is given by:285

FNL(t, um) = Kd(um + βNLu
3
m) (22)

Where βNL represents an adjustable nonlinear parameter. The value of the286

parameter βNL plays a crucial role in determining whether the stiffness force287

composed of the linear part Kdum and of the nonlinear part KdβNLu
3
m ex-288

hibits nonlinear phenomena across the considered range of amplitudes. The289

order of magnitude of these two parts weighs in the activation of nonlinear290

behavior. The sign of βNL gives the sign of the force that determines whether291

the programmed behavior results in either a hardening or softening behavior.292

For considered amplitudes, the parameter is set to βNL = 2 × 1011 m−2 for293

12



designing hardening behavior, and βNL = −3 × 1011 m−2 for designing soft-294

ening behavior. The restoring forces for both cases are plotted in Fig. 3. In295

the case of the softening behavior, the overall potential can become positive296

at high oscillating amplitudes, leading to possible instability due to the in-297

jection of energy into the system. This case is used for illustrative purposes.298

Nevertheless, the logarithmic restoring force, later considered in this paper,299

solves the instability issue.300

301
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Figure 3: Nonlinear restoring force FNL = Kdum +KdβNLu
3
m for (a) hardening behavior

βNL = 2× 1011 m−2 and for (b) softening behavior βNL = −3× 1011 m−2.

The choice of the damping parameter µR is motivated by the need to302

create bifurcations. Indeed, a condition on the existence of the bifurcations303

emerges from the calculations of the centre manifold [51]. The given condi-304

tion is expressed as a function of the linear stiffness and of the damping of305

the resonator. Throughout the paper, the choice of µR = 1/8 ensures the306

existence of the bifurcation.307

308

The choice of the linear stiffness parameter µK is motivated by the ne-309

cessity to align the nonlinear resonance frequencies of the ER with the fre-310

quencies of the acoustic mode of the tube. Indeed, the nonlinear softening311

behavior involves large amplitude oscillations of the ER at lower frequencies,312

and as a result, the ER is more efficient within the considered frequency313

bandwidth. The choice of µK determines the frequency of the linear reso-314

nance of the ER. It allows the selection of the targeted linear mode frequency315

of the resonator. Choosing an appropriate µK is essential to tune the ER316

nonlinear resonance with the acoustic tube resonance for improved sound317
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absorption. Let ft be the targeted frequency of the linear resonance of the318

ER, and f0 be the frequency of the intrinsic mode of the ER. For simplicity,319

in this paper, µM is set to 1. The parameter µK can be found using the320

following equation:321

µK

µM

=
( ft
f0

)2
(23)

The choice of this parameter depends on the intensity of the considered322

nonlinearity. The parameter µK has been chosen by empirical and numerical323

means. The chosen parameters for the creation of hardening behavior are324

µM = µK = 1, and µR = 1/8.325

Knowing that f0 = 531 Hz, the frequency gap between the linear first mode326

of the ER and the acoustic mode of the tube (596 Hz) is 65 Hz. In order to327

produce the nonlinear softening behavior, the parameter µK is chosen such328

as the frequency gap between the mode of the ER and the acoustic mode329

of the tube should be close to 65 Hz. Consequently, ft = 660 Hz, which330

gives the parameters µM = 1, µK = 1.5496, and µR = 1/8 for producing the331

softening behavior.332

4.2.2. Results333
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Figure 4: Experimental results for the cubic restoring force: variation of the pressure
amplitude for the system with (a) hardening behavior, (c) softening behavior. Variation of
the electrical current amplitude for the system with (b) hardening behavior, (d) softening
behavior.

The variation of the pressure and electrical current amplitudes are plot-334

ted in Fig. 4 for both increasing and decreasing frequency sweep, and for the335

programmed hardening and softening behaviors. Variations of the electrical336
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current depicted in Fig. 4b clearly indicate the programming of a hard-337

ening behavior. Indeed, in the case of increasing frequency excitation, the338

measured pressure jumps (at 596 Hz) to a lower energy stable equilibrium339

point, whereas, in the case of decreasing frequency excitation, the measured340

pressure jumps (at 563 Hz) to a higher energy equilibrium point. For the341

softening behavior, shown in Fig. 4d, the opposite phenomenon occurs. The342

decreasing frequency measurement experiences a jump to lower energy equi-343

librium points at lower frequencies (569 Hz), while the increasing frequency344

measurement jumps to a higher energy equilibrium point (638 Hz). The pres-345

sure plotted in Fig. 4a and 4c presents the coupled behavior of the acoustic346

mode of the tube. The same phenomena occurs in both cases characterized347

by a significant reduction of the sound level in the tube at the frequencies348

corresponding to the nonlinear resonance. It is due to the activation of the349

ER nonlinear behavior that starts to act with large response amplitudes, and350

as a result it pumps the energy of the tube mode. However, from Fig. 4c one351

can observe a slight increase in the sound level in the reduced section tube352

from 600 Hz to 700 Hz. This issue can be solved by optimization means,353

which is out of the scope of the present study.354

The results obtained from the numerical integration of the model outlined in
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Figure 5: Experimental and corresponding numerical results obtained from direct numeri-
cal integration of Eq. (19): variation of the pressure amplitude for the hardening behavior
with (a) increasing frequency sweep, (b) decreasing frequency sweep and for the softening
behavior with (c) increasing frequency sweep, (d) decreasing frequency sweep.

355

Section 3 are compared to the experimental ones, and the outcomes are pre-356

sented in Fig. 5. One can see that the model describes correctly the behavior357

of the coupled experimental system despite a noticeable frequency shift of the358

bifurcations illustrated in Fig 5. This shift can mainly be explained by model359
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uncertainties. Among model uncertainties, an important role is played by the360

Sd parameter, which can differ significantly from the membrane surface area.361

In terms of modeling, it is worth highlighting that the parameter Sd imposes362

significant challenges when it comes to its estimation and measurement [46].363

This parameter affects the coupling between the acoustic mode and the ER,364

and hence the bifurcation frequencies. The inaccurate approximation at low365

frequencies is due to the presence of a coupling of an anti-resonance at lower366

frequencies that is not modeled. It might also be responsible for the frequency367

shift of the bifurcations. The influence of the antiresonance is discussed in368

Appendix A.1. Nevertheless, despite the strong approximations employed
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Figure 6: Experimental time histories for the cubic restoring force: pressure inside the
reduced-section tube for the hardening behavior with (a) increasing frequency sweep (b)
decreasing frequency sweep and for the softening behavior with (c) increasing frequency
sweep (d) decreasing frequency sweep.

369

in the reduced numerical model, it well captures the trends of the measured370

pressure. It confirms that the actual behavior of the ER is extremely close371

to the desired behavior. As a result, the sound level starting point of the372

model is different from the experiment, modifying the amplitudes and so the373

frequencies of the bifurcations. Moreover, either larger frequency bandwidth374

or better sound absorption are realized using these cubic restoring forces.375

The tuning parameters should be optimized in future studies. Experimental376

time histories of the pressure inside the reduced-section tube are plotted in377

Fig. 6 for both hardening and softening behaviors. One can see that the378

incident pressure level is divided by two for the increasing frequency sweep,379

which is coherent with the reduction of more than 3 dB seen in the frequency380

plots. The bifurcation and its frequency are clearly recognizable.381
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4.3. The piece-wise linear restoring forcing function382

4.3.1. Design383
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Figure 7: Piece-wise linear restoring forcing function.

The linear piece-wise potential behavior, which has not been previously384

explored in the context of acoustics, is introduced in this study. This behavior385

shows that the method presented here is not limited to smooth restoring386

forcing functions and can be applied to synthesize non-smooth functions as387

well. Here, the goal is to create a system with a hardening behavior similar388

to a duffing-type behavior with 2 different slopes depending on a clearance389

of 2δ. The associated restoring forcing function force plotted in Fig. 7 reads:390

FNL(t, um) =


K2um − (K1 −K2)δ if um < −δ

K1um if − δ < um < δ

K2um + (K1 −K2)δ if δ < um

(24)

This force is not differentiable on its whole definition domain, as in um = ±δ,391

where an infinite number of derivatives exist. The force is plotted in Fig. 7392

for the values presented in Table 3. The clearance parameter 2δ defines the393

displacement of the membrane threshold at which nonlinear phenomena are394

initiated.395

396

The selected parameters for the experiment are µM = 1, µK = 1.2598,397

and µR = 1/8. The selection of µK has been driven by the aim of aligning398

the linear resonance frequency of the ER with the acoustic mode of the tube.399

400
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δ 8× 10−7 m
K1 Kd

K2 5K1

Table 3: Values of the piece-wise linear experiment. (see Eq. (21))
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Figure 8: Experimental results for the piece-wise linear restoring force: variation of (a) the
pressure amplitude (b) the electrical current. Experimental and corresponding numerical
results obtained from direct numerical integration of Eq. (19): variation of the pressure
amplitude with (a) Increasing frequency sweep, (b) Decreasing frequency sweep.

4.3.2. Results401

The variations of the pressure and electrical current amplitudes are plot-402

ted in Fig. 8a and Fig. 8b. One can observe in Fig. 8b that the created403

behavior looks like a hardening duffing-type oscillator which is depicted in404

Fig. 4b. Moreover, a significant reduction of the sound level can be seen and405

is not limited to the frequencies of the nonlinear resonance. It is explained406

by the linear nature of the oscillator which is tuned to the frequency of the407

first mode of the primary system. The linear oscillator pumps the energy408

before activating its nonlinear behavior. This leads to a shift of the nonlin-409

ear behavior to higher frequencies, and as a result to energy pumping shifted410

from the maximum peak amplitude of the primary system. The experimen-411

tal outcome is compared to results obtained from numerical integration of412

Eq. (19) for increasing frequency sweep in Fig. 8c and decreasing frequency413

sweep in Fig. 8d. Both results fit closely the measurements, confirming414

that the actual behavior follows the programmed piece-wise linear behavior.415

These results show that via accurate choice of parameters, the programming416

of the piece-wise linear restoring forcing function can lead to promising re-417
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Figure 9: Experimental time histories for the piecewise linear restoring force: pressure
inside the reduced-section tube for the hardening behavior with (a) increasing frequency
sweep (b) decreasing frequency sweep.

sults. Indeed, this behavior shows the potential of such nonlinear ER, as418

the performed sound absorption is greater than the linear ER for a larger419

frequency bandwidth. Experimental time histories of the pressure inside the420

reduced-section tube are plotted in Fig. 9.421

4.4. The logarithmic potential422

4.4.1. Design423

−3 −2 −1 0 1 2 3

·10−6

−4

−3

−2

−1

0

1

2

3

4
·10−3

Displacement um (m)

Fo
rc

e
(N

)

Figure 10: Logarithmic potential force FNL = Kdum

1+βNLu2
m

with βNL = 5× 1011 m−2

To the best of our knowledge, the logarithmic potential force has not424

been experimentally implemented yet. It would create softening behavior425

that cannot become unstable [50]. Let us introduce the following potential426
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function:427

V (um) = −1

2
Kd ln(1 + u2

m) (25)

A key point is that this force cannot cause unstable behaviors as the potential428

cannot become positive. It gives the equivalent nonlinear restoring force:429

FNL(um) =
Kdum

1 + u2
m

(26)

Nevertheless, this nonlinear force in its current state activates a nonlinear430

behavior at high excitation amplitudes. In order to enable the activation of a431

nonlinear behavior at lower excitation amplitudes, we introduce a coefficient432

βNL as follows:433

FNL(um) =
Kdum

1 + βNLu2
m

(27)

The force is plotted Fig. 10 with βNL = 5 × 1011 m−2. The logarithmic434

potential restoring force can be briefly studied by developing the Taylor series435

of the force:436

FNL(um) =
Kdum

1 + βNLu2
m

=
∞∑
n=0

(−1)nKdβ
n
NLu

2n+1
m (28)

The Taylor series of the force shows that logarithmic potential restoring437

force is equivalent to a cubic softening restoring force if the Taylor series is438

truncated to its two first terms. Therefore, the choice of a similar µK than439

chosen for the cubic behavior should give similar results. Let us choose µK =440

1.5496 which is the same as the cubic softening restoring force. Nevertheless,441

the Taylor series highlights that the logarithmic potential restoring force is442

weaker than the cubic softening restoring force [50]. Both behaviors are443

compared in Fig. 11a for equal parameters |βNL| = 3×1011 m−2 and µK = 1.444

One can observe that the softening behavior is activated at higher amplitudes445

for equal parameters. Therefore, the logarithmic potential softening restoring446

force is weaker than the cubic softening behavior, as expected. To solve447

this issue, the value of βNL should be raised, as depicted in Fig. 11b for448

µK = 1, and βNL = 5× 1011 for the logarithmic potential restoring force and449

βNL = −3 × 1011 m−2 for the cubic softening restoring force. The chosen450

parameters for the experiment are µM = 1, µK = 1.5496, µR = 1/8 and451

βNL = 5× 10−11 m−2.452
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Figure 11: Restoring forces of the Logarithmic potential and Cubic Softening nonlinearities
with (a) |βNL| = 3 × 10−11 m−2 (b) βNL = 5 × 1011 m−2 for the logarithmic potential
restoring force and βNL = −3× 1011 m−2 for the cubic softening resotoring force.
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Figure 12: Experimental results for the logarithmic potential restoring force: variation of
(a) the pressure amplitude, (b) the electrical current. Experimental and corresponding
numerical results obtained from direct numerical integration of Eq. (19): variation of the
pressure amplitude: (a) increasing frequency sweep (b) decreasing frequency sweep.

4.4.2. Results453

The variations of the pressure and electrical current amplitudes are plot-454

ted in Figs. 12a and 12b for both increasing and decreasing frequency sweeps455

of the excitation. One can observe that the ER presents a softening behav-456

ior. Moreover, energy transfer from the acoustic mode of the tube to the457

nonlinear ER occurs at the frequencies of the nonlinear resonance, following458

the same phenomenon as the previous cases.459

460

The numerical results obtained from the integration of Eq. (19) are com-461
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pared to experimental ones in Fig. 12c for the increasing frequency sweep,462

and in Fig. 12d for the decreasing frequency sweep. The numerical resolu-463

tion of the model predicts well the behavior of the ER, despite the frequency464

shift of the jump, as for the other target behaviors. Despite the fractional465

nature of the restoring forcing function, it shows that the digital ER control466

is efficient in implementing the programmed nonlinear behaviors. The loga-467

rithmic potential restoring force shows great potential for sound absorption468

as the frequency bandwidth of efficiency is broadened. It also features sound469

absorption being equal to or greater than the linear oscillator.470

As previously mentioned, the nonlinear behavior can be attained at higher
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Figure 13: Experimental results for the logarithmic potential restoring force at high exci-
tation amplitude with µM = 1, µK = 1.5496, µR = 1/8 and βNL = 3 × 109: variation of
(a) the pressure amplitude, (b) the electrical current. Experimental time histories of the
pressure inside the reduced-section tube with (c) increasing frequency sweep (d) decreas-
ing frequency sweep.

471

or lower excitation amplitudes. It is due to the nonlinear parameter βNL472

which determines the magnitude of the nonlinear term. The nonlinear term473

activates the nonlinear response when its order of magnitude becomes similar474

to the one of the linear term. Based on this analysis, let us choose the pa-475

rameters µM = 1, µK = 1.5496, µR = 1/8 and βNL = 3× 109. The variations476

of the pressure and electrical current amplitudes are plotted in Figs. 13a477

and 13b. One can observe that the nonlinear phenomena are reproduced at478

higher excitation amplitudes. It highlights a softening behavior. The time479

histories of the pressure inside the reduced-section tube are plotted for both480

increasing and decreasing frequency sweeps in Figs 13c and 13d.481
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5. Conclusion482

The article features the programming of diverse nonlinear behaviors at483

low excitation amplitudes and their potential application for noise reduction484

purposes. A Real-Time-Based method and algorithm are employed to syn-485

thesize both polynomial and non-polynomial nonlinear behaviors. In this486

contribution, we test such control algorithm to achieve cubic, piece-wise lin-487

ear, and logarithmic restoring forces, with comparison to numerical results.488

Piece-wise linear and logarithmic resonator dynamics are behaviors that are489

hardly achievable by passive means, even at high excitation levels, neverthe-490

less, they are highly interesting applications. Observe that the logarithmic491

dynamics, while being fractional, can be implemented using this method.492

Moreover, the nonlinear ER is here for the first time tested against the at-493

tenuation of the primary acoustic mode of a coupled tube. This paper proves494

that our nonlinear ER correctly performs the expected trends for various tar-495

get dynamics, in a coupled environment. Despite not being optimized, the496

nonlinear oscillators created in this study led to a significant noise reduction497

within the tube. To design the oscillators for efficient noise reduction pur-498

poses, an analytical study can be performed using the method of multiple499

scales [28, 52]. This perspective of study enables the programming of addi-500

tional nonlinear phenomena. For example, the programming of compound501

piece-wise nonlinearities for multi-energy levels of activations, as discussed502

in [34], can be performed to create fast energy triggering. Moreover, non-503

periodic responses such as modulate [53] should be investigated. This paper504

is the first step toward the conception of a distributed set of nonlinear sys-505

tems to create programmable nonlinear meta-materials for vibro-acoustical506

applications.507
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Appendix A. Model of the experiment514

23



Appendix A.1. The influence of the non-modeled antiresonance515

This appendix aims at explaining the differences between the model and516

the experiment. Taking into account the inevitable model uncertainties (in517

both ER and tube cavity models) of the simplified numerical model, the shift518

of the experimental bifurcation with respect to the numerical one is under-519

standable. However, the low-frequency inaccuracy of the numerical results520

is due to an antiresonance of the tube cavity at lower frequencies than the521

acoustic mode of the tube, as depicted in Fig A.14. The model does not522

take into account the antiresonance at 115 Hz, which could impact the cou-523

pling with the ER, and consequently, it could contribute to the discrepancy524

between measurements and simulations. The influence of the antiresonance525

can not be ignored. Nevertheless, notice that slight pressure variations in526

the experimental set-up may trigger the bifurcation earlier or later than sim-527

ulated with numerical means. Moreover, considering both the complexity of528

the actual system and the simplicity of the numerical model (reduced to one529

mode), the agreement between measurements and simulations is reasonable.530
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Figure A.14: Variation of the pressure amplitude inside the reduced-section tube with a
rigid termination

531

Appendix A.2. The influence of the damping parameter532

The form of the damping parameter of the primary system ca has been533

chosen arbitrarily to model multiple physical damping phenomena. As a re-534

sult, a preliminary study regarding its influence on the results is needed. The535

damping parameter is obtained using the rigid termination measurement.536
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The determination of its value has been done using three measurements at537

different excitation amplitudes. The value of the damping parameter is:538

ca = 0.0386± 1.1× 10−4 kg.s−1 (A.1)

Let us consider the parameter ca,p such as ca,p ∈ [0.8ca; 1.2ca]. Its defi-539

nition takes into account a variation of 20% of ca, which is larger than the540

calculated uncertainty. Let us plot the experimental data along with simu-541

lations realized with different values of ca,p in the case of a cubic hardening542

restoring force with µK = µM = 1, µR = 1/8 and βtextNL = 2 × 1011 m−2.543

The variation of the pressure amplitude inside the reduced-section tube is544

presented for increasing frequency sweep in Fig. A.15a, and decreasing fre-545

quency sweep in Fig. A.15b. One can observe that the bifurcation frequency546

changes depending on the damping parameter of the acoustic mode of the547

tube. The lower value of the parameter gives the lower frequency of bifur-548

cation, and the higher value of the parameter gives the higher frequency549

of bifurcation. Moreover, let us plot the quality of the prediction of the
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Figure A.15: Variation of the pressure amplitude inside the reduced-section tube as a
function of frequency for multiple values of damping ca with (a) increasing frequency
sweep (b) decreasing frequency sweep.

550

simulations with each ca using the classical indicator:551

Indicator =
∑
i

(xi
ca − yi)2 (A.2)

where xi
ca stands for the values of the pressure spectra predicted by simula-552

tions for each value of the damping parameter ca. The variable yi denotes553
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the values of the pressure spectra from experimental data. One can see in554

Fig. A.16 that the best value given by this indicator is the measured value555

ca = 0.0386 kg.s−1.
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Figure A.16: Least mean square indicator of the difference of simulations done with mul-
tiple values of ca
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