
HAL Id: hal-04560846
https://hal.science/hal-04560846

Preprint submitted on 26 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter Estimation using Integral Equations
François Lemaire, Louis Roussel

To cite this version:
François Lemaire, Louis Roussel. Parameter Estimation using Integral Equations. 2024. �hal-
04560846�

https://hal.science/hal-04560846
https://hal.archives-ouvertes.fr

Parameter Estimation using Integral Equations

François Lemaire1 and Louis Roussel1

1Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL,
F-59000, Lille, France, {francois.lemaire,louis.roussel}@univ-lille.fr

Abstract

We investigate the interest of using nonlinear integral equations in-
stead of nonlinear differential equations in a modelisation context. In
particular, we perform parameter estimation on an academic example us-
ing different input-output differential and integral equations.

Keywords: integro-differential equations, parameter estimation, differential
and integral elimination

1 Introduction

Many models (such as the SIR1 epidemiological model) consist of parametric
non-linear differential equations. When parameters values are unknown, they
can sometimes be estimated thanks to experimental data through a process
called parameter estimation.

For instance, in an epidemiological model, one might be interested in deter-
mining the rate of spread of the virus from experimental data.

Typical nonlinear ODE systems are composed of n differential equations of
the form ẋi(t) = fi(x1(t), . . . , xn(t), k1, . . . , kp, u(t)), where the xi(t)’s define the
state of system (which is unknown), the kj ’s are the parameters and u(t) is a
vector of inputs (which is known and can be freely chosen). Moreover, some
measurements are available though the so-called output variables y1(t), . . . , yk(t)
which are all functions of the state, the parameters and the input. In order to
estimate the parameters, a typical approach consists in computing from the ini-
tial model some differential equations only involving the input, the output, and
the parameters, which are naturally called input/output (I/O) equations. In a
polynomial settings, those I/O equations can be computed through a differential
elimination procedure such as [6].

Recent work [1, 5, 3] investigates the treatment of integro-differential equa-
tions i.e. equations involving both derivation and integration operations. Con-
sidering models with integro-differential equations is motivated by the following

1Susceptible, Infectious, Recovered

1

reasons: on some examples, the introduction of integral equations increases the
expressiveness of the models, improves the estimation of parameter values from
error-prone measurements, and reduces the size of the equations.

Parameter estimation using integral I/O equations is also possible. Like
in the differential case, one can obtain an integral I/O equation through an
elimination procedure (Figure 1). However, there is currently no algorithm for
the integral elimination, hence calculus are done by hand (either a by a direct
elimination, or by integrating a differential I/O equation possibly several times,
see Figure 1). Figure 1 illustrates two I/O integral and differential equations for
a simple system with no input, a single state x(t) and a single output variable
y(t).


ẋ(t) = y(t)

ẏ(t) = θx(t)

x(t) unknown

y(t)− y0 = θ
∫ t

0

∫ τ2
0

y(τ1)dτ1dτ2 + θx0t

ÿ(t) = θy(t)

Inte
gral

Elim
inat

ion

DifferentialElimination[6]

[3, Integrate]
Algorithm

Figure 1: Modelling, elimination and [3, Integrate] algorithm. From
a differential system, we can obtain an input/output equation [7] which only
involves the known function y(t), by using differential elimination techniques
[4]. From this equation, we can use the [3, Integrate] algorithm to compute an
integral equation. Using numerical methods (e.g. least squares), it is possible
to evaluate the value of θ from any of the two input/output equations.

In this paper, we will consider an academic example to illustrate parameter
estimation using both integral and differential equations. We will focus on :

• comparing the quality of parameter estimation using differential or integral
equations,

• comparing different integral equations, some of which contains exponential
terms.

Our long term goal is to develop a prototype for the integral elimination.
This article is a first step for choosing the type of equations an integral elimina-
tion process should produce, and also in which algebraic structures they should
be taken.

This last point concerning algebraic structures is certainly a difficult prob-
lem, and is considered in [10]. Introducing fractions, exponential terms, ...
amongst integration is an extra challenge. For this reason, all the computations

2

in the article are made in an analytic context, where the expression
∫
f denotes∫ t

0
f(τ)dτ , i.e. the primitive of f cancelling at t = 0.
First, we will describe the chosen academic model and related work (Sec-

tion 2). Then, in Section 3 we explain the idea of parameter estimation by
treating this example with differential algebra. Section 4 details the different
methods (integration and elimination by hand) used to obtain 4 different in-
put/output integral equations.

Finally, in Section 5, we compare the quality of the differential and integral
I/O equations in terms of parameter estimation.

2 Related Work

1 2
Ve, ke

k12

k21

Figure 2: Two compartment model

The Figure 2 illustrates the considered model associated to the system (1)
studied in [2]. Compartment 1 corresponds to the blood system and compart-
ment 2 to some organ (e.g. liver). A medical drug is injected into the blood
system and diffuses between the two compartments following linear laws with
parameters named k12 and k21. The drug leaves the blood system with an
implicit enzymatic reaction which involves two parameters Ve and ke.

In the system (1), the measurement (known values) y(t) is the concentration
of drugs in compartment 1. The variable x(t) is the unknown drug concentration
in the other compartment (the organ).{

ẋ = k12y − k21x

ẏ = −k12y + k21x− Vey
ke+y

(1)

The work done in [2] consists in computing both differential and integral
I/O equations and comparing the quality of the parameter estimation. In [2], a
simplification was made in the system: ke was assumed equal to 1 to allow the
use of least squares with the integral equation. We will see in Section 5 that
ke can be estimated, by replacing the linear least squares algorithm by a more
general optimisation method.

3

3 Differential I/O Equations and Parameter Es-
timation

This section provides the computation details for obtaining the differential I/O
equation (using differential algebra techniques) and how to use it to perform
the parameter estimation. The following calculations can be fully automated
in [6] with the so-called RosenfeldGröbner algorithm [4]. The details of the
computations are too complex to be exposed here. However, the computations
can be summarised in a loose way using rules based computations. We chose a
ranking that sorts the derivatives of x and y, and which eliminates the unknown
derivatives of x:

... > ẍ > ẋ > x > ... > ÿ > ẏ > y

Based on this ranking, we write the equations of the system (1) as two rules:

ẋ
(R1)−−−→ k12y − k21x

k21x
(R2)−−−→ ẏ + k12y +

Vey

ke + y

Using Rule (R2), we can replace the value of k21x in Rule (R1) which becomes:

ẋ
(R′

1)−−−→ −ẏ − Vey

ke + y

By differentiating Rule (R2) and multiplying by k21 the new rule (R′
1), we

obtain Rules (R3) and (R4):

k21ẋ
(R3)−−−→ −k21ẏ − k21

Vey

ke + y

k21ẋ
(R4)−−−→ ÿ + k12ẏ +

Veẏ

ke + y
− Veyẏ

(ke + y)2

and consequently, equating the right hand sides, the equation

k21ẏ + k21
Vey

ke + y
+ ÿ + k12ẏ +

Vekeẏ

(ke + y)2
= 0

corresponding to the expected differential I/O equation. Indeed, this equation
does not involve x and its derivatives anymore (x has been eliminated). Up
to the denominator (ke + y)2, this result is equal to the differential polynomial
computed by RosenfeldGröbner:

Vek21key + Vek21y
2 + Vekeẏ + k12k

2
e ẏ + 2k12keyẏ + k12y

2ẏ

+k21k
2
e ẏ + 2k21keyẏ + k21y

2ẏ + k2e ÿ + 2keyÿ + y2ÿ = 0
(2)

Before using least squares to estimate the parameters, we first rewrite this equa-
tion by assuming (ke = 1) as in [2]:

ÿy2 + 2ÿy + ÿ + θ2ẏy
2 + θ22ẏy + θ3ẏ + θ1y

2 + θ1y = 0 (3)

4

where the θi stand for the so-called blocks of parameters:

θ1 = k21Ve, θ2 = k12 + k21, θ3 = k12 + k21 + Ve. (4)

Since the values of y(t) are known, the values of ẏ and ÿ can be estimated
numerically. As a consequence, Equation (3) can be specialised at different times
values, yielding an (overdetermined) linear system of linear equations in the θi.
Using linear least squares, values for θ1, θ2 and θ3 can be estimated. Finally,
Equations (4) can be utilised to compute an estimation of the parameters values.
If we keep the parameter ke in (2), the procedure for parameter estimation is
similar and yield different blocks of parameters.

4 Computing I/O Integral Equations

4.1 Integration of the Differential Equation

The most straightforward method for computing the I/O integral equation con-
sists in integrating the differential equation (2). To this aim, [3, Integrate]
algorithm can be used. Unfortunately, [3, Integrate] applied on Equation (2)
yield equations which still involve derivatives of y. This is not suitable since
our purpose is to get rid of all derivatives. However, it is possible to first divide
Equation (2) by (y + ke)

2, thus obtaining

k21Ve
y

y + ke
+ (k12 + k21)

yẏ(y + 2)

(y + ke)2
+ (k12 + k21 + Ve)

ẏ

(y + ke)2
= −ÿ (5)

and then apply [3, IteratedIntegrate] (which is an iterated version of Integrate)
on (5) which computes the following integral equation:

k21Ve

∫ ∫
y

y + ke

+ (k12 + k21)

∫
(

y2

y + ke
− y20

y0 + ke
)

− (k12 + k21 + Ve)

∫
(

1

y + ke
− 1

y0 + ke
)− ẏ0t = −y + y0.

(6)

Notice that the parameter ke now appears in the denominator inside in-
tegrals. For this reason, it is not possible to write Equation (6) as a linear
combination of blocks of parameters, as it was done in Equation (3): this pre-
vents the use of linear least squares.

Equation (6) was obtained thanks to the multiplication by 1
(y+ke)2

that we

could loosely call an integrating factor. Computing such a factor is not straight-
forward, especially in our special context where expressions involve integrals.
For this reason, we have tried a deep learning approach that we briefly detail in
the next section.

5

4.2 Deep Learning for Computing Integration Factors

Deep Learning techniques consist in collecting/generating a large amount of
data relevant to a particular task to train a model. In our case, given an
integro-differential equation p, the model should compute an integro-differential
expression f such that fp can be integrated into an equation q, such that the
order of derivation of q is lower than that of p.

To narrow the difficulty, we started from the following property: if A, B and
C are integro-differential expressions, then the derivative of A/B +

∫
(C/B) is

A′B−AB′+CB
B2 . As a consequence, integrating the expression A′B−AB′+CB can

be done by first dividing by B2 and then integrating to retrieve A/B+
∫
(C/B).

Thus, we built a dataset for training the model (Transformer [11]) by generating
equations of the form A′B − A′B + CB with the objective of producing B as
output. This process described above is a slight adaptation of [9].

Applied to our example, the input of the model is the differential equation
(2) with all the parameters substituted by 1 (needed to reduce the number of
variables, hence to reduce the difficulty of the problem):

y + y2 + ẏ + ẏ + 2yẏ + y2ẏ

+ẏ + 2yẏ + y2ẏ + ÿ + 2yÿ + y2ÿ = 0.

Our model is able to compute B = y + 1 which yields to the expected inte-
grating factor (1

B2 = 1
(y+1)2)) with ke = 1. To retrieve the correct value of

B = y + ke, we could increase the size of model (in particular the number of
variables/parameters it can treat), or use the value B = y + 1 as a first guess.

4.3 Integral Elimination

As seen before, integrating the differential I/O equation can be difficult, espe-
cially because an integrating factor is sometimes needed.

We now present on our example another approach (which is not algorithmic
yet) to perform the elimination, which directly produces the expected integral
I/O equation. This approach is similar to the one described in Section 3 (it
relies on manipulating rewriting rules), but only integrations are allowed. Com-
putations below follow those of [5, page 17] using rule based computations.

First, let’s consider the integral version of the differential system (1){
x = x0 + k12

∫
y − k21

∫
x,

y = y0 + k21
∫
x− k12

∫
y −

∫
Vey
ke+y ·

(7)

We fix a kind of ranking where terms involving x are greater than terms
involving y only. Note that fixing a ranking of the form

... >

∫ ∫
x >

∫
x > x > ... >

∫ ∫
y >

∫
y > y

does not work since it does not permit to compare the expressions k12
∫
x and∫

Vey
ke+y as needed below.

6

Let us write the equations of System (7) as rules:

k21

∫
x

(R1)−−−→ x0 − x+ k12

∫
y,

k21

∫
x

(R2)−−−→ y − y0 + k12

∫
y +

∫
Vey

ke + y
·

Equating right hand sides of Rules (R1) and (R2) yields x0−x = y−y0+
∫

Vey
ke+y

which can be written as a third rule:

x
(R3)−−−→ x0 − y + y0 −

∫
Vey

ke + y
·

Rules (R2) and (R3) can be unified by integrating and multiplying Rule (R3)
by k21. This results in a new rule:

k21

∫
x

(R4)−−−→ k21x0t− k21

∫
y + k21y0t− k21

∫ ∫
Vey

ke + y
·

Then, equating right hand sides of Rules (R4) and (R2) yield the following
equation

−k21Ve

∫ ∫
y

ke + y
− (k12 + k21)

∫
y − Ve

∫
y

ke + y
+ (x0 + y0)k21t− y + y0 = 0

which is almost free of x since it still involves the initial condition x0.
Evaluating System (3) at t = 0 yields x0 = 1

k21
(ẏ0 + k12y0 +

Vey0

ke+y0
), which

is used to rewrite x0 in the previous equation, thus obtaining

k21Ve

∫ ∫
y

ke + y

+ (k12 + k21)

∫
(y − y0)

− Ve

∫
(

y

ke + y
− y0

ke + y0
)− ẏ0t = −y + y0

(8)

which is now free of x. Note that this last equation (8) is equivalent to Equa-
tion (6) by using the properties y2/(1 + y) = y − 1 + 1/(1 + y) and 1/(y + 1) =
1− y/(y + 1). We will only use Equation (8) for the experiments.

4.4 Integral Equations using Exponential

This section will present three additional integral equations involving exponen-
tials. To this extent, we need the following two lemmas.

Lemma 1 (Product of integral equations). If A1(t) = A1(0) +
∫
C1(t) and

A2(t) = A2(0) +
∫
C2(t), then

A1(t)A2(t) = A1(0)A2(0) +

∫
C1(t)A2(t) +

∫
A1(t)C2(t).

7

Proof. Just differentiate A1(t)A2(t) and use the fact that A′
1(t) = C1(t), A

′
2(t) =

C2(t), and that evaluating an integral at t = 0 yields 0.

Lemma 2. If A(t) = A(0) +
∫
(A(t) · G(t) + F (t)), then by introducing the

equation v(t) = v(0)−
∫
v(t)G(t) (which encodes: v(t) = v(0)e−

∫
G(t)) we have

A(t)v(t) = A(0)v(0) +

∫
v(t)F (t).

Proof. Direct application of Lemma 1.

First equation: Applying Lemma 2 on the first equation in the system (7)

x︸︷︷︸
A

= x0 +

∫
k12y︸︷︷︸
F

+(−k21)︸ ︷︷ ︸
G

x︸︷︷︸
A

,

and by introducing

v = 1 +

∫
vk21,

one obtains

xv = x0 +

∫
vk12y. (9)

Here v simply encodes ek21t. Introducing the inverse u of v (i.e. u = e−k21t),
and multiplying Equation (9) by u, one obtains the following rule

x
(R1)−−−→ x0u+ u

∫
vk12y. (10)

The second equation of System (7) can be written as the rule

k21

∫
x

(R2)−−−→ y − y0 + k12

∫
y +

∫
Vey

ke + y
·

Writing u and v as exponentials, and after replacing x0 as done in Equation (8),
the critical pair with

∫
k21(R1) and (R2) yields the following equation

−y + y0

−k12

∫
y −

∫
Vey

ke + y
+ (

Vey0
ke + y0

+ ẏ0 + k12y0)

∫
e−k21t

+k21k12

∫
(e−k21t

∫
ek21ty) = 0

(11)

where the parameter k21 is “stuck” inside an exponential term.

8

Second equation: The rule from Equation (10) yields x = x0e
−k21t +

e−k21t
∫
ek21tk12y, that is used to replace x in the first equation of System (1)

to obtain

k21

(
x0e

−k21t + e−k21t

∫
ek21tk12y

)
= ẏ + k12y +

Vey

ke + y
·

Multiplying this last equation by y + ke , replacing x0 as done in Equation (8),
and integrating yields

−y2 + y20 − 2key + 2key0

−2kek12

∫
y − 2k12

∫
y2 − 2Ve

∫
y

+2ke(
Vey0

ke + y0
+ ẏ0 + k12y0)

∫
e−k21t

+2(
Vey0

ke + y0
+ ẏ0 + k12y0)

∫
ye−k21t

+2kek21k12

∫
(e−k21t

∫
ek21ty)

+2k21k12

∫
(ye−k21t

∫
ek21ty) = 0.

(12)

Third equation : Previously, we applied Lemma 2 to the first equation of
System (7) to obtain Equation (10). We can also apply Lemma 2 on the second
equation of System (7) with A = y, G = −(k12 +

Ve

ke+y) and F = k21x to obtain

ye
∫
(k12+

Ve
ke+y) = y0 +

∫
k21xe

∫
(k12+

Ve
ke+y).

Finally, substituting x (using Equation (10)) and x0 into the last equation
yields:

−ye
∫
(k12+

Ve
ke+y)

+y0 + (
Vey0

ke + y0
+ ẏ0 + k12y0)

∫
e
∫
(k12+

Ve
ke+y)e−k21t

+k12k21

∫
(e

∫
(k12+

Ve
ke+y)e−k21t

∫
ek21ty) = 0

(13)

This last equation seems quite complicated since there are 3 parameters
stuck inside exponential or fractions.

Open question. The four integral I/O equations (8), (11), (12) and (13) all
involve parameters either stuck in fractions inside integrals, or stuck in expo-
nentials. We tried without success to obtain an integral I/O equation without
these limitations i.e. we could not find any integral I/O equation that could be
written as a linear combination of blocks of parameters. At this stage, we do
not know whether such an I/O equation exists or not.

9

5 Experiments and Interpretation

In this section, we study the quality of the different I/O equations obtained
previously (see Section A of the appendix for a summary). We first conduct
experiments by performing many parameter estimations with different levels of
noise, and discuss the quality of the different I/O equations.

5.1 Experiments

An exact signal ȳ(t) has been generated by numerically solving System (1)
with x(0) = 10, y(0) = 1, k̄12 = 1, k̄21 = 5, V̄e = 3, k̄e = 1 for 0 ≤ t ≤
4, and then sampling with N = 1000 (equally spaced) time values denoted
(ti)0≤ti≤N−1. When adding some noise to the exact signal ȳ(t), estimating the
parameters produces approximate values of the parameters k12, k21, Ve and ke.
Those approximate parameters defines a relative error equal to the 2-norm of
the difference between the vector of predicted values and known values, divided
by the vector of known values.

For our experiments, we have used additive white noises (defined by their
standard deviation). To study the dependency of the I/O equations to the level
of noise, we increase the standard deviation of the noise from zero (no noise at
all) to 0.8, by steps of 0.01. To smooth the experimental curves, we compute
for each level of noise the mean of the relative errors of 50 different parameter
estimations (each one for a different noise).

Finally, to be closer to the experiments from [2] where the parameter ke was
fixed to 1, we have performed two experiments. In the first one (see Figure 3),
we fix ke = 1 and estimate parameters k12, k21, Ve (plus the parameter ẏ0 for the
integral equations). In the second one (see Figure 4), we estimate in addition
the parameter ke.

For all plots in Figures 3 and 4, the x-axis is the standard deviation of the
noise level, and the y-axis is the relative error.

Details on parameter estimation For a given I/O equation p, the param-
eter estimation is performed by cancelling the I/O equation p. More precisely,
we introduce the following error

E(k12, k21, ke, Ve) =
1

N

N−1∑
i=0

p(ti)
2 (14)

that we minimize. Note that each p(ti) is evaluated numerically using a 4 points
scheme to estimate derivatives, and the Simpson rule for integrals.

We used the Covariance Matrix Adaptation Evolution Strategy [8, CMA-
ES] algorithm with each parameter bounded in the interval [10−5, 100]. This
method behaves quite well on our examples. We also tried different variants of
gradients descents which were not conclusive.

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
no˙exp (8)

exp˙and˙frac (11)

exp (12)

exp˙with˙integral˙inside (13)

eq˙diff (3)

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

no˙exp (8)

exp˙and˙frac (11)

exp (12)

exp˙with˙integral˙inside (13)

(b)

Figure 3: Estimation using CMA-ES of the parameters k12, k21, Ve

and ẏ0 for I/O equations. Equations no exp, exp and frac, exp,
exp with integral inside and eq diff correspond respectively to Equations
(8), (11), (12), (13) and (3). Figures (a) and (b) correspond to the same exper-
iment with and without the differential equation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12
no˙exp (8)

exp˙and˙frac (11)

exp (12)

exp˙with˙integral˙inside (13)

eq˙diff (3)

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

no˙exp (8)

exp˙and˙frac (11)

exp (12)

exp˙with˙integral˙inside (13)

(b)

Figure 4: Estimation using CMA-ES of the parameters k12, k21, Ve,
ke and ẏ0 for integral equations. Equations no exp, exp and frac, exp,
exp with integral inside and eq diff correspond respectively to Equations
(8), (11), (12), (13) and (3). Figures (a) and (b) correspond to the same exper-
iment with and without the differential equation.

11

Numerical consistency of parameter estimation using linear least squared
or CMA-ES In [2], only the values of the blocks (4) were estimated. How-
ever, in this work, we directly compute the parameters. To check whether the
two approaches are numerically consistent, we computed the values of the blocks
for the parameters values computed by CMA-ES, and we could verify that the
quality of the blocks are indeed consistent (i.e. similar relative errors) between
the two approaches.

5.2 Interpretation

Both experiments present the same behaviour when comparing integral and
differential I/O equations: integral equations perform much better than the
differential I/O equation. Even with a significant amount of noise (0.8) the
relative error remains below one for all integral equations.

In the first experiment, the three integral Equations (8), (11) and (12) per-
form quite well, and the last integral equation (13) is slightly worse. The differ-
ential I/O equation is not conclusive at all.

In the second experiment, the integral equations (11) and (12) perform quite
well, the integral equation (13) is still slightly worse. The differential I/O equa-
tion is even less conclusive. Surprisingly, Equation (8) is now much more sensi-
tive, even with a low level of noise. In fact, in Figure 4, a problem arises with
Equations (8) and (13): for around 5% of parameter estimations, the parameter
estimation fails because a parameter is equal to either 10−5 or 100 (which are
the interval bounds). This increases the mean relative error for those equations,
because estimated values are too far from the expected values.

As a conclusion, the best equations are integral equations that involves expo-
nentials and fractions. This is a bit surprising, since Equation (8) seems simpler
and does not involve exponentials.

6 Conclusion

We have compared the quality of different I/O equations in a context of param-
eter estimation, on a specific example. The integral equations behave quite well,
even if they involve exponentials or fractions. Contrary to the approach of [2],
we directly estimated the parameters instead of the block parameters, because
our integral equations had no block structures. This difference of method did
not harm the quality of the parameter estimation.

As mentioned in the introduction, our long term goal is to build an integral
elimination prototype. The integral equations presented here give an idea of the
kind of equations an integral elimination algorithm should produce.

Acknowledgements

This work has been partially supported by the THIA ANR Program “AI PhD@Lille”,
from the French National Research Agency, grant ANR-20-THIA-0014.

12

References

[1] François Boulier, Hélène Castel, Nathalie Corson, Valentina Lanza,
François Lemaire, Adrien Poteaux, Alban Quadrat, and Nathalie Verdière.
Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling.
working paper or preprint, April 2018.

[2] François Boulier, Anja Korporal, François Lemaire, Wilfrid Perruquetti,
Adrien Poteaux, and Rosane Ushirobira. An Algorithm for Converting
Nonlinear Differential Equations to Integral Equations with an Applica-
tion to Parameter Estimation from Noisy Data. In Computer Algebra in
Scientific Computing, pages 28 – 43, Warsaw, Poland, September 2014.

[3] François Boulier, Joseph Lallemand, François Lemaire, Georg Regens-
burger, and Markus Rosenkranz. Additive Normal Forms and Integration
of Differential Fractions. Journal of Symbolic Computation, 2016.

[4] François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot.
Computing representations for radicals of finitely generated differential ide-
als. Applicable Algebra in Engineering, Communication and Computing,
20(1):73, Mar 2009.

[5] François Boulier, François Lemaire, Markus Rosenkranz, Rosane Ushi-
robira, and Nathalie Verdière. On Symbolic Approaches to Integro-
Differential Equations. In Alban Quadrat and Eva Zerz, editors, Algebraic
and Symbolic Computation Methods in Dynamical Systems, volume 9 of
Advances in Delays and Dynamics, pages 161–182. Springer, 2020.

[6] François Boulier. The DifferentialAlgebra project, 2023.

[7] Michel Fliess. Automatique et corps différentiels. Forum Mathematicum -
FORUM MATH, 1:227–238, 01 1989.

[8] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634, February 2019.

[9] François Lemaire and Louis Roussel. Integration of Integro-differential
Equations and Deep Learning. Differential Algebra and Related Topics
XI, June 2023. Poster.

[10] Markus Rosenkranz and Georg Regensburger. Integro-differential polyno-
mials and operators. In Proceedings of the Twenty-First International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’08, page 261–268,
New York, NY, USA, 2008. Association for Computing Machinery.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

13

A Summary of the I/O Equations

Vek21key + Vek21y
2 + Vekeẏ + k12k

2
e ẏ + 2k12keyẏ + k12y

2ẏ

+ k21k
2
e ẏ + 2k21keyẏ + k21y

2ẏ + k2e ÿ + 2keyÿ + y2ÿ = 0 (3)

k21Ve

∫ ∫
y

ke + y
+ (k12 + k21)

∫
(y − y0)

− Ve

∫
(

y

ke + y
− y0

ke + y0
)− ẏ0t+ y − y0 = 0 (8)

− y + y0 − k12

∫
y −

∫
Vey

ke + y

+ (
Vey0

ke + y0
+ ẏ0 + k12y0)

∫
e−k21t + k21k12

∫
(e−k21t

∫
ek21ty) = 0 (11)

− y2 + y20 − 2key + 2key0 − 2kek12

∫
y − 2k12

∫
y2 − 2Ve

∫
y

+ 2ke(
Vey0

ke + y0
+ ẏ0 + k12y0)

∫
e−k21t + 2(

Vey0
ke + y0

+ ẏ0 + k12y0)

∫
ye−k21t

+ 2kek21k12

∫
(e−k21t

∫
ek21ty) + 2k21k12

∫
(ye−k21t

∫
ek21ty) = 0 (12)

− ye
∫
(k12+

Ve
ke+y) + y0 + (

Vey0
ke + y0

+ ẏ0 + k12y0)

∫
e
∫
(k12+

Ve
ke+y)e−k21t

+ k12k21

∫
(e

∫
(k12+

Ve
ke+y)e−k21t

∫
ek21ty) = 0 (13)

14

